General Purpose Transistors

PNP Silicon

BC856B, BC857B, BC858A

These transistors are designed for general purpose amplifier applications. They are housed in the SC-70/SOT-323 which is designed for low power surface mount applications.

Features

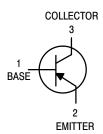
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC856 BC857 BC858	V _{CEO}	-65 -45 -30	V
Collector-Base Voltage BC856 BC857 BC858	V _{CBO}	-80 -50 -30	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current - Continuous	I _C	-100	mAdc
Collector Current - Peak (1 ms pulse)	I _{CM}	-130	mA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) T _A = 25°C	P _D	150	mW
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	883	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor®

www.onsemi.com

SC-70/SOT-323 CASE 419 STYLE 3

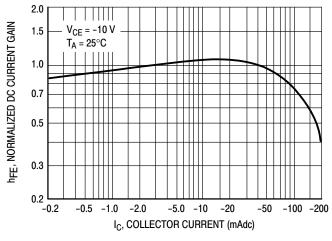
MARKING DIAGRAM

XX = Specific Device Code

M = Date Code*

= Pb-Free Package

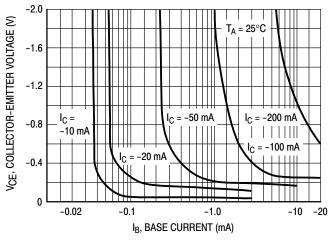
(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.


ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	1				I
Collector – Emitter Breakdown Voltage BC856 (I _C = -10 mA) BC857 BC858	V _(BR) CEO	-65 -45 -30	- - -	- - -	V
	V _(BR) CES	-80 -50 -30	- - -	- - -	V
	V _(BR) CBO	-80 -50 -30	- - -	- - -	V
	V _{(BR)EBO}	-5.0 -5.0 -5.0	- - -	- - -	V
Collector Cutoff Current ($V_{CB} = -30 \text{ V}$) ($V_{CB} = -30 \text{ V}$, $T_A = 150^{\circ}\text{C}$)	Ісво	- -	- -	-15 -4.0	nA μA
ON CHARACTERISTICS					
DC Current Gain BC856A, BC585A BC856B, BC857B, BC858B BC857C	h _{FE}	- - -	90 150 270	- - -	_
$(I_C = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$ BC856A, BC858A BC856B, BC857B, BC858B BC857C		125 220 420	180 290 520	250 475 800	
Collector – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{CE(sat)}	- -	- -	-0.3 -0.65	V
Base – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{BE(sat)}	- -	-0.7 -0.9	- -	V
Base – Emitter On Voltage ($I_C = -2.0$ mA, $V_{CE} = -5.0$ V) ($I_C = -10$ mA, $V_{CE} = -5.0$ V)	V _{BE(on)}	-0.6 -	- -	-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS	<u>.</u>				
Current – Gain – Bandwidth Product $(I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	100	_	_	MHz
Output Capacitance (V _{CB} = -10 V, f = 1.0 MHz)	C _{ob}	-	-	4.5	pF
Noise Figure $ \text{(I}_{\text{C}} = -0.2 \text{ mA, V}_{\text{CE}} = -5.0 \text{ Vdc, R}_{\text{S}} = 2.0 \text{ k}\Omega, \\ \text{f} = 1.0 \text{ kHz, BW} = 200 \text{ Hz)} $	NF	-	_	10	dB


BC857/BC858

-1.0 -0.9 T_A = 25°C $V_{BE(sat)} @ I_C/I_B = 10$ -0.8 V, VOLTAGE (VOLTS) -0.7 $V_{BE(on)}$ @ $V_{CE} = -10 \text{ V}$ -0.6 -0.5 -0.4 -0.3 -0.2 $V_{CE(sat)} @ I_C/I_B = 10$ -0.1 -0.2 -2.0 -0.1 -5.0 -50 -100 IC, COLLECTOR CURRENT (mAdc)

Figure 1. Normalized DC Current Gain

Figure 2. "Saturation" and "On" Voltages

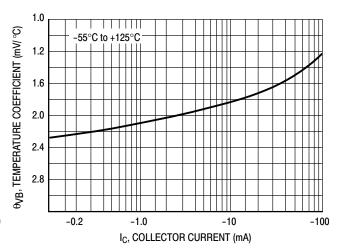
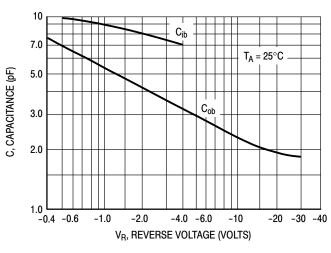



Figure 3. Collector Saturation Region

Figure 4. Base-Emitter Temperature Coefficient

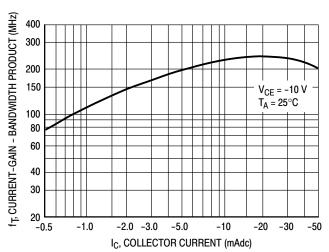


Figure 5. Capacitances

Figure 6. Current-Gain - Bandwidth Product

BC856

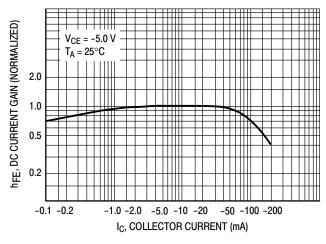


Figure 7. DC Current Gain

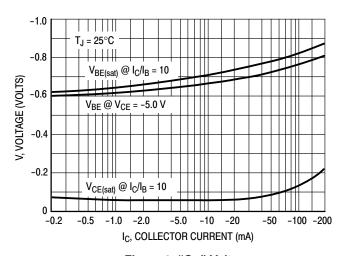


Figure 8. "On" Voltage

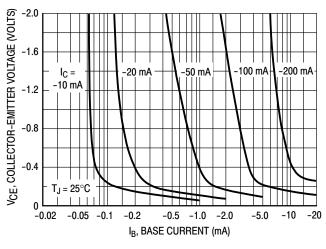


Figure 9. Collector Saturation Region

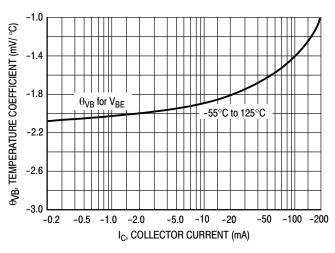


Figure 10. Base-Emitter Temperature Coefficient

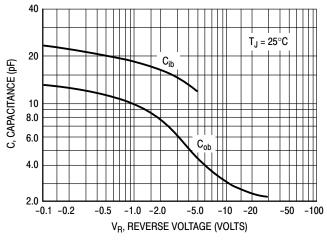


Figure 11. Capacitance

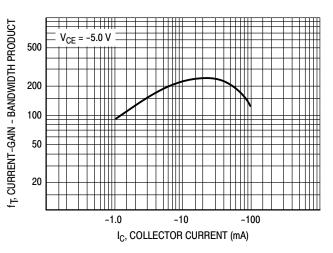


Figure 12. Current-Gain - Bandwidth Product

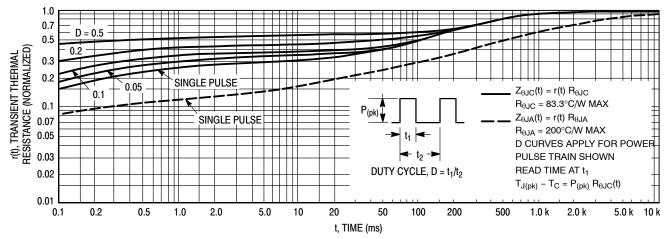


Figure 13. Thermal Response

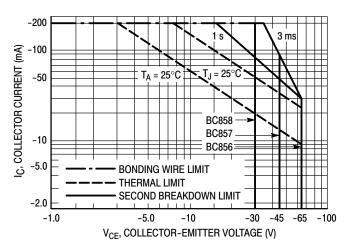


Figure 14. Active Region Safe Operating Area

The safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}\text{C}$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}\text{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.

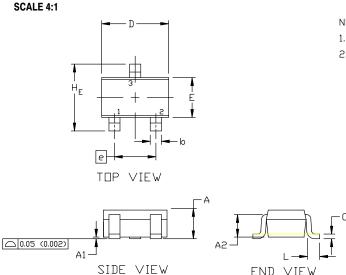
ORDERING INFORMATION

Device	Marking	Package	Shipping †	
BC856BWT1G	3B	SC-70/SOT-323	2 000 / Tono % Dool	
SBC856BWT1G*	36	(Pb-Free)	3,000 / Tape & Reel	
BC857BWT1G	3F	SC-70/SOT-323	3,000 / Tape & Reel	
SBC857BWT1G*	31	(Pb-Free)		
BC857CWT1G	3G	SC-70/SOT-323	3,000 / Tape & Reel	
NSVBC857CWT1G*	30	(Pb-Free)	3,000 / Tape & neer	
BC858AWT1G	3J	SC-70/SOT-323 (Pb-Free)	3,000 / Tape & Reel	
BC858BWT1G	зк	SC-70/SOT-323 (Pb-Free)	3,000 / Tape & Reel	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SC-70 (SOT-323) **CASE 419** ISSUE R


END VIEW

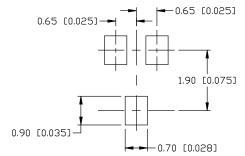
DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF	-	0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

GENERIC MARKING DIAGRAM



= Specific Device Code XX

М = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6: PIN 1. EMITTER	STYLE 7: PIN 1. BASE	STYLE 8: PIN 1. GATE	STYLE 9: PIN 1. ANODE	STYLE 10: PIN 1. CATHODE	STYLE 11: PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	2. CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales