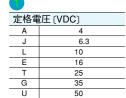

大容量積層セラミックコンデンサ HIGH VALUE MULTILAYER CERAMIC **CAPACITORS**

	code	Temp.characteristics	operating Temp. range
	BJ	В	-25~+85°C
		X7R	-55~+125°C
		X5R	-55~+85°C
	С	С	-25~+85°C
OPERATING TEMP.		X5S	-55~+85°C
		X6S	-55~+105℃
	Е	E	-25~+85°C
		Y5U	-30~+85℃
	_	F	-25~+85°C
	F	Y5V	-30~+85℃

特長 FEATURES

- ・電極にNi金属を使用し、端子電極部にメッキをしてあることにより、はん だ付け性および耐熱性にすぐれ、マイグレーションもほとんど発生せず、 高い信頼性を示します
- ・等価直列抵抗(ESR)が小さく、ノイズ吸収性にすぐれています。特にタンタルおよびアルミ電解コンデンサに比較した場合
- ・高い許容リップル電流値
- ・高い定格電圧でありながら小型形状
- ・絶縁抵抗、破壊電圧が高く信頼性にすぐれる 等の特徴があります


- · The use of Nickel(Ni) as material for both the internal and external electrodes improves the solderability and heat resistance characteristics. This almost completely eliminates migration and raises the level of reliability significantly.
- · Low equivalent series resistance(ESR) provides excellent noise absorption characteristics.
- · Compared to tantalum or aluminum electrolytic capacitors these ceramic capacitors offer a number of excellent features, including:
 - Higher permissible ripple current values
 - Smaller case sizes relative to rated voltage
 - Improved reliability due to higher insulation resistance and breakdown voltage

用途 APPLICATIONS

- ・デジタル回路全般
- ・電源バイパスコンデンサ 液晶モジュール用 液晶駆動電圧ライン用 電源電圧の高いLSI、IC、OPアンプ用
- 平滑コンデンサ DC-DCコンバータ(入力、出力側用) スイッチング電源(2次側用)

- · General digital circuit
- Power supply bypass capacitors Liquid crystal modules Liquid crystal drive voltage lines LS I, I C, converters(both for input and output)
- Smoothing capacitors DC-DC converters (both for input and output) Switching power supplies (secondary side)

形名表記法 ORDERING CODE

2				
シリーズ名				
М	積層コンデンサ			

端子電極 メッキ品

形状寸法 (EIA)L×W(mm)		
107(0603)	1.6×0.8	
212(0805)	2.0×1.25	
316(1206)	3.2×1.6	
325(1210)	3.2×2.5	
432(1812)	4.5×3.2	

温度特性[%]		
	△F	+30 -80
	△C	±20
	ΔΕ	289
	ВJ	±10

△= スペース

公称前	電容量 (pF)			
例				
473	47,000			
105	1 000 000			

容量許容差		
K	±10	%
М	±20	%
Z	+80 -20	%

製品厚み (mm)			
K	0.45		
V	0.5		
Α	0.8		
D	0.85		
F	1.15		
G	1.25		
H	1.5		
L	1.6		
N	1.9		
Υ	2.0max		
M	2.5		
U	3.2		

個別仕様		:様
	_	標準
	•	

10	
包装	
В	単品(袋づめ)
т -	リールテーピング

	当社管理記号		
		標準品	
		△=スペース	

Rated voltage(VDC) 6.3 10 16

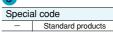
Series name M Multilayer Ceramic Capacitors

50

End termination

Dimensions(case size)(mm)			
107(0603)	1.6×0.8		
212(0805)	2.0×1.25		
316(1206)	3.2×1.6		
325(1210)	3.2×2.5		
432(1812)	4.5×3.2		

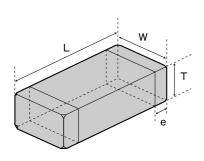
Temperature characteristics			naracteristics code
	△F	Y5V	-30~+85℃ +22/-82%
	ВJ	X7R	-55~+125℃ ±15%
	ВJ	X5R	-55~+85℃ ±15%
	△C	X5S	-55~+85℃ ±22%
	△C	X6S	-55~+105℃ ±22%
	ΔE	Y5U	-30~+85℃ ±22/-56%
			△=Blank space


Nomin	al capacitance(pF)
example	
473	47,000
105	1,000,000

Capaci	tance tolerances(%)
K	±10
М	±20
Z	+80 -20
8	
Thickn	ess(mm)
K	0.45
- 1/	0.5

8
Th

•	
Thickr	ness(mm)
K	0.45
V	0.5
Α	0.8
D	0.85
F	1.15
G	1.25
Н	1.5
L	1.6
N	1.9
Υ	2.0max
M	2.5
U	3.2
A D F G H L N Y	0.8 0.85 1.15 1.25 1.5 1.6 1.9 2.0max 2.5



Packa	ging
В	Bulk
Т	Tape & reel
11	

Internal code Standard products

△=Blank space

外形寸法 EXTERNAL DIMENSIONS

Type (EIA T 0.45±0.05 (0.018±0.002) 0.50±0.05 K □MK107 (0603) 1.6±0.10 (0.063±0.004) 0.8±0.10 (0.031±0.004) V 0.35±0.25 (0.014±0.010) (0.020±0.002) 0.8±0.10 (0.031±0.004) 0.45±0.05 (0.018±0.002) 0.85±0.10 Α K 1.25±0.10^{*1} (0.049±0.004) □MK212 (0805) 2.0±0.10*1 (0.079±0.004) 0.5±0.25 (0.020±0.010) D (0.033±0.004) 1.25±0.10 *1 (0.049±0.004) 0.85±0.10 G D 0.85±0.10 (0.033±0.004) 1.15±0.10 (0.045±0.004) 1.25±0.10 (0.049±0.004) 1.6±0.20 F $0.5^{+0.35}_{-0.25} \atop (0.020^{+0.014}_{-0.010})$ □MK316 (1206) 3.2±0.15 (0.126±0.006) 1.6±0.15 (0.063±0.006) G 1.6±0.20 (0.063±0.008) 0.85±0.10 (0.033±0.004) 1.15±0.10 (0.045±0.004) 1.5±0.10 L D F 0.6±0.3 (0.024±0.012) Н $\begin{array}{c} 1.5 \pm 0.10 \\ (0.059 \pm 0.004) \\ 1.9 \pm 0.20 \\ (0.075 \pm 0.008) \\ 1.9 \, ^{+0.1}_{-0.2} \\ (0.075 \, ^{+0.004}_{-0.008}) \end{array}$ 2.5±0.20*2 (0.098±0.008) □MK325 (1210) 3.2±0.30 (0.126±0.012) Ν (0.075 ±0.008) 2.5±0.20 ±2 (0.098±0.008) 1.9 ±0.1 (0.075 ±0.006) 2.5±0.20 (0.098±0.008) 3.2±0.30 м Υ □MK432 (1812) 4.5±0.40 (0.177±0.016) 3.2±0.30 (0.126±0.012) 0.9±0.6 (0.035±0.024) М U (0.125±0.012)

Unit: mm (inch)

注: *1. ±0.15mm公差あり *2. ±0.3mm公差あり Note: *1. Incluiding dimension tolerance±0.15mm (±0.006inch). Note: *2. Including dimension tolerance±0.3mm (±0.012inch).

概略バリエーション AVAILABLE CAPACITANCE RANGE

	-	_														_														_	_																_																								_
Cap				_				10			_	_				4					_		21			_	_			_						_			16								_				_				25		_	_					L				432		_	_	_
	TC		B/X7			B/>					3 (2)		F/			1			Ά7				3/X		_	X5			/5V		Ц,		3/X			4		X5I				0.058		FΛ			_		/X7I		<u> </u>		X5			X5F		5U			5V				(5R			X5S			Y5V
	VDC		5 16	10	50 35	5 25	16	10	i.3 6	i.3	1 2	5 5	0 2	5 10	6 10	0 50) 3	5 25	16	10	50	35	25	16 1	0 6.	3 6.	3 50	16	10	6.3	50	35	25	16	10 6	.3 2	5 1	6 10	6.3	6.3	4	25	50 3	35 2	25 1	16 1	0 5	0 2	5 16	6 10	35	25	16	10	3.36	.3	4 6	35	0 3	5 1	6 1	0.6.3	25	16	10	6.3	50 2	25 6.	.36.	3 10	J 6.3
	3[digits			Ш		╙	Ш		_	4	1	\perp	┸	┸	┸	┸	L	┸	┖			Ш		4	1	L	┸			Ш				_	_	1	\perp	\perp	L				_			_		\perp								4	1		1	1			L						4		4
0.022			-	Ш	\perp	\perp	Ш	4	4	4	1	1	1	1	1	1	┸	┸	╙	L	L	Ш	4	4	\perp	┸	\perp	L	L	Ш	Ш			4	\perp	4	\perp	┸	L				_	_	_		\perp	\perp	\perp						_	4	1	1	1	1		\perp	L				_	\perp	\perp	\perp	\perp
0.033			Α	Ш	Α	١_	Ш			\perp	\perp	\perp	\perp	\perp	\perp	\perp		\perp				Ш		\perp	\perp	\perp				Ш							\perp	┸	L					\perp	\perp			\perp							\perp		\perp		1	\perp			L						\perp		\perp
0.047	473		Α		Α	١_										G								Ш	\perp									\perp			\perp																																		\perp
0.068	683	3	Α			Α										G	ì																																																						╙
0.1	104	4	Α		Α	Α		T	Τ	Τ	Γ	A	Ī	Γ	Γ	G	ì	Г	Ι				T	Τ	Г	Γ	Ι	Γ				I	I	T	Τ			Г	Γ							Т		Г					T	T		Ι	Γ		Γ		Γ	Γ	Γ								I
0.15	154	4		П		Α	Α		T	Т	Т	Т	Т	Т	Т	G	ì	Т	П	П	Г		П	Т	Т	Т	Т	Г			F			П	Т	Т	Т	Т	Г					П	П		Т	Т							П	Т	Т		T	Т	П	Т	П							Т	Т
0.22	224	4		П		Α	Α	П	Т	Т	Т	Т	Т	A	T	Т	Т	Т	Т	Г	G	П	П	Т	Т	Т	Т	Г	Г	П	L	П	F	П	Т	Т	Т	Т	Г				П	Т	Т	П	Т	Т	Т	Т	П	П			Т	Т	Т	Τ	Т	Т	Т	Т	П				Т		Т	Т	Т
0.33	334	4		П		Α	Α	Α	T	Т	Т	Т	Т	Т	Т	Т	G	ì	Т	Г		П	T	Т	Т	Т	Т	Г	Г	П		П	F	П	Т	Т	Т	Т	П				П	П	П	Т	Т	Т			Т				Т	T	T	T	T	Т	T	Т					П		Т	Т	Т
0.47	474	4		П		Α	Α	А	T	T	Т	Т	A	A		Т	Т	Т	Т	Г	G	G	T	T	Т	Т	G	Г	Г	П	L	T	T	T	Т	Т	Т	Т	Г			П	T	T	T	Т	Т	Т				П		T	T	Т	Т	Т	T	Т	Т	Т	Г				T		Т	Т	Т
0.68	684	4		П		T	П	Α	T	T	Т	Т	Т	Т	Т	Т	T	Т	G			П	T	Т	Т	Т	Т			П		L	L	F	Т	Т	Т	Т	П				П	Т	Т	Т	T	Т							П	T	T	T	T	Т	T	Т	П						Т	T	Т
1	105	5	Α	Α		Α	Α	А	T	T	1	V.	Т	A	A		Т	G	G	G	Г	П	G	G	Т	Т	G	Г	Г	П	П	L	T	F	T	T	Т	Т	Т				T	T	T	Т	H	4	Т	Т	Т				T	T	Т	Т	T	Т	Т	Т	Г				T	T	Т	Т	Т
1.5	155	5						T	1		T								ı			П			T					П					1		1	T					1			1		T								1				T							T		1		T
2.2	225	5		П	T	\top	П	A	A	T	T	T	T	A	\ A	t	T	T	T	G	Г	П	G	G	3	T	Т	G	Т	П	П	\exists	L	L	T	\top	T	T	T	П	Г	П	G	T	T	T	T	H	1		N	П		T	T	T	T	T	T	T	T	Т	Г	П			T	T	T	T	T
3.3	335	5		П		T	П		1	Α	\top	\top	\top	\top	\top	\top	T					П			зİ					П				L	L	l	ıΙ						\neg	\neg	\neg	1		N	V		T				T	1		T	T	T							T		T		T
4.7	475	5	\top	П	T	\top	П	╛	٦,	A	T	T	T	T	T	T	T	T	T	Т	Г	П			3 0	i	Т	Т	G	П	П	\exists	\exists	디	L	Ti	L	.T	T	Г		П	-	G	T	T	T	T	N	1	T	Ν	N	T	T	T	T	ŀ	4	T	T	T	Г	Т		П	T	T	T	\top	T
6.8	685	5		П		\top	П		T	\top	\top	\top	\top	\top	\top	\top	T	\top			Г	П	\neg	\top	\top					П				\neg			\top		F				\neg	\top	\top	1					T				\top	1			T	\top							\neg		\top		\top
10	106	3	\top	П	T	\top	П	T	T	٦,	1	Ť	Ť	Ť	Ť	Ť	T	T	T	Т	Г	П		G	3 0	ì	т	Т	G	G	П	T	T	╛	L	Lli	L	Īι	L.F	Г		L	T	L	L	L F	ŧΤ	N	И	N	ı	M.N	N	T	T	T	T	Ť	ŀ	4 F	=	T	М	T	П	П	М	T	T	T	T
22	226	3		П	T	T	П	T	T	\top	Ť	Ť	Ť	Ť	Ť	Ť	T	T	T	Т	Г	П	┪	T	Ť	G	i l	Т	Ĺ	П	П	T	T	\top	Ti	ιŤ	Ť	Īι	L		Г	П	7	Ť	T	ı	T	Т	T	T	T	П	М	м	T	T	Ť	Ť	Ť	I	1 N.	F	Т	М	М	П	Ti	м	T	T	\top
47	476	3	П	Ħ	Ť	\top	П	\exists	T	†	Ť	Ť	Ť	Ť	Ť	Ť	T	T	T	T	Т	П	\exists	+	†	Ť	т	T	Т	П	П	\exists	7	\top	Ť	†	†	Ť	Ť	L	L	Н	1	T	T	T	T	Ť	T	T	T			М	м	Ť	†	Ť	Ť	Ť	Ť	N	T	m	Ħ	М		М	†	N	1
100	107	7	\top	Н	\top	\top	П	\forall	Ť	†	Ť	†	Ť	Ť	Ť	Ť	T	Ť	T	Т	\vdash	П	\forall	†	Ť	Ť	T	T	Т	Н	H	\exists	\exists	7	†	Ť	Ť	T	T	Ť	Ē	П	7	T	T	+	T	T	T	T	T	H		Ť		иŀ	ΥN	л	Ť	T	Ť	M	T		Т	U	Ť	_	N		М
220	227		+	H	+	+	Н	\dashv	\pm	+	+	+	+	+	+	+	$^{+}$	+	+	\vdash	\vdash	Н	\dashv	+	+	+	+	Н	-	Н	Н	\dashv	\dashv	\dashv	+	+	+	+	+	\vdash	\vdash	H	\dashv	+	+	+	+	+	+	+	+	H	\neg	_	Ť		1	+	+	+	+	+"	1	+	Н	H	\dashv	1	1	+	+

■低背積層セラミックコンデンサ Low profile Multilayer Ceramic Capacitors

Cap	Type			107									212										316						325			432
Cap	TC	B/X	/cD		5R	F/Y5V		D.0	(7R		_	D.0	(5R			5R	_	F/Y5V		B/X7R	_	B/X			F -	/5V	B/X7R	_	325 B/X5R		TE OVELL	C/X5S
					oH.																											
	VDC	10	6.3	6.3	4	6.3	50	25	16	10	25	16	10	6.3	10	6.3	50	10	6.3	10	25	16	10	6.3	10	6.3	25	16	10	6.3	6.3	6.3
μF	3[digits]																															
0.022	223						D																									
0.033	333						D																									
0.047	473							D																								
0.068	683							D																								
0.100	104																															
0.150	154																			D												\Box
0.220	224												K				D															$\overline{}$
0.330	334																															-
0.470	474		К						D		D																				t	-
0.680	684								D																						-	-
1.000	105	К	К			K		_		D	D	D	К	K							D						D				_	-
1.500	155					- ' '		<u> </u>			-	D	-11	- 13							-	D									-	-
2.200	225			V	V			 	_	_		D	D				_	D	_	D		D		_		_	_				_	-
3,300	335	_			_ ·			_	_	_	_						_		_				D	_	_	_	_	_	D		-	-
4.700	475	_				_		_	_		_		D	D		-		_	D				D	_	D		_	_	D		-	-
6.800	685	-	-	-	-	1	-	1	-	_	_	_	- 0	- 0	-	- K	_		-	-	-	-		-	-	_	+	 	U	D	+	-
	106	_	_		_	_	_	-	_	_	_	_			-	_	_	_	_	_			-	_	_	_	_	-		D	_	-
10.000	226	-				1	_	1			_				D	D	_	-				_	D	D	_	D		D	D		 	-
22.000		_							_								_						_			_	_			Y	 -	-
47.000	476	_						-			-							-							_		-				H	\vdash
82.000	826																														N	\perp
100.000	107	1	l	1	l	1		1			1	l	1	1	1	1		1	l	1		1	1		1 1	1	1	1		l	1 '	Y

温度特性コード			温度特性 Temperature chara			静電容量許容差[%]	tanə(%)
Temp. char.Code	準抄	1.規格	温度範囲(℃)	基準温度(℃)	静電容量変化率(%)	Capacitance tolerance	Dissipation factor
	Applicable	e standard	Temperature range	Ref. Temp.	Capacitance change		
BJ	JIS	В	-25~85	20	±10		2.5%max.**
50	EIA	X7R*	−55~125	25	±15	±20(M)	2.5 /6IIIAX.
	JIS	С	-25~85	20	±20	±10(K)	
С	EIA	X5S	−55~85	25	±22	=10(11)	7.0%max.**
ĺ	EIA	X6S	−55~105	25	±22		
Е	JIS	E	-25~85	20	+20/-55		
-	EIA	Y5U	-30~85	25	+22/-56	+80(Z)	7.0%max.**
F	JIS	F	-25~85	20	+30/-80	-20(Z)	7.0%max.
F	EIA	Y5V	-30~85	25	+22/-82		

- **: X5Rのみ対応するアイテムがあります。詳細はアイテム一覧を参照ください。
- **: 代表的な値を記載しています。詳細はアイテム一覧表を参照ください。
- **: Some of the parts are only applicable to X5R. Please refer to PART NUMBERS table.
- **: The figure indicates typical value. Please refer to PART NUMBERS table.

セレクションガイド Selection Guide

アイテム一覧 Part Numbers

特性図 Electrical Characteristics

梱包 Packaging P.78 信頼性 Reliability Data

使用上の注意 Precautions P.86

▼ P.10 etc

P.40

P.80

アイテム一覧 PART NUMBERS

■107TYPE

■10/TYPE							***	
定格	形名		公 称	温度特性	$ an \delta$	実装条件	静電容量	厚み
	ルグ 省		静電容量			Soldering method	許容差	Thickness
電圧			Capacitance	Temperature	Dissipation	R: U 7 D — Reflow soldering	Capacitance	THICKIESS
RatedVoltage	Ordering code			characteristics	factor	W:7D - Wave soldering	tolerance	[mm]
=0\/			[μF]	D 0/5D	[%]Max.	11.7 — Trave soluting	tolerance	0.010.4
50V	UMK107 BJ104 A*		0.1	B/X5R	3.5	-		0.8±0.1
35V	GMK107 BJ333□A GMK107 BJ473□A		0.033 0.047	B/X5R B/X5R	2.5 2.5			0.8±0.1 0.8±0.1
-	TMK107 BJ473 A		0.047	B/X5R B/X7R	2.5	-		0.8±0.1 0.8±0.1
	TMK107 BJ223 A		0.022	B/X5R	3.5	R/W		0.8±0.1
	TMK107 BJ104□A		0.000	B/X5R	3.5	- ID/ VV		0.8±0.1
	TMK107 BJ154 A		0.15	B/X5R	3.5	-		0.8±0.1
25V	TMK107 BJ134 A		0.13	B/X5R	3.5			0.8±0.1
	TMK107 BJ224□A		0.33	B/X5R	3.5			0.8±0.1
	TMK107 BJ474□A*		0.47	B/X5R	3.5	_		0.8±0.1
	TMK107 BJ105□A*		1	B/X5R	5	R		0.8±0.1
-	EMK107 BJ333 A		0.033	B/X7R	3.5			0.8±0.1
	EMK107 BJ473□A		0.047	B/X7R	3.5			0.8±0.1
	EMK107 BJ683□A		0.068	B/X7R	3.5	5.44		0.8±0.1
	EMK107 BJ104□A		0.1	B/X7R	3.5	R/W	14004	0.8±0.1
16V	EMK107 BJ154□A		0.15	B/X5R	3.5		±10% ±20%	0.8±0.1
	EMK107 BJ224□A		0.22	B/X5R	3.5		±20%	0.8±0.1
	EMK107 BJ474□A		0.47	B/X5R	3.5			0.8±0.1
	EMK107 BJ105□A*		1	B/X7R%	5	R		0.8±0.1
	EMK107 BJ105□A*		1	B/X5R	5	n n		0.8±0.1
	LMK107 BJ105□K*		1	B/X5R	10			0.45±0.05
	LMK107 BJ334□A		0.33	B/X5R	3.5	R/W		0.8±0.1
10V	LMK107 BJ474□A		0.47	B/X5R	3.5			0.8±0.1
10 V	LMK107 BJ684□A		0.68	B/X5R	5			0.8±0.1
	LMK107 BJ105□A*		1	B/X7R	5			0.8±0.1
	LMK107 BJ225□A*		2.2	B/X5R	10			0.8±0.1
	JMK107 BJ225□V*		2.2	X5R	10			0.5±0.05
	JMK107 BJ474□K		0.47	B/X5R	5	_		0.45±0.05
6.3V	JMK107 BJ105□K*		11	B/X5R	10	R		0.45±0.05
	JMK107 BJ225□A*		2.2	B/X5R	10	-		0.8±0.1
	JMK107 BJ335□A*		3.3	X5R	10			0.8±0.1
	JMK107 BJ475MA*		4.7	X5R	10	_	±20%	0.8±0.1 0.8±0.1
4V	AMK107 BJ106MA*		10	X5R	10	_	14004	
	AMK107 BJ225□V* UMK107 C105□A*		2.2	X5R C/X5S	10 10	-	±10% ±20%	0.5±0.05 0.8±0.1
50V	UMK107 C105_A*		0.1	F/Y5V	7			0.8±0.1
25V	TMK107 F104ZA		0.47	F/Y5V F/Y5V	7	1		0.8±0.1
	EMK107 F474ZA		0.47	F/Y5V F/Y5V	7	R/W		0.8±0.1
	EMK107 F224ZA		0.22	F/Y5V F/Y5V	7	1		0.8±0.1
16V	EMK107 F474ZA		1	F/Y5V F/Y5V	16		+80%	0.8±0.1
	EMK107 F225ZA		2.2	F/Y5V	16	1	-20%	0.8±0.1
-	LMK107 F105ZA		1	F/Y5V	16	R		0.8±0.1
10V	LMK107 F105ZA		2.2	F/Y5V	16	П		0.8±0.1
6.3V	JMK107 F105ZK		1	F/Y5V	16	1		0.45±0.05
- 0.0 •	5 1 1002K	1	<u>'</u>	1/100	10	1	l	0.10_0.00

形名の口には静電容量許容差記号が入ります。 □ Please specify the capacitance tolerance code.

*高温負荷試験の試験電圧は定格電圧の1.5倍 * Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage. ※品名末尾にRが付きます。

^{*} Internal code shall be R.

^{**}高温負荷試験の試験電圧は定格電圧の1.3倍 ** Test Voltage of Loading at high temperature test is 1.3 time of the rated voltage.

■212TYPE							
- 4h		公 称	`B & #+ #4	$tan \delta$	実装条件	静電容量	厚み
定格	形 名	静電容量	温度特性		Caldaring mathod	許容差	.,
電圧		Capacitance	Temperature	Dissipation	Soldering method R:リフロー Reflow soldering	Capacitance	Thickness
RatedVoltage	Ordering code	•	characteristics	factor	W:7D — Wave soldering		[mm]
	, and the second	[µF]		[%]Max.	vv. / ii — wave soldering	tolerance	
	UMK212 BJ223□D	0.022	B/X7R	2.5	-		0.85±0.1
	UMK212 BJ333 D	0.033	B/X7R	2.5			0.85±0.1
	UMK212 BJ473 G	0.047	B/X7R	2.5	-		1.25±0.1
50V	UMK212 BJ683□G	0.068	B/X7R	2.5	4		1.25±0.1
	UMK212 BJ104 G	0.1	B/X7R	2.5	-		1.25±0.1
	UMK212 BJ154 G	0.15	B/X7R	3.5	R/W	-	1.25±0.1
	UMK212 BJ224 G	0.22 0.47	B/X5R	3.5	-	-	1.25±0.1 1.25±0.1
	UMK212 BJ474□G* GMK212 BJ334□G	0.47	B/X5R B/X7R	3.5 3.5	-	-	1.25±0.1
35V	GMK212 BJ334 G	0.33	B/X5R	3.5	-	}	1.25±0.1
	TMK212 BJ474 D	0.047	B/X7R	2.5	-	-	0.85±0.1
	TMK212 BJ683 D	0.068	B/X7R	2.5	+	ŀ	0.85±0.1
	TMK212 BJ474 D	0.47	B/X5R	3.5			0.85±0.1
25V	TMK212 BJ105□D*	1	B/X5R	5	†		0.85±0.1
20 V	TMK212 BJ105□G*	1	B/X7R*	5	R		1.25±0.1
	TMK212 BJ105□G	1	B/X5R	5	1 ''		1.25±0.1
	TMK212 BJ225□G*	2.2	B/X5R	5	1		1.25±0.1
	EMK212 BJ474□D	0.47	B/X7R	3.5	5.44		0.85±0.1
	EMK212 BJ684□D	0.68	B/X7R	3.5	R/W		0.85±0.1
	EMK212 BJ105□D	1	B/X5R	5			0.85±0.1
	EMK212 BJ155□D	1.5	B/X5R	5	R		0.85±0.1
40)4	EMK212 BJ225□D	2.2	B/X5R	5	1	±10%	0.85±0.1
16V	EMK212 BJ684□G	0.68	B/X7R	3.5	- R/W	±20%	1.25±0.1
	EMK212 BJ105□G	1	B/X7R	3.5	H/VV		1.25±0.1
	EMK212 BJ225□G	2.2	B/X5R	5			1.25±0.1
	EMK212 BJ475□G*	4.7	B/X5R	5			1.25±0.15
	EMK212 BJ106□G*	10	B/X5R	10			1.25±0.15
	LMK212 BJ224□K	0.22	B/X5R	3.5			0.45±0.05
	LMK212 BJ105□K	1	B/X5R	5	R		0.45±0.05
	LMK212 BJ105□D	1	B/X7R	3.5			0.85±0.1
	LMK212 BJ225□D*	2.2	B/X5R	5			0.85±0.1
	LMK212 BJ475□D*	4.7	B/X5R	10			0.85±0.1
10V	LMK212 BJ106□D*	10	X5R	10			0.85±0.1
	LMK212 BJ105□G	1	B/X7R	3.5	R/W		1.25±0.1
	LMK212 BJ225 G	2.2	B/X7R	5	1		1.25±0.1
	LMK212 BJ335 G	3.3	B/X5R	5	1		1.25±0.1
	LMK212 BJ475 G*	4.7	B/X5R	5	-		1.25±0.15
	LMK212 BJ106 G*	10	B/X5R	10	-		1.25±0.15
	JMK212 BJ105□K	1 7	B/X5R	5		-	0.45±0.05
	JMK212 BJ475□K*	4.7 4.7	X5R	10 10	R	-	0.45±0.05 0.85±0.1
0.01/	JMK212 BJ475□D*		B/X5R		-	-	0.85±0.1
6.3V	JMK212 BJ106□D* JMK212 BJ475□G	10 4.7	X5R B/X5R	10 5	-	}	1.25±0.15
	JMK212 BJ106□G*	10	B/X5R	10	+		1.25±0.15
	JMK212 BJ106 G*	22	X5R	10	1	±20%	1.25±0.15
	UMK212 F224ZD	0.22	F/Y5V	7		<u></u> 20/0	0.85±0.1
50V	UMK212 F474ZG	0.47	F/Y5V	7	1		1.25±0.1
30 V	UMK212 F105ZG	1	F/Y5V	7	R/W		1.25±0.1
16V	EMK212 F225ZG	2.2	F/Y5V	7	1		1.25±0.1
100	LMK212 F225ZD	2.2	F/Y5V	9		+80%	0.85±0.1
10V	LMK212 F475ZG	4.7	F/Y5V	9	1	-20%	1.25±0.1
100	LMK212 F106ZG	10	F/Y5V	16	R		1.25±0.1
	JMK212 F475ZD	4.7	F/Y5V	16	1 .,		0.85±0.1
6.3V	JMK212 F106ZG	10	F/Y5V	16	1		1.25±0.1

形名の□には静電容量許容差記号が入ります。 □ Please specify the capacitance tolerance code.

^{*}高温負荷試験の試験電圧は定格電圧の1.5倍 ※品名末尾にRが付きます。

^{**}高温負荷試験の試験電圧は定格電圧の1.3倍

^{*} Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

Internal code shall be R.

アイテム一覧 PART NUMBERS

21	167	ΓV	D	

■31011FE			l					
定格	形名		公 称	温度特性	$tan \delta$	実装条件	静電容量	厚み
電圧	10 10		静電容量	Temperature		Soldering method	許容差	Thickness
_			Capacitance	· ·	Dissipation	R:リフロー Reflow soldering	Capacitance	
RatedVoltage	Ordering code		[μ F]	characteristics	factor [%]Max.	W:フロー Wave soldering	tolerance	[mm]
	UMK316 BJ154□F		0.15	B/X7R	2.5			1.15±0.1
50V	UMK316 BJ224□L		0.22	B/X7R	2.5			1.6±0.2
	UMK316 BJ474□L		0.47	B/X7R	3.5			1.6±0.2
35V	GMK316 BJ684□L		0.68	B/X7R	3.5			1.6±0.2
	GMK316 BJ105□L		1	B/X7R	3.5	R/W		1.6±0.2
	TMK316 BJ154□D		0.15	B/X7R	2.5			0.85±0.1
	TMK316 BJ224□F		0.22	B/X7R	2.5			1.15±0.1
	TMK316 BJ334□F		0.33	B/X7R	2.5			1.15±0.1
	TMK316 BJ684□L		0.68	B/X7R	3.5			1.6±0.2
25V	TMK316 BJ105□D		1	B/X5R	3.5			0.85±0.1
	TMK316 BJ225□L		2.2	B/X7R	3.5			1.6±0.2
	TMK316 BJ335□L		3.3	B/X5R	3.5	_		1.6±0.2
	TMK316 BJ475□L*		4.7	B/X5R	5	R		1.6±0.2
	TMK316 BJ106□L*		10	B/X5R	5	-	±100/	1.6±0.2
	EMK316 BJ155 D		1.5	B/X5R	3.5		±10%	0.85±0.1
	EMK316 BJ225□D		2.2	B/X5R	3.5		±20%	0.85±0.1
	EMK316 BJ684 F		0.68	B/X7R	3.5	5.44		1.15±0.1
4014	EMK316 BJ105□F		1	B/X7R	3.5	R/W		1.15±0.1
16V	EMK316 BJ225 L		2.2	B/X7R	3.5			1.6±0.2
	EMK316 BJ335 L		3.3	B/X7R	3.5	-		1.6±0.2
	EMK316 BJ475□L*		4.7	B/X7R*	5	1		1.6±0.2
	EMK316 BJ475 L		4.7	B/X5R	5	-		1.6±0.2
	EMK316 BJ106 L*		10	B/X5R	5	1		1.6±0.2
	LMK316 BJ335 D		3.3	B/X5R	5	-		0.85±0.1
	LMK316 BJ475 D		4.7	B/X5R	5	_		0.85±0.1
	LMK316 BJ106 D*		10	B/X5R	10	_		0.85±0.1
10V	LMK316 BJ335 L		3.3	B/X7R	3.5	-		1.6±0.2 1.6±0.2
	LMK316 BJ475 L		4.7	B/X7R	5	-		1.6±0.2
	LMK316 BJ106 L*		10	B/X7R%	5	-		1.6±0.2
	LMK316 BJ106 L* LMK316 BJ226ML*		10 22	B/X5R B/X5R	5	R	±20%	1.6±0.2
	JMK316 BJ226ML*			B/X5R B/X5R	10 10	-	±20%	1.15±0.1
	JMK316 BJ106 F		6.8 10	B/X5R	5	-	±10%	1.15±0.1
	JMK316 BJ106□D*		10	B/X5R	10	+	±20%	0.85±0.1
6.3V	JMK316 BJ106 L		10	B/X7R	5	1	120/0	1.6±0.2
0.3 V	JMK316 BJ226ML*		22	B/X7R*	10	-		1.6±0.2
	JMK316 BJ226ML*		22	B/X5R	10	1		1.6±0.2
	JMK316 BJ476ML*		47	X5R	10		±20%	1.6±0.2
4V	AMK316 BJ476ML*		47	X5R	10	-		1.6±0.2
25V	TMK316 C106 L		10	C/X5S	10	-	±10% ±20%	1.6±0.2
50V	UMK316 F225ZG		2.2	F/Y5V	7	R/W	±10/0 ±20/0	1.25±0.1
	GMK316 F475ZG		4.7	F/Y5V	7	1 1/ V V		1.25±0.1
35V	GMK316 F106ZL		10	F/Y5V	9	†		1.6±0.2
25V	TMK316 F106ZL		10	F/Y5V	9	1		1.6±0.2
16V	EMK316 F106ZL		10	F/Y5V	9	_	+80%	1.6±0.2
	LMK316 F475ZD		4.7	F/Y5V	9	R	-20%	0.85±0.1
10V	LMK316 F106ZF		10	F/Y5V	9	†		1.15±0.1
	LMK316 F226ZL		22	F/Y5V	16	1		1.6±0.2
6.3V	JMK316 F106ZD		10	F/Y5V	16	1		0.85±0.1
	10to 1002D	l .		.,	.0	1	I	0.00=0.1

[※]品名末尾にRが付きます。

^{**}高温負荷試験の試験電圧は定格電圧の1.3倍

形名の \square には静電容量許容差記号が入ります。 \square Please specify the capacitance tolerance code.

^{*}高温負荷試験の試験電圧は定格電圧の1.5倍 * Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage.

Internal code shall be R.

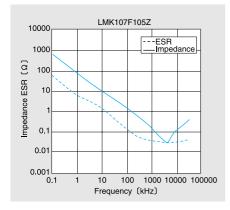
■325TYPE											
定格電圧	形名	公 称 静電容量	温度特性 Temperature	$ an \delta$	実装条件 Soldering method	静電容量 許容差	厚 み Thickness				
RatedVoltage	Ordering code	Capacitance [µF]	characteristics	factor [%]Max.	R:リフロー Reflow soldering W:フロー Wave soldering	1010141100	[mm]				
50V	UMK325 BJ105□H	1	B/X7R	3.5	R/W	±10%±20%	1.5±0.1				
35V	GMK325 BJ225MN	2.2	B/X5R	3.5			1.9±0.2				
	TMK325 BJ105MD	1	B/X7R	3.5			0.85±0.1				
	TMK325 BJ225MH	2.2	B/X7R	3.5			1.5±0.1				
	TMK325 BJ335MN	3.3	B/X7R	3.5			1.9±0.2				
25V	TMK325 BJ475MN	4.7	B/X5R	3.5			1.9±0.2				
	TMK325 BJ106MN*	10	B/X5R	5			1.9±0.2				
	TMK325 BJ106MM*	10	B/X7R*	5			2.5±0.2				
	TMK325 BJ106MM*	10	B/X5R	5			2.5±0.2				
	EMK325 BJ475MN	4.7	B/X7R	3.5	1		1.9±0.2				
40)/	EMK325 BJ106MD*	10	B/X5R	5			0.85±0.1				
16V	EMK325 BJ106MN	10	B/X5R	3.5		Ī	1.9±0.2				
	EMK325 BJ226MM*	22	B/X5R	5		±20%	2.5±0.2				
	LMK325 BJ335MD	3.3	B/X5R	3.5		120%	0.85±0.1				
	LMK325 BJ106MN	10	B/X7R	3.5	7	Ī	1.9±0.2				
	LMK325 BJ475MD	4.7	B/X5R	5			0.85±0.1				
10V	LMK325 BJ106MD*	10	B/X5R	5		Ī	0.85±0.1				
	LMK325 BJ226MY*	22	B/X5R	5	R	İ	1.9+0.1/-0.2				
	LMK325 BJ226MM*	22	B/X5R	5			2.5±0.2				
	LMK325 BJ476MM*	47	B/X5R	10		İ	2.5±0.2				
	JMK325 BJ685MD	6.8	B/X5R	5			0.85±0.1				
	JMK325 BJ226MY	22	B/X5R	5			1.9+0.1/-0.2				
	JMK325 BJ826MN*	82	X5R	10			1.9±0.2				
6.3V	JMK325 BJ476MM*	47	B/X5R	10			2.5±0.2				
	JMK325 BJ107MM*	100	X5R	10			2.5±0.3				
	JMK325 E826ZN*	82	E/Y5U	16			1.9±0.2				
	JMK325 E107ZM*	100	E/Y5U	16			2.5±0.2				
50V	UMK325 F475ZH	4.7	F/Y5V	7	1		1.5±0.1				
35V	GMK325 F106ZH	10	F/Y5V	7	1	1,000	1.5±0.1				
16V	EMK325 F226ZN	22	F/Y5V	16		+80%	1.9±0.2				
	LMK325 F106ZF	10	F/Y5V	16		-20%	1.15±0.1				
10V	LMK325 F226ZN	22	F/Y5V	16	1		1.9±0.2				
0.01/	JMK325 F476ZN	47	F/Y5V	16			1.9±0.2				
6.3V	JMK325 F107ZM*	100	F/Y5V	16	1		2.5±0.2				

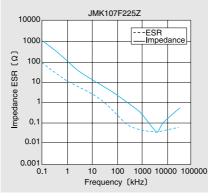
■432TYPE

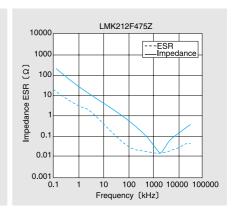
■43211FL	·						
定格	形名	公 称	温度特性	tan δ	実装条件	静電容量	厚み
電圧	70 0	静電容量	Temperature	Dissipation	Soldering method	許容差	Thickness
RatedVoltage	Ordering code	Capacitance [µF]	characteristics	factor	R:リフロー Reflow soldering W:フロー Wave soldering	Capacitance tolerance	[mm]
25V	TMK432 BJ106MM	10	B/X5R	3.5			2.5±0.2
16V	EMK432 BJ226MM*	22	B/X5R	3.5			2.5±0.2
10V	LMK432 BJ226MM	22	B/X5R	3.5			2.5±0.2
0.01/	JMK432 BJ476MM*	47	B/X5R	5			2.5±0.2
6.3V	JMK432 BJ107MU*	100	B/X5R	10			3.2±0.3
50V	UMK432 C106MM*	10	C/X5S	5	1	±20%	2.5±0.2
051/	TMK432 C226MM*	22	C/X5S	5	R		2.5±0.2
25V	TMK432 C476MM*	47	C/X5S	5			2.5±0.2
	JMK432 C227MU*	220	C/X5S	15			3.2±0.3
6.3V	JMK432 C107MM*	100	C/X6S	7			2.5±0.2
	JMK432 C107MY*	100	C/X5S	10			1.9+0.1/-0.2
10V	LMK432 F476ZM*	47	F/Y5V	16		+80%	2.5±0.2
6.3V	JMK432 F107ZM*	100	F/Y5V	16		-20%	2.5±0.2

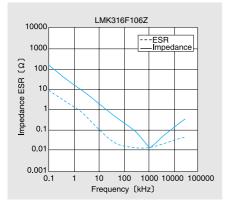
形名の□には静電容量許容差記号が入ります。 *高温負荷試験の試験電圧は定格電圧の1.5倍 ※品名末尾にRが付きます。

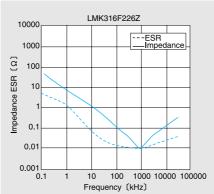
^{**}高温負荷試験の試験電圧は定格電圧の1.3倍

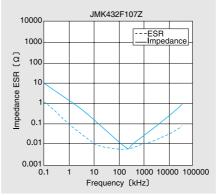

 $[\]hfill \square$ Please specify the capacitance tolerance code.

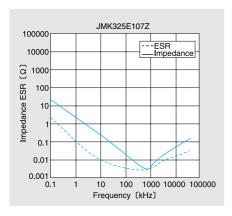

^{*} Test Voltage of Loading at high temperature test is 1.5 time of the rated voltage. * Internal code shall be R.

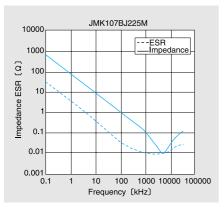

特性図 ELECTRICAL CHARACTERISTICS

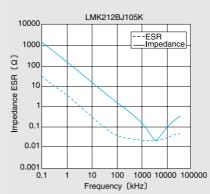

インピーダンス・ESR-周波数特性例 Example of Impedance ESR vs. Frequency characteristics

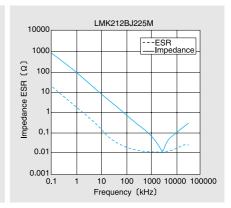

・当社積層セラミックコンデンサ例(Taiyo Yuden multilayer ceramic capacitor)

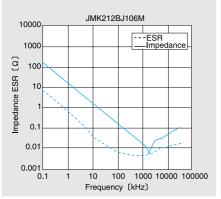


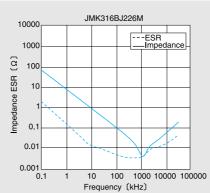


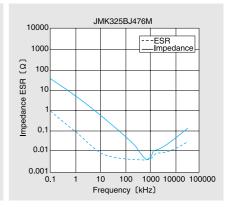


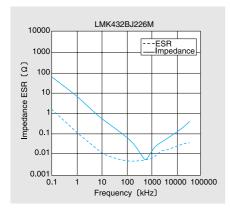


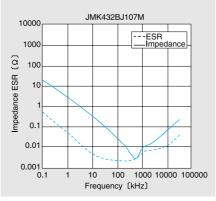


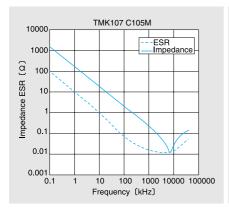


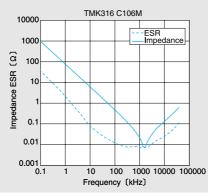


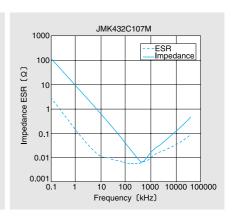










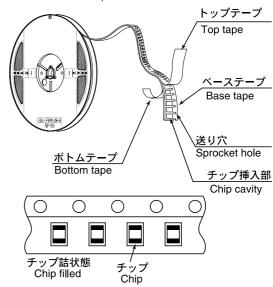


梱包 PACKAGING

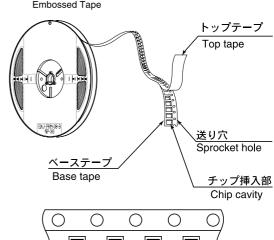
①最小受注単位数 Minimum Quantity

■袋づめ梱包 Bulk packaging

形式(EIA) Type		標準数量 Standard quantity	
туре	mm(inch)	code	[pcs]
☐MK105(0402)	0.5	V, W	
□VK105(0402)	(0.020)	W	
□MK107(0603)	0.8 (0.031)	Z	
□0K140(0504)	0.8 (0.031)	А	
□2K110(0504)	0.6 (0.024)	В	
□MK212(0805)	0.85 (0.033)	D	
□IVIK212(0605)	1.25 (0.049)	G	
□4K212(0805)	0.85 (0.033)	D	
□2K212(0805)	0.85 (0.033)	D	
	0.85 (0.033)	D	1000
□MK316(1206)	1.15 (0.045)	F	
□IVIK310(1200)	1.25 (0.049)	G	
	1.6 (0.063)	L	
	0.85 (0.033)	D	
	1.15 (0.045)	F	
□MK325(1210)	1.5 (0.059)	Н	
□IVII(323(1210)	1.9 (0.075)	N	
	2.0max (0.079)	Υ	
	2.5 (0.098)	М	

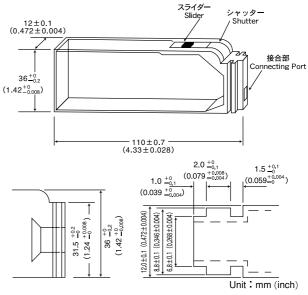

■テーピング梱包 Taped packaging

形式(EIA) Type	製品厚み Thickness			数量 I quantity cs]	
	mm(inch)	code	紙テープ paper	エンボステープ Embossed tape	
☐MK063(0201)	0.3 (0.012)	Р	15000	_	
☐MK105(0402)	0.5	V, W	10000		
□VK105(0402)	(0.020)	W	10000		
	0.5 (0.020)	V	4000	_	
□MK107(0603)	0.45 (0.018)	K	4000		
	0.8 (0.031)	A Z	4000	_	
□2K110(0504)	0.8 (0.031)	Α	4000	_	
□2K110(0304)	0.6 (0.024)	В	4000		
	0.45 (0.018)	K	4000	_	
□MK212(0805)	0.85 (0.033)	D	4000	_	
	1.25 (0.049)	G	_	3000	
□4K212(0805)	0.85 (0.033)	D	4000	_	
□2K212(0805)	0.85 (0.033)	D	4000	_	
	0.85 (0.033)	D	4000	_	
□MK316(1206)	1.15 (0.045)	F		3000	
□4K316(1206)	1.25 (0.049)	G		3000	
	1.6 (0.063)	L	_	2000	
	0.85 (0.033)	D			
	1.15 (0.045)	F			
	1.5 (0.059)	Н	_	2000	
□MK325(1210)	1.9 (0.075)	N			
	2.0max (0.079)	Υ	_	2000	
	2.5 (0.098)	М	_	500	
	1.9 (0.075)	Υ	_	1000	
□MK432(1812)	2.5 (0.098)	М	_	500	
	3.2 (0.125)	U		000	


②テーピング材質 Taping material

紙テープ

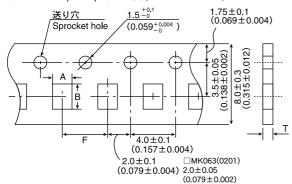
Card board carrier tape


エンボステープ Embossed Tape

③バルクカセット Bulk Cassette

チップ詰状態

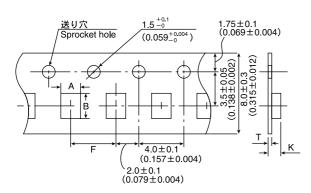
Chip filled



チップ

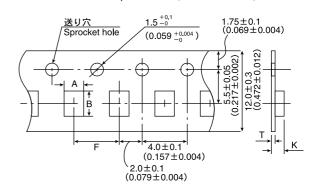
Chip

105, 107, 212形状で個別対応致しますのでお問い合せ下さい。 Please contact any of our offices for accepting your requirement according to dimensions 0402, 0603, 0805.(inch)


③テーピング寸法 Taping dimensions 紙テープ Paper Tape (8mm幅) (0.315inches wide)

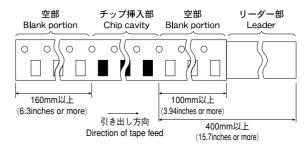
Туре	チッフ	⁷ 挿入部	挿入ピッチ	テープ厚み
(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness
	Α	В	F	Т
□MK063(0201)	0.37±0.065	0.67±0.065	52.0±0.05	0.45max.
_IVIN003(0201)	(0.06±0.002)	(0.027±0.002)	(0.079±0.002)	(0.018max.)
☐MK105(0402)	0.65±0.15	1.15±0.15	52.0±0.05	0.8max.
\square VK105(0402)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max.)
	1.0±0.2	1.8±0.2	4.0±0.1	1.1max.
□MK107(0603)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max.)
□2K110(0504)	1.15±0.2	1.55±0.2	4.0±0.1	1.0max.
	(0.045±0.008)	(0.061±0.008)	(0.157±0.004)	(0.039max.)
□MZ010/000E)				
□MK212(0805)	1.65±0.25	2.4±0.2		
□4K212(0805)	(0.065±0.008)	(0.094±0.008)	4.0±0.1	1.1max.
□2K212(0805)			(0.157±0.004)	(0.043max.)
	2.0±0.2	3.6±0.2		
□MK316(1206)	(0.079±0.008)	(0.142±0.008)		

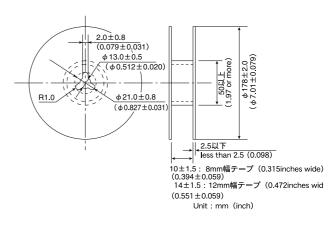
Unit: mm(inch)


エンボステープ Embossed tape (8mm幅) (0.315inches wide)

Туре	チップ挿入部		挿入ピッチ	テープ厚み	
(EIA)	Chip cavity		Insertion Pitch	Tape Thickness	
	Α	В	F	K	Т
□MK040(000E)	1.65±0.25	2.4±0.2			
□MK212(0805)	(0.065±0.008) (0.094±0.00				
□MK316(1206)	2.0±0.2	3.6±0.2	4.0±0.1	2.5max.	0.6max
□4K316(1206)	(0.079±0.008)	(0.142±0.008)	(0.157±0.004)	(0.098max.)	(0.024max.)
□MK00E(4040)	2.8±0.2	3.6±0.2		3.4max.	
□MK325(1210)	(0.110±0.008)	(0.142±0.008)		(0.134max.)	

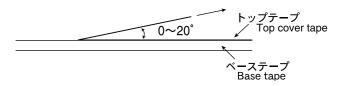
Unit: mm(inch)


エンボステープ Embossed tape (12mm幅) (0.472inches wide)


Туре	チップ挿入部		挿入ピッチ	テーフ	プ厚み
(EIA)	Chip cavity		Insertion Pitch	Tape Thickness	
	Α	В	F	K	Т
□MK432(1812)	3.7±0.2 (0.146±0.008)	4.9±0.2 (0.193±0.008)	8.0±0.1 (0.315±0.004)		0.6max. (0.024max.)

Unit: mm(inch)

④リーダー部/空部 Leader and Blank portion



⑤リール寸法 Reel size

⑥トップテープ強度 Top Tape Strength

トップテープのはがし力は下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.

Multilayer Ceramic Capacitor Chips

			Specifi	ed Value				
It	em	Temperature Com	pensating (Class 1)	High Permiti	vity (Class 2)	Test Methods and Remarks		
		Standard	High Frequency Type	Standard Note1	High Value			
	Temperature	-55 to +125℃		B: −55 to +125°C	-25 to +85°C	High Capacitance Type BJ(X7R) $:$ -55 \sim +125°C, BJ(X5R) $:$ -55 \sim +8 °C, C(X6S) $:$ -55 \sim +10		
Range	T	FF 4- 1405°0		F: −25 to +85°C	05 +- 105°0	E(Y5U): -30~+85C, F(Y5V): -30~+85 High Capacitance Type BJ(X7R): -55~+125C, BJ(X5R): -55~+8		
Range	Temperature	-55 to +125℃		B: −55 to +125°C F: −25 to +85°C	-25 to +85°C	C(X5S): -55~+85°C, C(X6S): -55~+ E(Y5U): -30~+85°C, F(Y5V): -30~+		
3.Rated Volta	ge	50VDC,25VDC,	16VDC	50VDC,25VDC	50VDC,35VDC,25VDC			
		16VDC	50VDC		16VDC,10VDC,6.3VDC 4DVC			
4.Withstandin	g Voltage	No breakdown or dam-	No abnormality	No breakdown or dama	ge	Applied voltage: Rated voltage×3 (Class 1)		
Between ter	minals	age				Rated voltage×2.5 (Class 2)		
						Duration: 1 to 5 sec. Charge/discharge current: 50mA max. (Class 1,2)		
				_				
5.Insulation R	esistance	10000 MΩ min.		$500 \text{ M}\Omega \mu\text{F. or }10000$ smaller.	$M\Omega$., whichever is the	Applied voltage: Rated voltage Duration: 60±5 sec.		
				Note 5		Charge/discharge current: 50mA max.		
6.Capacitance	e (Tolerance)	0.5 to 5 pF: ±0.25 pF	0.5 to 2 pF : ±0.1 pF	B: ±10%, ±20%	B: ±10%、±20%	Measuring frequency:		
		1 to 10pF: ±0.5 pF	2.2 to 5.1 pF : ±5%	F: +80 %	C: ±10%、±20%	Class1: 1MHz±10%(C≦1000pF) 1 k Hz±10%(C>1000pF)		
		5 to 10 pF: ±1 pF			E:-20%/+80%	Class2:1 k Hz±10%(C≦22 _μ F)		
		11 pF or over: ± 5%			F:-20%/+80%	120Hz±10Hz(C>22 _{\(\mu\)} F) Measuring voltage:		
		±10%				Class1: 0.5~5Vrms(C≦1000pF)		
		105TYPER△, S△, T△, U△ only 0.5~2pF: ±0.1pF				1±0.2Vrms(C>1000pF) Class2: 1±0.2Vrms(C≦22 _u F)		
		2.2~20pF: ±5%				0.5±0.1Vrms(C>22 _{\(\mu\)} F)		
						Bias application: None		
7.Q or Tangen (tan δ)	t of Loss Angle	Under 30 pF : Q≥400 + 20C	Refer to detailed speci- fication	B: 2.5% max.(50V, 25V) F: 5.0% max. (50V, 25V)	B:2.5% max. C. E. F:7% max.	Multilayer: Measuring frequency:		
(tail o)		. Q≦400 + 200 30 pF or over : Q≧1000	lication	1 . 5.0 % max. (50v, 25v)	Note 4	Class1: 1MHz±10%(C≦1000pF)		
		C= Nominal capacitance				1 k Hz±10%(C>1000pF) Class2∶ 1 k Hz±10%(C≦22μF)		
						120Hz±10Hz(C>22 _µ F)		
						Measuring voltage : Class1 : 0.5~5Vrms(C≦1000pF)		
						1±0.2Vrms(C>1000pF) Class2: 1±0.2Vrms(C≦22µF)		
						0.5 \pm 0.1Vrms(C>22 μ F)		
						Bias application: None High-Frequency-Multilayer:		
						Measuring frequency: 1GHz		
						Measuring equipment: HP4291A Measuring jig: HP16192A		
						measuring pg. 111 101027		
8.Temperature	(Without	CK: 0±250	CH: 0±60	B:±10%(−25~85℃)	B∶±10%	According to JIS C 5102 clause 7.12.		
Characteristic	voltage	CJ:0±120	RH: -220±60	F: +30 %(-25~85°C)	(-25~+85°C)	Temperature compensating:		
of Capacitance	application)	CH: 0±60	(ppm/°C)	B(X7R): ±15%	C: ±20%	Measurement of capacitance at 20°C and 85°C shall be made		
		CG: 0±30		F(Y5V): +22 %	(−25~+85°C)	to calculate temperature characteristic by the following		
		PK: -150±250 PJ: -150±120			E: +20%/-55% (-25~+85°C)	equation.		
		PH: -150±60			F: +30%/-80%	$\frac{(C_{85} - C_{20})}{C_{20} \times \triangle T} \times 10^{-6} \text{ (ppm/c)}$		
		RK: -220±250			(−25~+85℃)	High permitivity:		
		RJ:-220±120			B(X7R、X5R):	Change of maximum capacitance deviation in step 1 to		
		RH: -220±60			±15%	Temperature at step 1: +20°C		
		SK: -330±250			C(X5S, X6S):	Temperature at step 2: minimum operating temperature		
		SJ: -330±120 SH: -330±60			±22% E(Y5U):	Temperature at step 3: +20°C (Reference temperature) Temperature at step 4: maximum operating temperatur		
		TK: -470±250			+22%/-56%	Temperature at step 4: maximum operating temperature Temperature at step 5: +20°C		
		TJ: -470±120			F(Y5V):	Reference temperature for X7R, X5R, X5S, X6S, Y5U and Y		
		TH: -470±60			+22%/-82%	shall be +25°C		
		UK: -750±250						
		UJ: -750±120 SL: +350 to -1000 (ppm/°C)						
9.Resistance	to Flexure of	Appearance:	Appearance:	Appearance:	1	Warp: 1mm		
Substrate		No abnormality	No abnormality	No abnormality		Testing board: glass epoxy-resin substrate Thickness: 1.6mm (063 TYPE : 0.8mm)		
		Capacitance change:	Capacitance change:	Capacitance change:	,	The measurement shall be made with board in the bent positi		
		Within ±5% or ±0.5 pF, whichever is larger.	Within±0.5 pF	B, BJ, C: Within ±12.5% E, F: Within ±30%	6			
		willchever is larger.		L, 1 . ₩/(IIIII ±30%		Board R-230 Warp		
						45±2,45±2,		
						(Unit: mm)		

Multilayer Ceramic Capacitor Chips

		Specifie					
Item	Temperature Comp	pensating (Class 1)	High Permitti	vity (Class 2)	Test Methods and Remarks		
	Standard	High Frequency Type	Standard Note1	High Value			
10.Body Strength	_	No mechanical damage.	_	_	High Frequency Multilayer: Applied force: 5N Duration: 10 sec. Press Chip W L W L W Duration: 10 sec. Pressing jight of the pressing jight of		
11.Adhesion of Electrode	No separation or indicat	ion of separation of electr			Applied force: 5N Duration: 30±5 sec. (0201 TYPE 2N) Hooked jig Chip Cross-section		
12.Solderability	At least 95% of terminal	electrode is covered by n	new solder.		Solder temperature: 230±5°C Duration: 4±1 sec.		
13.Resistance to soldering	Appearance: No abnor-	Appearance: No abnor-	Appearance: No abnorn	nality	Preconditioning: Thermal treatment (at 150°C for 1 hr)		
	mality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	mality Capacitance change: Within ±2.5% Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	V tan δ: Initial value Insulation resistance: In	/ithin ±15% (C) /ithin ±20% (E, F) Note 4	(Applicable to Class 2.) Solder temperature: 270±5°C Duration: 3±0.5 sec. Preheating conditions: 80 to 100°C, 2 to 5 min. or 5 to 10 min. 150 to 200°C, 2 to 5 min. or 5 to 10 min. Recovery: Recovery for the following period under the state dard condition after the test. 24±2 hrs (Class 1) 48±4 hrs (Class 2)		
14.Thermal shock	Appearance: No abnormality Capacitance change: Within ± 2.5% or ±0.25pF, whichever is larger. Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	Appearance: No abnormality Capacitance change: Within ±0.25pF Q: Initial value Insulation resistance: Initial value Withstanding voltage (between terminals): No abnormality	ν tan δ: Initial value Insulation resistance: In	/ithin ±7.5% (B, BJ) /ithin ±15% (C) /ithin ±20% (E, F) Note 4	Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) (Applicable to Class 2.) Conditions for 1 cycle: Step 1: Minimum operating temperature $^{+0}_{-3}$ °C 30 ± 3 mi Step 2: Room temperature 2 to 3 mi Step 3: Maximum operating temperature $^{-0}_{+3}$ °C 30 ± 3 mi Step 4: Room temperature 2 to 3 mi Number of cycles: 5 times Recovery after the test: 24 ± 2 hrs (Class 1) 48 ± 4 hrs (Class 2)		
15.Damp Heat (steady state)	Appearance: No abnormality Capacitance change: Within ±5% or ±0.5pF, whichever is larger. Q: C≥30 pF : Q≥350 10≤C<30 pF: Q≥275 +2.5C C<10 pF : Q≥200 + 10C C: Nominal capacitance Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: Within $\pm 0.5 pF$, Insulation resistance: $1000 \ M\Omega \ min$.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: 50 M Ω μ F or 1000 M Ω whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ:Within $\pm 12.5\%$ C(X6S) Within $\pm 25\%$ C(X5S),E,F Within $\pm 30\%$ Note 4 tan δ : BJ: 5.0% max. C, E, F: 11.0% max. Insulation resistance: $50~\mathrm{M}\Omega~\mu\mathrm{F}$ or $1000~\mathrm{M}\Omega$ whichever is smaller. Note 5	Multilayer: Preconditioning: Thermal treatment (at 150°C for 1 hr) (Applicable to Class 2.) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 +20 hrs Recovery: Recovery for the following period under the stard dard condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 +20 hrs Recovery: Recovery for the following period under the stard dard condition after the removal from test chamber. 24±2 hrs (Class 1)		

