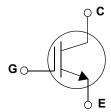


FGP90N30 300V, 90A PDP IGBT

Features

- · High Current Capability
- Low saturation voltage : $V_{CE(sat)} = 1.1 \text{ V} @ I_C = 20A$
- High input impedance
- · Fast switching


Application

. PDP System

General Description

Employing Unified IGBT Technology, Fairchild's PDP IGBTs provides low conduction and switching loss. The PWD series offers the optimum solution for PDP applications where low condution loss is essential.

Absolute Maximum Ratings

Symbol	Description	FGP90N30	Units	
V _{CES}	Collector-Emitter Voltage		300	V
V_{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25°C	90	Α
I _{C pulse (1)}	Pulse Collector Current	@ T _C = 25°C	130	А
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	192	W
	Maximum Power Dissipation	@ T _C = 100°C	77	W
T_J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		0.65	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Notes

(1) Repetitive test , pulse width=100usec , Duty=0.5

Package Marking and Ordering Information

			Packaging	Qty per Tube	Max Qty
Device Marking	Device	Package	Type	Qty per rube	per Box
FGP90N30	FGP90N30TU	TO-220	Rail / Tube	50ea	-

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Char	acteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	300			V
ΔB _{VCES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 250uA		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			100	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 250	nA
On Chara	acteristics G-E Threshold Voltage	I _C = 250uA, V _{CE} = V _{GE}	2.5	4.0	5.0	V
		1 - 250uA W - W	2.5	4.0	5.0	1/
02()		I _C = 20A, V _{GF} = 15V		1.1	1.4	V
V _{CE(sat)}	Collector to Emitter	$I_C = 90 \text{ A}, V_{GE} = 15V$ $T_C = 25^{\circ}\text{C}$		1.9		V
()	Saturation Voltage	I _C = 90 A, V _{GE} = 15V T _C = 125°C		2.0		V
Dynamic	Characteristics					
C _{ies}	Input Capacitance	$V_{CE} = 30V_{VGE} = 0V_{CE}$		1700		pF
C _{oes}	Output Capacitance	f = 1MHz		290		pF
C _{res}	Reverse Transfer Capacitance			80		pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	V - 200 V I - 20A	 30		ns
t _r	Rise Time	$V_{CC} = 200 \text{ V}, I_{C} = 20\text{A},$	 150	-	ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^{\circ}C$	 110	-	ns
t _f	Fall Time	Tresistive Load, Te = 25 G	 140	350	ns
t _{d(on)}	Turn-On Delay Time	V 000 V I 00 A	 30	-	ns
t _r	Rise Time	$V_{CC} = 200 \text{ V}, I_C = 20 \text{ A},$ $R_G = 10\Omega, V_{GE} = 15\text{ V},$	 150	-	ns
t _{d(off)}	Turn-Off Delay Time	Resistive Load, $T_C = 125^{\circ}C$	 110	-	ns
t _f	Fall Time	Resistive Load, 16 - 125 O	 330	-	ns
Q _g	Total Gate Charge	V = 200 V I = 20A	 87	130	nC
Q_{ge}	Gate-Emitter Charge	$V_{CE} = 200 \text{ V, } I_{C} = 20\text{A,}$ $V_{GE} = 15\text{V}$	 12	18	nC
Q_{gc}	Gate-Collector Charge	▼GE = 13▼	 38	57	nC

2

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

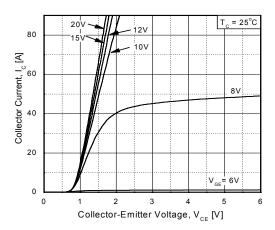


Figure 3 Typical Saturation Voltage Characteristics

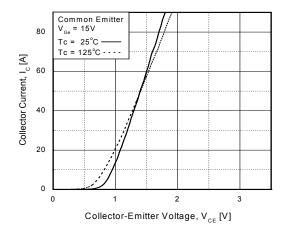


Figure 5. Saturation Voltage vs Case

Temperature at Variant Current Level

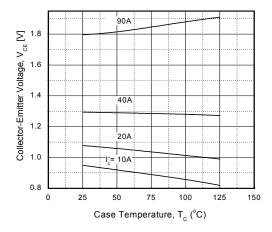


Figure 2. Typical Output Characteristics

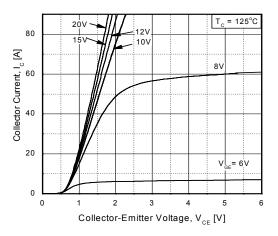


Figure 4. Transfer Characteristics

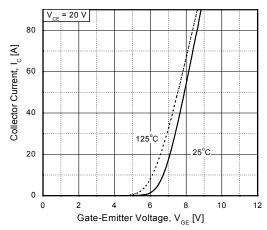
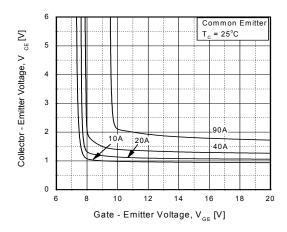



