

Reference Specification

Leaded MLCC for Automotive with AEC-Q200 RCE Series

Product specifications in this catalog are as of Apr. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment

2. Aerospace equipment

3. Undersea equipment

4. Power plant control equipment

5. Medical equipment

- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

∧ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Leaded MLCC RCE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

Part Number Configuration

ex.)	RCE	7U	2E	101	J	1	K1	H03	B
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Temp.coef.	Standard Temp.	Operating Temp. Range		
7U	U2J	-55∼25°C	-750+120/-347ppm/°C	25°C	-55∼125°C		
70	(EIA code)	25∼125°C	-750+/-120ppm/°C	25 C	-5579 125 C		

Rated Voltage

Code	Rated voltage
2E	DC250V
2J	DC630V
3A	DC1000V

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 101

$$10 \times 10^1 = 100 pF$$

• Capacitance Tolerance

Code	Capacitance Tolerance
J	+/-5%

• Dimension (LxW)

Please refer to [Part number list].

· Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
B1	Straight type	5.0+/-0.8
E1	Straight taping type	5.0+0.6/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

Individual Specification

Murata's control code.

Please refer to [Part number list].

• Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

Reference only

3. Marking

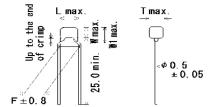
Temp. char. : Letter code : U (U2J Char.)
Capacitance : Actual numbers (Less than 100pF)

3 digit numbers (100pF and over)

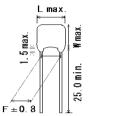
Capacitance tolerance : Code

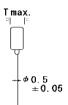
Rated voltage : Letter code : 4 (DC250V. Except dimension code : 1)

Letter code: 7 (DC630V) Letter code: A (DC1000V)

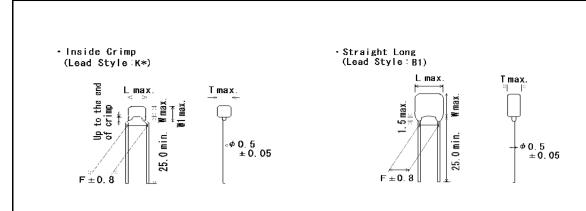

Company name code : Abbreviation : (Except dimension code : 1)

(Ex.)

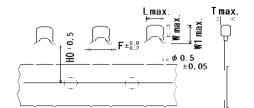

Ex.)			
Rated voltage Dimension code	DC250V	DC630V	DC1000V
1	U 102J	-	
2	(M ₁₀₃)	€ 472	M 102 JAU
3,4	6 473 J4U	(M103 J7U	G 472 JAU
5	-	& 333 J7U	(A) 103 JAU

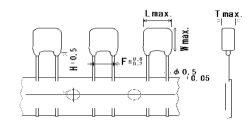

4. Part number list

- Inside Crimp (Lead Style:K*)


·Straight Long (Lead Style:B1)

Unit: mm

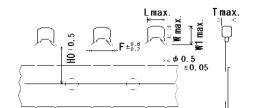

Customer	Murata Part Number	T.C.	DC Rated	Con	Сар.		Dime	ension (mm)		Dimension	Pack
Part Number	Murata Part Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	(LxW) Lead Style	qty. (pcs)
	RCE7U2E101J1K1H03B	U2J	250	100pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E151J1K1H03B	U2J	250	150pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E221J1K1H03B	U2J	250	220pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E331J1K1H03B	U2J	250	330pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E471J1K1H03B	U2J	250	470pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E681J1K1H03B	U2J	250	680pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E102J1K1H03B	U2J	250	1000pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E152J1K1H03B	U2J	250	1500pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E222J1K1H03B	U2J	250	2200pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E332J1K1H03B	U2J	250	3300pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E472J1K1H03B	U2J	250	4700pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE7U2E682J2K1H03B	U2J	250	6800pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2E103J2K1H03B	U2J	250	10000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J100J2K1H03B	U2J	630	10pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J150J2K1H03B	U2J	630	15pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J220J2K1H03B	U2J	630	22pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J330J2K1H03B	U2J	630	33pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J470J2K1H03B	U2J	630	47pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J680J2K1H03B	U2J	630	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J101J2K1H03B	U2J	630	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J151J2K1H03B	U2J	630	150pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J221J2K1H03B	U2J	630	220pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J331J2K1H03B	U2J	630	330pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J471J2K1H03B	U2J	630	470pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J681J2K1H03B	U2J	630	680pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J102J2K1H03B	U2J	630	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J152J2K1H03B	U2J	630	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J222J2K1H03B	U2J	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J332J2K1H03B	U2J	630	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J472J2K1H03B	U2J	630	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U2J682J3K1H03B	U2J	630	6800pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCE7U2J103J3K1H03B	U2J	630	10000pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCE7U2J153J4K1H03B	U2J	630	15000pF	±5%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RCE7U2J223J4K1H03B	U2J	630	22000pF	±5%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RCE7U2J333J5B1H03B	U2J	630	33000pF	±5%	7.5	8.0		5.0	4.0	5B1	500
	RCE7U2J473J5B1H03B	U2J	630	47000pF	±5%	7.5	8.0	-	5.0	4.0	5B1	500


Unit : mm

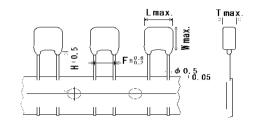
Customer	Murata Part Number	T.C.	DC Rated Volt. (V)	Cap.	Сар.		Dime		Dimension (LxW)	Pack		
Part Number	Murata Fart Number	1.0.		oup.	Tol.	L	W	W1	F	Т	Lead Style	qty. (pcs)
	RCE7U3A100J2K1H03B	U2J	1000	10pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A150J2K1H03B	U2J	1000	15pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A220J2K1H03B	U2J	1000	22pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A330J2K1H03B	U2J	1000	33pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A470J2K1H03B	U2J	1000	47pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A680J2K1H03B	U2J	1000	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A101J2K1H03B	U2J	1000	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A151J2K1H03B	U2J	1000	150pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A221J2K1H03B	U2J	1000	220pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A331J2K1H03B	U2J	1000	330pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A471J2K1H03B	U2J	1000	470pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A681J2K1H03B	U2J	1000	680pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A102J2K1H03B	U2J	1000	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE7U3A152J3K1H03B	U2J	1000	1500pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCE7U3A222J3K1H03B	U2J	1000	2200pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCE7U3A332J4K1H03B	U2J	1000	3300pF	±5%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RCE7U3A472J4K1H03B	U2J	1000	4700pF	±5%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RCE7U3A682J5B1H03B	U2J	1000	6800pF	±5%	7.5	8.0	-	5.0	4.0	5B1	500
	RCE7U3A103J5B1H03B	U2J	1000	10000pF	±5%	7.5	8.0	-	5.0	4.0	5B1	500

• Inside Crimp Taping (Lead Style: ₩*)

·Straight Taping (Lead Style:E*)



Unit : mm


Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		D	imensi	on (mr	n)		Dimension (LxW)	Pack qty.
Part Number	Marata Fare (value)		Volt. (V)	oup.	Tol.	L	W	W1	F	Т	H/H0	. ` . ~ ′ .	
	RCE7U2E101J1M1H03A	U2J	250	100pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E151J1M1H03A	U2J	250	150pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E221J1M1H03A	U2J	250	220pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E331J1M1H03A	U2J	250	330pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E471J1M1H03A	U2J	250	470pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E681J1M1H03A	U2J	250	680pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E102J1M1H03A	U2J	250	1000pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E152J1M1H03A	U2J	250	1500pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E222J1M1H03A	U2J	250	2200pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E332J1M1H03A	U2J	250	3300pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E472J1M1H03A	U2J	250	4700pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCE7U2E682J2M1H03A	U2J	250	6800pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2E103J2M1H03A	U2J	250	10000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J100J2M1H03A	U2J	630	10pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J150J2M1H03A	U2J	630	15pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J220J2M1H03A	U2J	630	22pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J330J2M1H03A	U2J	630	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J470J2M1H03A	U2J	630	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J680J2M1H03A	U2J	630	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J101J2M1H03A	U2J	630	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J151J2M1H03A	U2J	630	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J221J2M1H03A	U2J	630	220pF		5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J331J2M1H03A	U2J	630	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J471J2M1H03A	U2J	630	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J681J2M1H03A	U2J	630	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J102J2M1H03A	U2J	630	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J152J2M1H03A	U2J	630	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J222J2M1H03A	U2J	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J332J2M1H03A	U2J	630	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J472J2M1H03A	U2J	630	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U2J682J3M1H03A	U2J	630	6800pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCE7U2J103J3M1H03A	U2J	630	10000pF		5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCE7U2J153J4M1H03A	U2J	630	15000pF	±5%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCE7U2J223J4M1H03A	U2J	630	22000pF	±5%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCE7U2J333J5E1H03A	U2J	630	33000pF	±5%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RCE7U2J473J5E1H03A	U2J	630	47000pF	±5%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500

PNLIST

• Inside Crimp Taping (Lead Style: ₩*)

·Straight Taping (Lead Style:E*)

Unit : mm

Customer	Murata Part Number	T.C.	DC Rated	ated olt. Cap.	Сар.		D	Dimension (LxW)	qty.				
Part Number	Wurata i art Number	1.0.	Volt. (V)		Tol.	L	W	W1	F	Т	H/H0	` ,	
	RCE7U3A100J2M1H03A	U2J	1000	10pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A150J2M1H03A	U2J	1000	15pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A220J2M1H03A	U2J	1000	22pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A330J2M1H03A	U2J	1000	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A470J2M1H03A	U2J	1000	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A680J2M1H03A	U2J	1000	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A101J2M1H03A	U2J	1000	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A151J2M1H03A	U2J	1000	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A221J2M1H03A	U2J	1000	220pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A331J2M1H03A	U2J	1000	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A471J2M1H03A	U2J	1000	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A681J2M1H03A	U2J	1000	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A102J2M1H03A	U2J	1000	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE7U3A152J3M1H03A	U2J	1000	1500pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCE7U3A222J3M1H03A	U2J	1000	2200pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCE7U3A332J4M1H03A	U2J	1000	3300pF	±5%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCE7U3A472J4M1H03A	U2J	1000	4700pF	±5%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCE7U3A682J5E1H03A	U2J	1000	6800pF	±5%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RCE7U3A103J5E1H03A	U2J	1000	10000pF	±5%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500

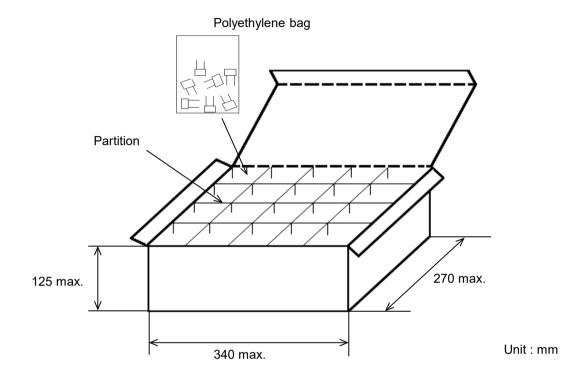
).		cifications and Lest Methods									
O	AEC-Q200	cifications and Test Methods									
	Test Item	Specification	AEC-Q200 Test Method								
Pre-and P	ost-Stress										
Electrical ⁻	Гest		-								
High	Appearance	No defects or abnormalities.	Sit the capacitor for 1000±12h at 150±3°C. Let sit for 24±2h at								
Temperati	ure Capacitance	Within ±3% or ±0.3pF	*room condition, then measure.								
Exposure	Change	(Whichever is larger)									
(Storage)	Q	30pF ≦ C : Q ≧ 350									
		10pF ≤ C < 30pF : Q ≥ 275+5C/2									
		10pF > C : Q ≧ 200+10C									
		C : Nominal Capacitance (pF)									
	I.R.	More than 1,000MΩ or 50 MΩ·μF									
		(Whichever is smaller)									
Temperati	ure Appearance	No defects or abnormalities.	Perform the 1000 cycles according to the four heat treatments listed in								
Cycling	Capacitance	Within ±5% or ±0.5pF	the following table. Let sit for 24±2 h at *room condition, then measure.								
	Change	(Whichever is larger)									
	Q	30pF ≤ C : Q ≥ 350	Step 1 2 3 4								
		10pF ≤ C < 30pF : Q ≥ 275+5C/2	Temp55+0/-3 Room 125+3/-0 Room								
		10pF > C : Q ≧ 200+10C	(°C) Temp. Temp. Temp.								
			Time 15±3 1 15±3 1								
	<u></u>	C : Nominal Capacitance (pF)	(min.) 1313 1 1313 1								
	I.R.	1,000MΩ or 50MΩ•μF min.									
		(Whichever is smaller)									
Moisture	Appearance	No defects or abnormalities	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%)								
Resistanc	e Capacitance	Within ±5% or ± 0.5pF	treatment shown below, 10 consecutive times.								
	Change	(Whichever is larger)	Let sit for 24±2 h at *room condition, then measure.								
	Q	30pF ≦ C : Q ≧ 200	Temperature Humidity Humidity 80~98% Humidity 80~98% Humidity								
		30pF > C : Q ≧ 100+10C/3	(°C) 90~98% V 90~98% V 90~98%								
			70 65								
		C : Nominal Capacitance (pF)	60								
	I.R.	500M Ω or 25M Ω •μF min.	55								
		(Whichever is smaller)	950 1545 1545 1546 1546 1547 1547 1548 1549 1								
			840								
			<u></u>								
			25 35								
			20 +10								
			15 - 2°C								
			10 Initial measurement 5								
			0								
			-5								
			-10 One cycle 24 hours								
			0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24								
			Hours								
D: '	A :	No defeate on the two this	Application and a state of the second section of the section of the second section of the s								
Biased	Appearance	No defects or abnormalities	Apply the rated voltage and DC1.3+0.2/-0V (add 100kΩ resistor)								
	Capacitance	Within ±5% or ± 0.5pF	at 85±3°C and 80 to 85% humidity for 1000±12h.								
Humidity	Change	(Whichever is larger)	Remove and let sit for 24±2 h at *room condition, then measure.								
Hullialty	Q	30pF ≦ C : Q ≧ 200	The charge/discharge current is less than 50mA.								
Humaity	Q	20=== 0.0 > 400.400/2									
numunty		30pF > C : Q ≧ 100+10C/3									
Humaity											
Humaity		C : Nominal Capacitance (pF)									
Humaity	I.R.	C : Nominal Capacitance (pF) 500MΩ or 25MΩ•μF min.									
Humaity		C : Nominal Capacitance (pF)									

ESRCE04D

Reference only

			Refere	ence only						
No.		-Q200 t Item	Specification AEC-Q200 Test Method							
6	Operational	Appearance	No defects or abnormalities.	Apply voltage in Table for 1000±12h at 125±3°C.						
	Life	Capacitance	Within ±3% or ±0.3pF	Let sit for 24±2 h at *room condition, then measure. The charge/discharge current is less than 50mA.						
		Change	(Whichever is larger)							
		Q	30pF ≦ C : Q ≧ 350							
			$10pF \le C < 30pF : Q \ge 275+5C/2$	Rated Voltage Test Voltage						
			10pF > C : Q ≥ 200+10C	DC250V 150% of the rated voltage						
			10pi - 0 : Q = 200 · 100	DC630V 4200V = f the a rest of a relation						
			C : Naminal Canacitanas (nE)	DC1000V 120% of the rated voltage						
			C : Nominal Capacitance (pF)	_						
		I.R.	1,000MΩ or 50MΩ•μF min.							
	External Visua	<u> </u>	(Whichever is smaller)	No. 12 P.						
7			No defects or abnormalities.	Visual inspection.						
8	Physical Dime	nsion	Within the specified dimensions.	Using calipers and micrometers.						
9	Marking	T.	To be easily legible.	Visual inspection.						
10	Resistance	Appearance	No defects or abnormalities.	Per MIL-STD-202 Method 215						
	to Solvents	Capacitance	Within the specified tolerance.	Solvent 1 : 1 part (by volume) of isopropyl alcohol						
		Q	$30pF \le C : Q \ge 1,000$	3 parts (by volume) of mineral spirits						
			30pF > C : Q ≧ 400+20C	Solvent 2 : Terpene defluxer						
				Solvent 3 : 42 parts (by volume) of water						
			C : Nominal Capacitance (pF)	1 part (by volume) of propylene glycol						
		I.R.	More than 10,000MΩ or 500 MΩ·μF	monomethyl ether						
		<u></u>	(Whichever is smaller)	1 part (by volume) of monoethanolamine						
11	Mechanical	Appearance	No defects or abnormalities.	Three shocks in each direction should be applied along 3						
	Shock	Capacitance	Within the specified tolerance.	mutually perpendicular axes of the test specimen (18 shocks).						
		Q	30pF ≦ C : Q ≧ 1,000	The specified test pulse should be Half-sine and should have a						
			30pF > C : Q ≧ 400+20C	duration : 0.5ms, peak value : 1500G and velocity change : 4.7m/s.						
			<u> </u>							
			C : Nominal Capacitance (pF)							
12	Vibration	Appearance	No defects or abnormalities.	The capacitor should be subjected to a simple harmonic motion						
		Capacitance	Within the specified tolerance.	having a total amplitude of 1.5mm, the frequency being varied						
		Q	30pF ≦ C : Q ≧ 1,000	uniformly between the approximate limits of 10 and 2,000Hz.						
			30pF > C : Q ≥ 400+20C	The frequency range, from 10 to 2000Hz and return to 10Hz,						
			00pi	should be traversed in approximately 20 min. This motion						
			C : Nominal Capacitance (pF)	should be applied for 12 items in each 3 mutually perpendicular						
			o : Normilai Gapaditande (pr.)	directions (total of 36 times).						
13_1	Resistance	Appearance	No defects or abnormalities.	The lead wires should be immersed in the melted solder 1.5 to 2.0mm						
10-1	to	Capacitance	Within ±2.5% or ±0.25pF	from the root of terminal at 260±5°C for 10±1 seconds.						
	Soldering	Change	(Whichever is larger)	Post-treatment						
	Heat	Dielectric	No defects	Capacitor should be stored for 24±2 hours at *room condition.						
	(Non-	Strength	No delegis							
	Preheat)	(Between								
	i reneat)	terminals)								
12.2	Resistance	Appearance	No defects or abnormalities.	First the conscitor should be stored at 120 LOV E°C for 60 LOV E accorde						
13-2		···		First the capacitor should be stored at 120+0/-5°C for 60+0/-5 seconds. Then, the lead wires should be immersed in the melted solder 1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-1 seconds.						
	to Soldoring	Capacitance	Within ±2.5% or ±0.25pF							
	Soldering	Change	(Whichever is larger)	2.0Hill from the root of terminal at 260±5°C for 7.5+0/-1 seconds.						
	Heat	Diala -4								
		Dielectric	No defects	Doct to other and						
	(On-	Strength	INO delects	Post-treatment						
		Strength (Between	INO delects	Post-treatment Capacitor should be stored for 24±2 hours at *room condition.						
	(On- Preheat)	Strength (Between terminals)		Capacitor should be stored for 24±2 hours at *room condition.						
13-3	(On- Preheat) Resistance	Strength (Between terminals) Appearance	No defects or abnormalities.	Capacitor should be stored for 24±2 hours at *room condition. Test condition						
13-3	(On- Preheat) Resistance to	Strength (Between terminals) Appearance Capacitance	No defects or abnormalities. Within ±2.5% or ±0.25pF	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C						
13-3	(On- Preheat) Resistance to Soldering	Strength (Between terminals) Appearance	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger)	Capacitor should be stored for 24±2 hours at *room condition. Test condition						
13-3	(On- Preheat) Resistance to	Strength (Between terminals) Appearance Capacitance	No defects or abnormalities. Within ±2.5% or ±0.25pF	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C						
13-3	(On- Preheat) Resistance to Soldering	Strength (Between terminals) Appearance Capacitance Change	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger)	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds						
13-3	(On- Preheat) Resistance to Soldering Heat	Strength (Between terminals) Appearance Capacitance Change Dielectric	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger)	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position						
13-3	(On- Preheat) Resistance to Soldering Heat (soldering	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger)	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal.						
13-3	(On- Preheat) Resistance to Soldering Heat (soldering	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger)	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal.						
13-3	(On- Preheat) Resistance to Soldering Heat (soldering	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger)	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend.						
13-3	(On- Preheat) Resistance to Soldering Heat (soldering	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger)	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals)	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition.						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals) Appearance	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects No defects	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals) Appearance Capacitance	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects No defects No defects or abnormalities. Within ±5% or ±0.5pF	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the following table (Maximum transfer time is 20s.). Let sit for 24±2 h at *room condition, then measure.						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals) Appearance Capacitance Change	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects No defects or abnormalities. Within ±5% or ±0.5pF (Whichever is larger)	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the following table (Maximum transfer time is 20s.). Let sit for 24±2 h at						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals) Appearance Capacitance Change	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects No defects or abnormalities. Within ±5% or ±0.5pF (Whichever is larger) 30pF ≤ C: Q ≥ 350 10pF ≤ C < 30pF: Q ≥ 275+5C/2	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the following table (Maximum transfer time is 20s.). Let sit for 24±2 h at *room condition, then measure. Step 1 2 Temp55±0/-3 125±3/-0						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals) Appearance Capacitance Change	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects No defects or abnormalities. Within ±5% or ±0.5pF (Whichever is larger) 30pF ≤ C: Q ≥ 350	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the following table (Maximum transfer time is 20s.). Let sit for 24±2 h at *room condition, then measure.						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals) Appearance Capacitance Change	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects No defects or abnormalities. Within ±5% or ±0.5pF (Whichever is larger) 30pF ≤ C: Q ≥ 350 10pF ≤ C < 30pF: Q ≥ 275+5C/2 10pF > C: Q ≥ 200+10C	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the following table (Maximum transfer time is 20s.). Let sit for 24±2 h at *room condition, then measure. Step 1 2 Temp. (°C) -55+0/-3 125+3/-0 Time 15±3 15±3						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals) Appearance Capacitance Change Q	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects No defects or abnormalities. Within ±5% or ±0.5pF (Whichever is larger) 30pF ≤ C: Q ≥ 350 10pF ≤ C < 30pF: Q ≥ 275+5C/2 10pF > C: Q ≥ 200+10C C: Nominal Capacitance (pF)	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the following table (Maximum transfer time is 20s.). Let sit for 24±2 h at *room condition, then measure. Step 1 2 Temp. (°C) -55+0/-3 125+3/-0						
	(On- Preheat) Resistance to Soldering Heat (soldering iron method)	Strength (Between terminals) Appearance Capacitance Change Dielectric Strength (Between terminals) Appearance Capacitance Change	No defects or abnormalities. Within ±2.5% or ±0.25pF (Whichever is larger) No defects No defects or abnormalities. Within ±5% or ±0.5pF (Whichever is larger) 30pF ≤ C: Q ≥ 350 10pF ≤ C < 30pF: Q ≥ 275+5C/2 10pF > C: Q ≥ 200+10C	Capacitor should be stored for 24±2 hours at *room condition. Test condition Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of lead bend. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition. Perform the 300 cycles according to the two heat treatments listed in the following table (Maximum transfer time is 20s.). Let sit for 24±2 h at *room condition, then measure. Step 1 2 Temp. (°C) -55+0/-3 125+3/-0 Time 15±3 15±3						

* "room cond ESRCE04D Reference only


Section Page and the properties of the state of the page and the p		Reference only									
Sectionalists	No.			Specifications		AEC-Q200 Test Method					
Capacitance Within the specified tolerance:	15		1	No defects	Per AEC-Q200-002						
Supple Sign Co. 2 2 0.000 Supple Sign Co. 2 2 0.000 Supple Sign Co. 2 2 0.000 Supple Sign Co. 2 2 0.0000 Supple Sign Co. 2 0.00000 Supple Sign Co. 2 0.000000 Supple Sign Co. 2 0.000000 Supple Sign Co. 2 0.000000 Supple Sign Co. 2 0.0000000 Supple Sign Co. 2 0.0000000 Supple Sign Co. 2 0.000000000000000000000000000000000	13	ESD									
Sopie				+	•	1					
C. Neminal Capacitance (pF)			Q	1 -							
R				30pF > C : Q ≧ 400+20C							
R				C . Naminal	Canaditanas (nE)						
Whitehove is emailed; Whit			LD		+						
Soldershilly			I.K.								
Capacitans Cap	16	Soldorobility		<u> </u>	,	Should be placed into steem sains for 9h+15 min					
Bedding Part Part	10	Colderability	odderability			The terminal of capacitor is dipped into a solution of ethanol					
Pacific Paci											
Section Sect							propotion). Immerse in solder solution for 2±0.5 seconds.				
Securior Part Par											
Tempo disolder: 2445/5°C Lacid Free Solder (Sn-3.0Ag-d.SCu) 235/5°C H60A or H63A Eutercic Solder						1 1 2 1					
Selectical Character Appearance No defects or abnormalities. Visual inspection. The capacitance, Q should be measured at 25°C at the frequency and voltage in the capacitance, Q should be measured at 25°C at the frequency and voltage in the capacitance, Q should be measured at 25°C at the frequency and voltage shown in the fable. No defects or abnormalities. No minial Cap. Frequency Voltage The capacitance, Q should be measured at 25°C at the frequency and voltage in 10,000M or 500M or 10,000M or 10,000M or 500M or 10,000M or 10,						Temp. of solder :					
Appearance No defects or abnormalities. Visual inspection. The capacitance, G should be measured at 25°C at the frequency and voltage shown in the table.											
Capacitance			1								
Itzalion Q 30pF ≤ C or ≥ 1,000 30pF > C or ≥ 2 ± 400-20C C : Nominal Capacitance (pF) Voltage 140.14M±2 AC0.5 to 5Vfcm.s.) C > 1000pF 140.14M±2 AC0.5 to 5Vfcm.s. Available Available Available Available Available Available Available Available Available Ava	17	Electrical	Appearance	No defects							
Nominal Cap. Frequency Voltage	1	Characte-	Capacitance	Within the s	specified tolerance.	The capac	citance,	Q should	be measured	at 25°C	at the frequency and
Programme Voltage Co Sto Stytem, s.)		rization	Q	30pF ≦ C :	Q ≧ 1,000	voltage sh	own in	the table.			
C : Nominal Capacitance (pF)				30pF > C : Q ≧ 400+20C		1	Nomi	nal Can	Frequency		Voltage
LR											
Race Review Terminals (Whichever is smaller) The insulation resistance should be measured with DC500V (DC250V in case of rated voltage : DC250V) at 25 °C within 2 min. of charging.				C : Nominal	Capacitance (pF)						
Dielectric Strength Dielectric Diel											
Dielectric Strength			I.R.								
Bedween No defects or abnormalities. The capacitor should not be damaged when voltage in Table is applied between the terminations for 1 to 5 seconds. (Charge/Discharge current \(\) \(Terminals	(Whichever is smaller)	- I'					
Strength Ferminals Strength Ferminals Strength Ferminals Strength Streng			Dialastria								
Charge/Discharge current ≤ 50mA. Rated Voltage DC250V 200% of the rated voltage DC350V 150% of the rated voltage DC1000V 130% of the rated voltage 100% of the					no defects of adnormalities.				_		=
Rated Voltage Test Voltage DC250V 200% of the rated voltage DC30V 150% of the rated voltage DC100V 150% of the rated voltage DC100V 150% of the rated voltage DC100V 130% of the rated DC voltage (130% of the rated Voltage in case of rated voltage : DC30V,DC100V) is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current : SomA.) Terminal Strength			Strength	Terminals							
Body Insulation No defects or abnormalities. The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and 200% of the rated voltage 10% of the rated voltage in case of rated voltage; DC630V,DC1000V) is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Terminal Strength											
Body Insulation The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and 200% of the rated DC voltage (130% of the rated voltage in case of rated voltage : DC630V, DC1000V) is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Body											
Body Insulation Body Insul											
Bending Strength											
Insulation											
2mm from the balls, and 200% of the rated DC voltage (130% of the rated voltage in case of rated voltage : DC630V,DC1000V) is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge(Discharge current ≤ 50mA.) Terminal Strength				'	diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and 200% of the rated DC voltage (130% of the						
Terminal Strength Terminal Strength Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loose											
for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Terminal Strength Termination not to be broken or loosened. Strength Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Beach lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitance change should be measured after 5min. at each specified temperature step. Step Temperature(°C) Step Temperature(°C) Step Temperature(°C) Step Step Step Step Step Step Step Step											
Charge/Discharge current \(\leq \) 50mA.) Terminal Strength						for 1 to 5 seconds between capacitor terminals and metal balls.					
Terminal Strength Termination not to be broken or loosened. Strength Termination not to be broken or loosened. Each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Fermination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitance charge should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.										and metal balls.	
Strength Strength Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Beach lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitance change should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1	10	Terminal	Tensile	Termination	not to be broken or loosened					force gradually	
Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Bending Strength Termination not to be broken or loosened. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitance change should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	10			Termination not to be broken or loosened.			-				
Bending Strength Termination not to be broken or loosened. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. Within the specified Tolerance Temperature Characteristics The capacitance change should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1											
be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. Temperature Characteristics Within the specified Tolerance 25°C to 125°C: -750±120 ppm/°C -55°C to 25°C: -750±120/-347 ppm/°C Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance of the temperature coefficient and capacitance change as Table A. The capacitance dring specified temperature using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	1										
be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. Temperature Characteristics Within the specified Tolerance 25°C to 125°C: -750±120 ppm/°C -55°C to 25°C: -750±120/-347 ppm/°C Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance of the temperature coefficient and capacitance change as Table A. The capacitance dring specified temperature using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.											
be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. Temperature Characteristics Within the specified Tolerance 25°C to 125°C: -750±120 ppm/°C -55°C to 25°C: -750±120/-347 ppm/°C Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance of the temperature coefficient and capacitance change as Table A. The capacitance dring specified temperature using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.											<u> </u>
returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. 19 Capacitance Temperature 25°C to 125°C: -750±120 ppm/°C Characteristics 5°C to 25°C: -750±120/-347 ppm/°C Characteristics 5°C to 25°C: -750±120/-347 ppm/°C The capacitance should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	1		Bending	Termination not to be broken or loosened.		Each lead	wire sh	nould be s	ubjected to a f	orce of	2.5N and then
direction at the rate of one bend per 2 to 3 seconds. 19 Capacitance Temperature Characteristics 25°C to 125°C: -750±120 ppm/°C Characteristics 55°C to 25°C: -750±120/-347 ppm/°C Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	1		Strength								
The capacitance change should be measured after 5min. at each specified temperature step. The capacitance change should be measured after 5min. at each specified temperature step. The capacitance change should be measured after 5min. at each specified temperature step. The capacitance change should be measured after 5min. at each specified temperature step. The capacitance change should be measured after 5min. at each specified temperature step. The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.											
Temperature Characteristics 25°C to 125°C: -750±120 ppm/°C -55°C to 25°C: -750±120/-347 ppm/°C Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	40	Conceite	<u> </u>	\A/i+h: +1	Vithin the specified Tolerance						
Characteristics -55°C to 25°C: -750+120/-347 ppm/°C Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	19	· ·			•			•		ureu afi	ter offilli. at
The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.				* *	caur spec	ineu le	-				
2 -55±3 3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.				33 3 to 23 3 . 2730 (1207-047 ppill) 0						e(°C)	
3 25±2 4 125±3 5 25±2 The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.											
The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.											
The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.											
measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	1								•		
sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	1					1				_	·
the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.							-				=
temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	1						-				•
The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.									-		
between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.	1					The capacitance drift is calculated by dividing the differences					
1, 3 and 5 by the capacitance value in step 3.											
	* "roo	m condition" T	emperature : 15	to 35°C, Re	lative humidity : 45 to 75%, Atmos	-		•			

* "room conc ESRCE04D

6. Packing specification

•Bulk type (Packing style code : B)

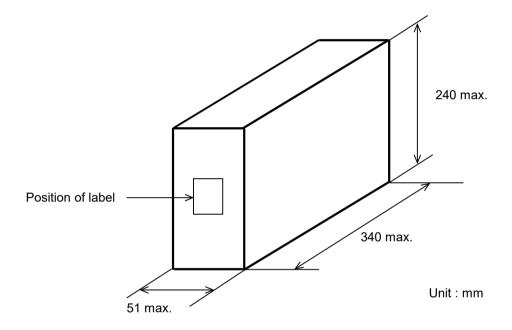
The size of packing case and packing way

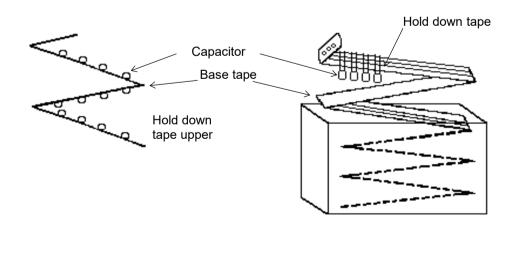
The number of packing = $^{^{\star1}}$ Packing quantity × $^{^{\star2}}$ n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

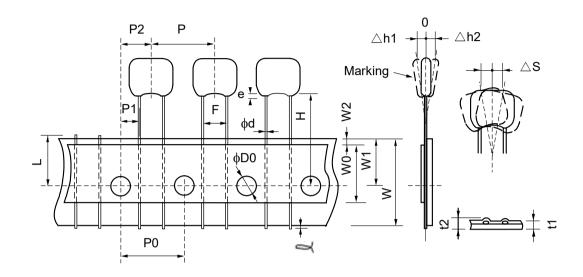

The outer package and the number of outer packing be changed by the order getting amount.


JKBCRPE02

·Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

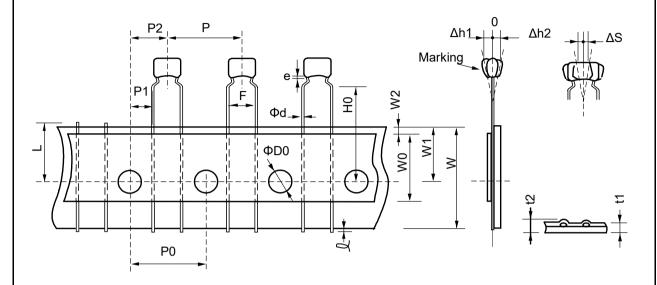
The size of packing case and packing way



7. Taping specification

7-1. Dimension of capacitors on tape

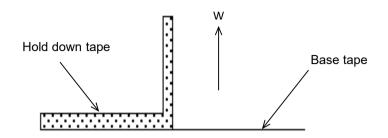
Straight taping type < Lead Style : E1 >


Pitch of component 12.7mm / Lead spacing 5.0mm

Unit: mm

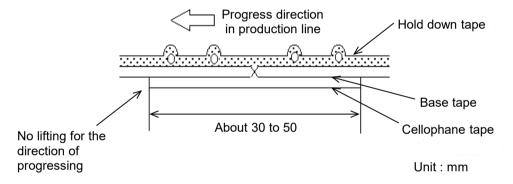
Item		Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole		12.7+/-0.2		
Lead spacing		5.0+0.6/-0.2		
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	3.85+/-0.7		
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
For straight lead type	Н	17.5+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	Фd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape	
Total thickness of tape and lead wire	t2	1.5 max.	thickness.	
Deviation across tape	∆h1	2.0 max. (Dimension code : U)		
Deviation across tape	∆h2	1.0 max. (exce	pt as above)	
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead		2.0 max. (Dime	ension code : U)	
Coating extension on lead	е	1.5 max. (exce	pt as above)	

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

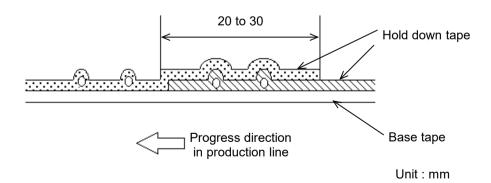


Unit : mm

Item		Dimensions	Remarks
Pitch of component		12.7+/-1.0	
Pitch of sprocket hole		12.7+/-0.2	
Lead spacing		5.0+0.6/-0.2	
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	Δh1	2.0 max. (Dimension code : W)	
Deviation across tape	Δh2	1.0 max. (ex	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp


7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

b) When hold down tape is spliced

•Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01