Multilayer Ceramic Capacitor Chips

		Specifie	ed Value			
Item	Temperature Com	pensating (Class 1)	High Permitti	vity (Class 2)	Test Methods and Remarks	
	Standard	High Frequency Type	Standard Note1	High Value		
6.Loading under Damp Heat	Appearance: No abnormality Capacitance change: Within ± 7.5% or ±0.75pF, whichever is larger. Q: C≥30 pF: Q≥200 C<30 pF: Q≥100 + 10C/3 C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: C ≤ 2 pF: Within ±0.4 pF C > 2 pF: Within ±0.75 pF C: Nominal capacitance Insulation resistance: 500 MΩ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ tan δ : B: 5.0% max. F: 7.5% max. Note 4 Insulation resistance: 25 M Ω μ F or 500 M Ω , whichever is the smaller. Note 5	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ C,E,F: Within $\pm 30\%$ Note 4 tan δ : BJ: 5.0%max. C,E,F: 11%max. Insulation resistance: $25~\mathrm{M}\Omega$ μ F or $500~\mathrm{M}\Omega$, whichever is the smaller. Note 5	According to JIS C 5102 Clause 9. 9. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature: 40±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. (Class 1,2) Recovery: Recovery for the following period under the stand condition after the removal from test chamber. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 60±2°C Humidity: 90 to 95% RH Duration: 500 +24 hrs Applied voltage: Rated voltage Charge and discharge current: 50mA max. Recovery: 24±2 hrs of recovery under the standard contion after the removal from test chamber.	
17.Loading at High Temperature	Appearance: No abnormality Capacitance change: Within ±3% or ±0.3pF, whichever is larger. Q: C≥30 pF: Q≥350 10≤C<30 pF: Q≥275 +2.5C C<10 pF: Q≥200 + 10C C: Nominal capacitance Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: Within ±3% or ±0.3pF, whichever is larger. Insulation resistance: 1000 MΩ min.	Appearance: No abnormality Capacitance change: B: Within $\pm 12.5\%$ F: Within $\pm 30\%$ Note 4 tan δ : B: 4.0% max. F: 7.5% max. Insulation resistance: $50~\text{M}\Omega\mu\text{F}$ or $1000~\text{M}\Omega$, whichever is smaller. Note 5	Appearance: No abnormality Capacitance change: BJ: Within $\pm 12.5\%$ Within $\pm 20\%$ %* Within $\pm 25\%$ (X6S) Within $\pm 25\%$ (X6S) Within $\pm 30\%$ (X5S) E. F: Within $\pm 30\%$ Note 4 tan \mathfrak{s} : BJ: 5.0%max. C. F. F: 11%max. Insulation resistance: 50 M Ω μ F or 1000 M Ω , whichever is smaller. Note 5	According to JIS C 5102 clause 9.10. Multilayer: Preconditioning: Voltage treatment (Class 2) Temperature:125±3°C(Class 1, Class 2: B, BJ(X7R)) 85±2°C (Class 2: BJ,F) Duration: 1000 + 48 Factor of the following period under the st dard condition after the removal from test chamber. As for Ni product, thermal treatment shall be perforn prior to the recovery. 24±2 hrs (Class 1) 48±4 hrs (Class 2) High-Frequency Multilayer: Temperature: 125±3°C (Class 1) Duration: 1000 + 48 Factor of the standard continuation of the standard continua	

Note 1 For 105 type, specified in "High value".

Note 2 Thermal treatment (Multilayer): 1 hr of thermal treatment at 150 +0 /-10 °C followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note 3 Voltage treatment (Multilayer): 1 hr of voltage treatment under the specified temperature and voltage for testing followed by 48±4 hrs of recovery under the standard condition shall be performed before the measurement.

Note 4, 5 The figure indicates typical inspection. Please refer to individual specifications.

Note 6 Some of the parts are applicable in rated voltage×1.5. Please refer to individual specifications.

Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.

1.Circuit Design Veri											
1. A acc see us at acc Ope 1. T the lift pe pay vote all 2. E required.	rification of operating environment, electrical rating and permance A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any capacitors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Perating Voltage (Verification of Rated voltage) The operating voltage for capacitors must always be lower than their rated values. If an AC voltage is loaded on a DC voltage, the sum of the two beak voltages should be lower than the rated value of the capacitor chosen. For a circuit where both an AC and a pulse voltage may be present, the sum of their peak voltages should also be lower than the capacitor's rated voltage. Even if the applied voltage is lower than the rated value, the reliability of capacitors might be reduced if either a high frequency AC voltage or a pulse voltage having rapid rise time is present in the circuit.										
(Des 1. W de Ti th	ttern configurations esign of Land-patterns) When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.	Recommunity Francisco C C C C C C C C C C C C C C C C C C C	Reco	cxcessive ons) s of impro commender Chip cap B ded land 107 1.6 0.8 0.6 0.6 0.3 0.20 0.30 0.20 0.30 0.25 0.40 der can af	per patte d land din Lacitor 212 2.0 51.2: 1.0~1 1.0~1 1.0 0.5 0.45~0.55 0.40~0.50 0.45~0.55 fect the a	mensions fand patter B and patt	ger fillets of ger fi	which ext shown. al chip ca	mm) 325 3.2 2.5 1.8~2.5 1.8~3.2 schanical s	432 4.5 3.2 2.5~3.5 1.5~1.8 2.3~3.5	for PCBs

0.7~0.9

0.4~0.5

0.8

212 (2 circuits)

2.0

1.25

0.5~0.6

0.5~0.6

0.5~0.6

1.0

a b

c d

Type e L W

> a b

С

d

0.5~0.6

0.5~0.6

0.2~0.3

0.5

110 (2 circuits)

1.37

1.0

0.35~0.45

0.55~0.65

0.3~0.4

0.64

a d

a 📗 🗌 🗎

Stages	Precautions		Technical conside	rations			
2.PCB Design		(2) Examples of	of good and bad solder application	n			
		Items	Not recommended	Recommended			
		Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist			
		Component placement close to the chassis	Chassis Solder(for grounding)	Solder-resist			
		Hand-soldering of leaded components near mounted components	Lead wire of component- Soldering iron	Solder-resist			
		Horizontal component placement		Solder-resist			
	Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) 1. After capacitors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufac-	1-1. The following are examples of good and bad capacitor layout; SMD capacitors should be located to minimize any possible mechanical stresses from board warp or deflection.					
			Not recommended	Recommended			
	turing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.			
		of mechanical		pard, it should be noted that the amount ing on capacitor layout. The example in.			
		Perforati	D				
		the capacitors	can vary according to the meth	ns, the amount of mechanical stress on od used. The following methods are ssful: push-back, slit, V-grooving, and out must also consider the PCB splitting			

Stages	Precautions		Technical considera	ations
3.Considerations for automatic placement	Adjustment of mounting machine Excessive impact load should not be imposed on the capacitors when mounting onto the PC boards. The maintenance and inspection of the mounters should be conducted periodically.	capacitors, cau before lowering (1)The lower limit board after corr (2)The pick-up pre (3)To reduce the a supporting pins	sing damage. To avoid this, the f the pick-up nozzle: of the pick-up nozzle should be a ecting for deflection of the board. essure should be adjusted betwee amount of deflection of the board ca	aused by impact of the pick-up nozzle, nder the PC board. The following dia-
			Not recommended	Recommended
		Single-sided mounting	Cracks	Supporting pin—k
before the soldering stage, may lead to deg characteristics unless the following factors a checked; the size of land patterns, type of ac applied, hardening temperature and hardenin fore, it is imperative to consult the manufacture.		Double-sided mounting	Solder peeling Cracks	Supporting pin-
		As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the capacitors because of mechanical impact on the capacitors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically.		
	Selection of Adhesives 1. Mounting capacitors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded capacitor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. There-	shrinkage perce on the capacitor to the board ma	entage of the adhesive and that of s and lead to cracking. Moreover,	sistance. The difference between the the capacitors may result in stresses too little or too much adhesive applied cement, so the following precautions
	fore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	(1) Required adhesive characteristics a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process. b. The adhesive should have sufficient strength at high temperatures.		
		The adhesive should have sometimes strength at high temperatures. The adhesive should have good coating and thickness consistency.		
		d. The adhesive should be used during its prescribed shelf life. e. The adhesive should harden rapidly		
		f. The adhesive must not be contaminated.		
		-	hould have excellent insulation ch hould not be toxic and have no en	
		(2)The recommended amount of adhesives is as follows;		
		Figure	212/316 case sizes	·
		b a	0.3mm	
		С	100 ∼120 Adhesives should no	·
		Amou	nt of adhesive A	fter capacitors are bonded

Stages	Precautions	Technical considerations	
4. Soldering	1. Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (equivelent to chroline) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering capacitors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the capacitors. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of capacitors in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.	
	Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Ceramic chip components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.	
	And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature (C) 10 9 Peak 260°C max 10 9 Sec max 10 9 Sec max 10 9 Sec max 10 9 Sec max 10 10 Sec max Within 100 to 130°C of the soldering within 100 to 130°C of the soldering for 2 times. Caution 1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the capacitor, as shown below:	
		2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible. [Wave soldering] Temperature profile Temperature (°C) 250°C 250	
		Caution 1. Make sure the capacitors are preheated sufficiently. 2. The temperature difference between the capacitor and melted solder should not be greater than 100 to 130°C 3. Cooling after soldering should be as gradual as possible. 4. Wave soldering must not be applied to the capacitors designated as for reflow soldering only.	

Stages	Precautions	Technical considerations
4. Soldering		[Hand soldering] Temperature profile Temperature (C) 300 Preheating 280°C 300 Over 1 minute Within 3 seconds (## 4T ≤ 190°C (32º16Type max), 4T ≤ 130°C (32º26Type min)) #It is recommended to use 20W soldering iron and the tip is 14 or less. #The soldering iron should not directly touch the capacitor. Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the capacitor.
5.Cleaning	Cleaning conditions 1. When cleaning the PC board after the capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the capacitor's characteristics.	1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the capacitor or deteriorate the capacitor's outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the capacitors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 W/& Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6.Post cleaning processes	1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than the capacitor's operating temperature, the stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins, molding materials etc. is not recommended.	
7.Handling	Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1)If ceramic capacitors are dropped onto the floor or a hard surface, they should not be used. (2)When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.	

Stages	Precautions	Technical considerations
8.Storage conditions	Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40°C Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions capacitor electrode solderability decreases as time passes, so should be used within 6 months from the time of delivery. Ceramic chip capacitors should be kept where no chlorine or sulfur exists in the air. 2. The capacitance value of high dielectric constant capacitors (type 2 &3) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1hour will return the capacitance to its initial level.	I. If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.