Figure 6. Saturation Voltage vs. Vge

3

Figure 7. Saturation Voltage vs. Vge

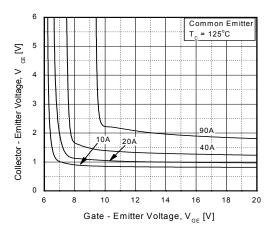


Figure 9. Gate Charge

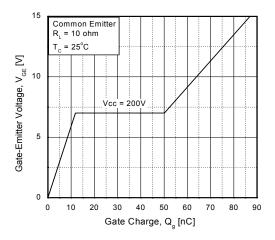


Figure 11. Turn-On Characteristics vs.
Gate Resistance

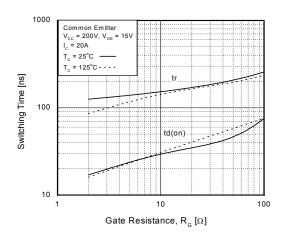


Figure 8. Capacitance Characteristics

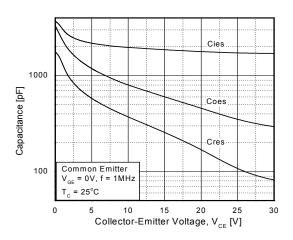
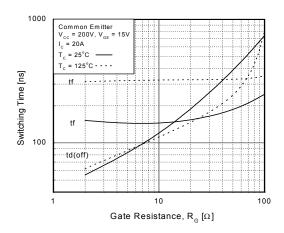



Figure 10. SOA Characteristics

Figure 12. Turn-Off Characteristics vs.
Gate Resistance

4

Figure 13 Turn-On Characteristics vs. Collector Current

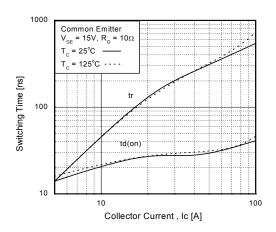


Figure 14. Turn-Off Characteristics vs. Collector Current

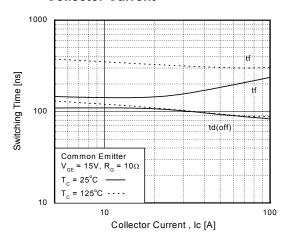


Figure 15. Switching Loss vs.
Gate Resistance

FGP90N30 Rev. A

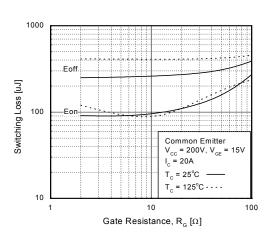
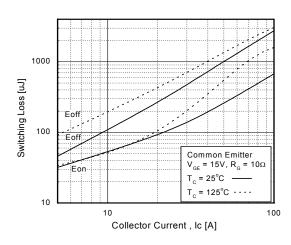
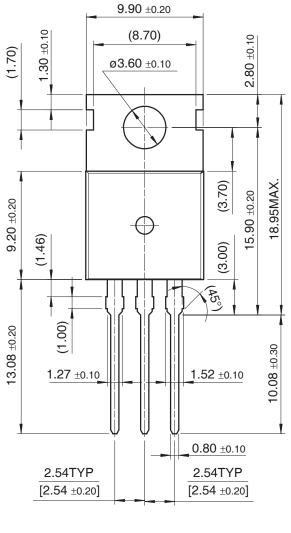
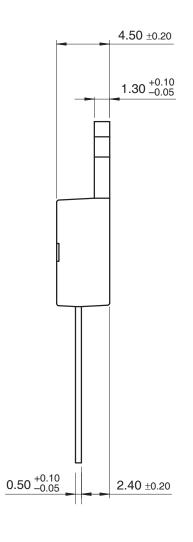
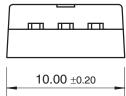


Figure 16. Switching Loss vs. Collector Current




Figure 17. Transient Thermal Impedance of IGBT




www.fairchildsemi.com

Mechanical Dimensions

TO-220

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TinyLogic [®]
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TINYOPTO™
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TruTranslation™
DOME™	HiSeC™	MSX™	RapidConfigure™	UHC™
EcoSPARK™	I ² C TM	MSXPro™	RapidConnect™	UltraFET [®]
E ² CMOS™	i-Lo™	OCX™	μSerDes™	UniFET™
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	VCX™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER®	Wire™
FACT Quiet Series™		OPTOPLANAR™	SMART START™	
		PACMAN™	SPM™	
Across the board. Aro	und the world.™	РОР™	Stealth™	
The Power Franchise	®	Power247™	SuperFET™	

PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

SuperSOT™-3

LIFE SUPPORT POLICY

Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I17

Search:

Go

Order Samples

Qualification Support

Home >> Find products >>

FGP90N30

300V, 90A PDP IGBT

Contents

- General description
- Features
- Applications
- Product status/pricing/packaging

General description

Employing Unified IGBT Technology, Fairchild's PDP IGBTs provides low conduction and switching loss. The PWD series offers the optimum solution for PDP applications where low - condution loss is essential.

back to top

Features

- High Current Capability
- Low saturation voltage : V_{CE(sat)} = 1.1 V @ I_C = 20A
- High input impedance
- Fast switching

back to top

Applications

• PDP System

back to top

Product status/pricing/packaging

BUY

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**

FGP90N30TU	Full Production	Full Production	\$2.52	<u>TO-220</u>	3	RΔII	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) &E& 3 (3-Digit Date Code) Line 2: FGP Line 3: 90N30
------------	-----------------	--------------------	--------	---------------	---	------	--

^{*} Fairchild 1,000 piece Budgetary Pricing

** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FGP90N30 is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

Product
FGP90N30TU

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |