

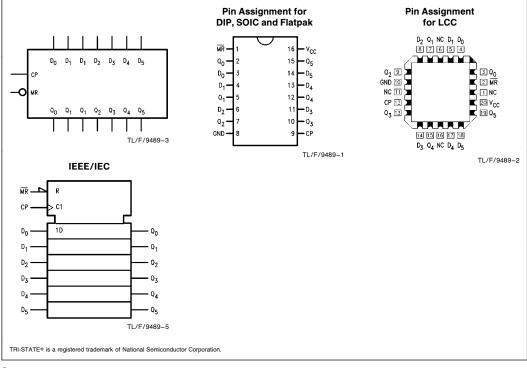
54F/74F174 Hex D Flip-Flop with Master Reset

General Description

The 'F174 is a high-speed hex D flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops.

Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- Asynchronous common reset
- Guaranteed 4000V minimum ESD protection


Commercial	Military	Package Number	Package Description
74F174PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F174DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F174SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F174SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F174FM (Note 2)	W16A	16-Lead Cerpack
	54F174LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use Suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9489

RRD-B30M75/Printed in U. S. A.

November 1994

Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
D ₀ -D ₅	Data Inputs	1.0/1.0	20 µA/-0.6 mA		
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/ −0.6 mA		
MR	Master Reset Input (Active LOW)	1.0/1.0	20 µA/ −0.6 mA		
Q ₀ -Q ₅	Outputs	50/33.3	-1 mA/20 mA		

Functional Description

The 'F174 consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (\overline{MR}) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset (\overline{MR}) will force all outputs LOW independent of Clock or Data inputs. The 'F174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Q₅

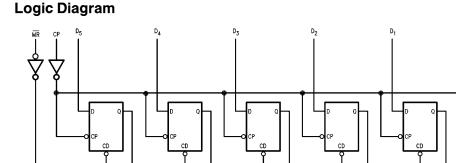
Truth Table

Inputs			Outputs
MR	СР	D _n	Qn
L	х	Х	L
н		н	н
н		L	L

D₀

Q₁

0₀ TL/F/9489-4


H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

____ = LOW-to-HIGH Clock Transition

Q2

¢4

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Q3

Absolute Maximum Ratings (Note 1)

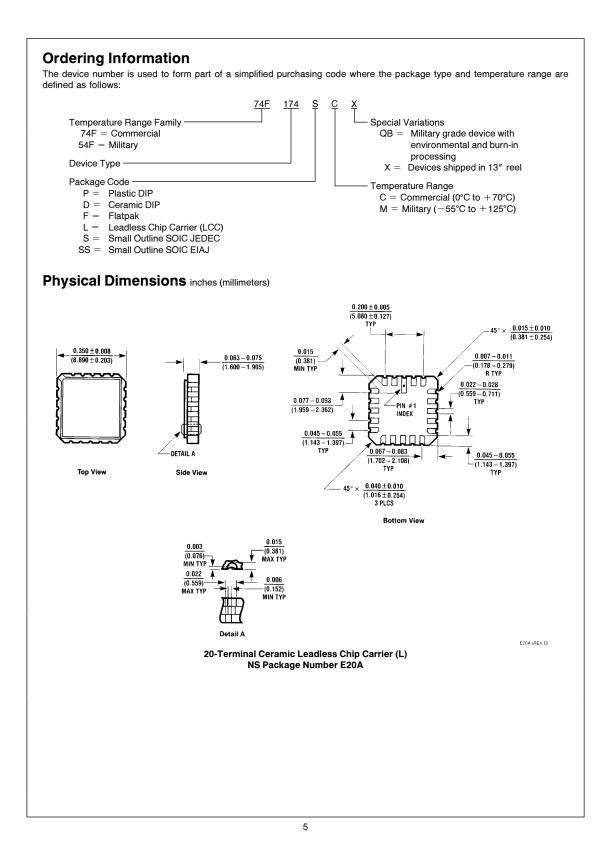
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

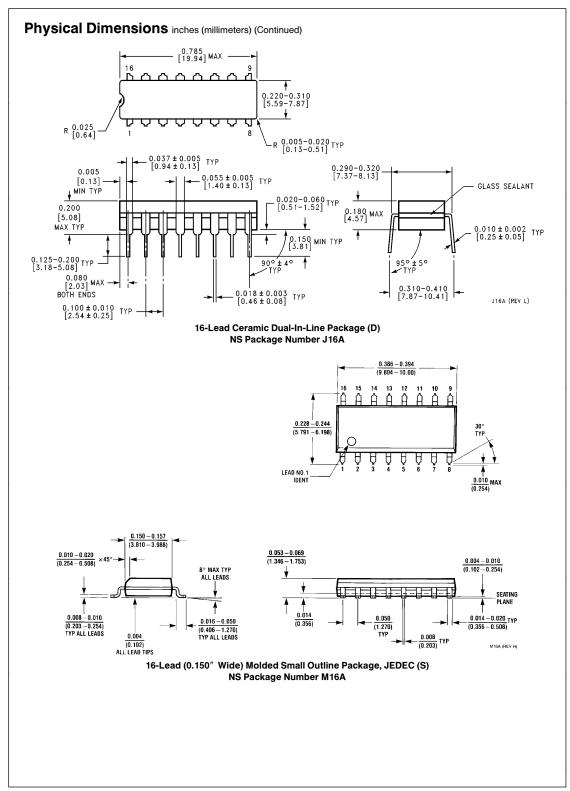
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	- 0.5V to V _{CC}
TRI-STATE [®] Output	-0.5V to $+5.5V$
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

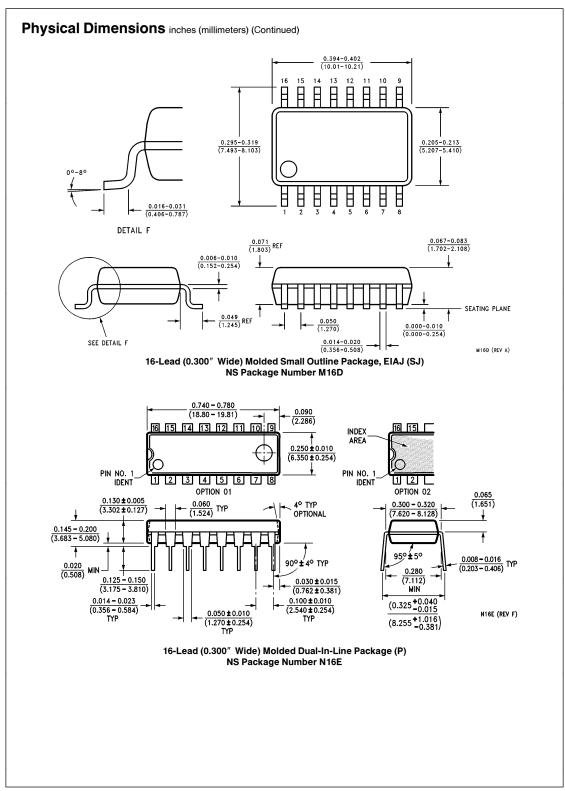
Recommended Operating Conditions

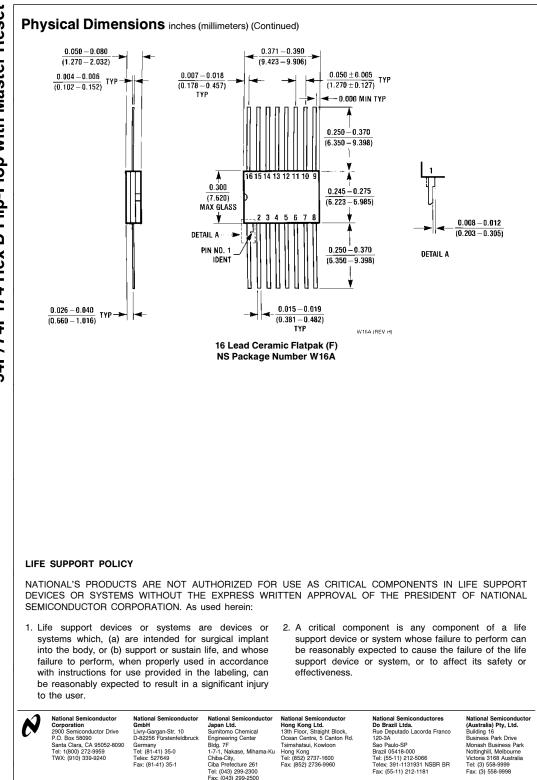
Free Air Ambient Temperature

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		54F/74F			Units	V _{CC}	Conditions	
Symbol			Min	Тур	Max	Onits	VCC	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OS}	Output Short-Circuit C	Current	-60		-150	mA	Мах	$V_{OUT} = 0V$	
ICCH	Power Supply Current			30	45	mA	Max	$CP = \checkmark$ $D_n = \overline{MR} = HIGH$	
I _{CCL}	Power Supply Current			30	45	mA	Max	V _O = LOW	


AC Electrical Characteristics											
Symbol		$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_{L} = 50 \text{ pF}$			$54F$ $T_{A}, V_{CC} = Mil$ $C_{L} = 50 \text{ pF}$		$74F$ $T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		Units		
	Parameter										
		Min	Тур	Max	Min	Max	Min	Мах			
f _{max}	Maximum Clock Frequency	80			70		80		MHz		
t _{PLH} t _{PHL}	Propagation Delay CP to Q _n	3.5 4.0	5.5 7.0	8.0 10.0	3.0 4.0	10.0 12.0	3.5 4.0	9.0 11.0	ns		
t _{PHL}	Propagation Delay MR to Q _n	5.0	10.0	14.0	5.0	16.0	5.0	15.0	ns		


AC Operating Requirements

Symbol	Parameter	$74F \\ T_{A} = +25^{\circ}C \\ V_{CC} = +5.0V$		54 T _A , V _{CC}	-	74F T _A , V _{CC} = Com		Units
		Min	Max	Min	Мах	Min	Max	
t _s (H) t _s (L)	Setup Time, HIGH or LOW D _n to CP	4.8 4.0		5.0 5.0		4.8 4.0		- ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to CP	0 0		2.0 2.0		0 0		
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	4.0 6.0		5.0 7.5		4.0 6.0		ns
t _w (L)	MR Pulse Width, LOW	5.0		6.5		5.0		ns
t _{rec}	Recovery Time, MR to CP	5.0		6.0		5.0		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.