

October 1986 Revised February 2000

DM74ALS563A Octal D-Type Transparent Latch with 3-STATE Output

General Description

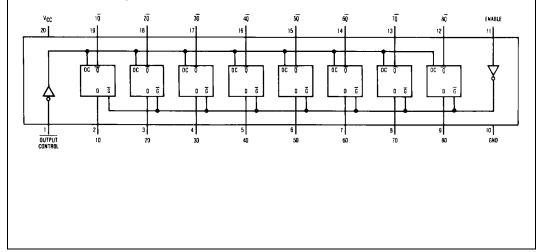
These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight inverting latches of the DM74ALS563A are transparent D-type latches. While the enable (G) is HIGH the Q outputs will follow the data (D) inputs. When the enable is taken LOW the output will be latched at the complement of the level of the data that was set up.

A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the latches. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

Features

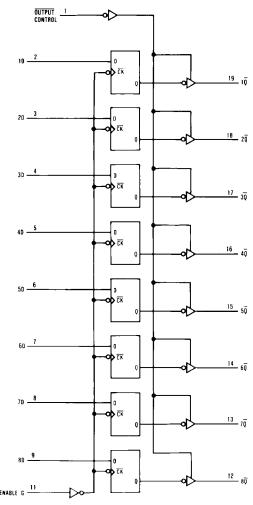

- Switching specifications at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly

Ordering Code:

Order Number Package Number		Package Description	
DM74ALS563AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide	
DM74ALS563AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide	

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram



Function Table

Output Control	Enable D G		Output Q		
L	Н	Н	L		
L	Н	L	Н		
L	L	Χ	\overline{Q}_0		
Н	Х	Χ	Z		

- L = LOW State
 H = HIGH State
 X = Don't Care
 Z = High Impedance State \overline{Q}_0 = Previous Condition of \overline{Q}

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Voltage Applied to Disabled Output 5.5V Operating Free Air Temperature Range $0^{\circ}\text{C to } + 70^{\circ}\text{C}$

Storage Temperature Range

Typical θ_{JA}

N Package 56.0°C/W M Package 75.0°C/W

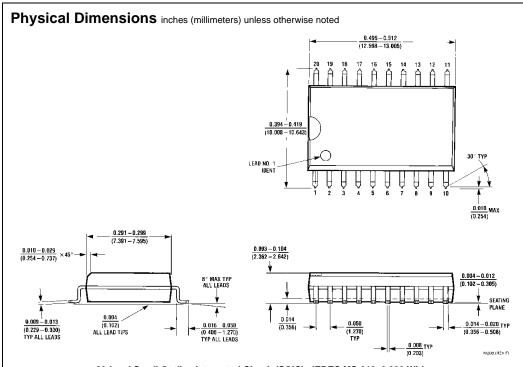
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions

for actual device operation.

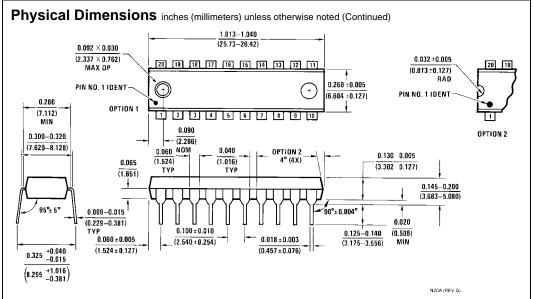
Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-2.6	mA
I _{OL}	LOW Level Output Current			24	mA
t _W	Width of Enable Pulse, HIGH or LOW	15			ns
t _{SU}	Data Setup Time (Note 2)	10↓			ns
t _H	Data Hold Time (Note 2)	10↓			ns
T _A	Free Air Operating Temperature	0		70	°C

-65°C to +150°C


Note 2: The (\downarrow) arrow indicates the negative edge of the enable is used for reference.

Electrical Characteristics


over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	V _{CC} = 4.5V, I _I = -18 mA				-1.2	V
V _{OH}	HIGH Level	$V_{CC} = 4.5V$ $I_{OH} = Max$		2.4	3.2		V
	Output Voltage	$V_{IL} = V_{IL} Max$	IOH - IVIAX	2.4	3.2		V
		V _{CC} = 4.5V to 5.5V	$I_{OH} = -400 \mu A$	V _{CC} – 2			V
V _{OL}	LOW Level	V _{CC} = 4.5V	I _{OL} = 12 mA		0.25	0.4	V
	Output Voltage	$V_{IH} = 2V$	I _{OL} = 24 mA		0.35	0.5	V
I	Input Current @ Maximum	V _{CC} = 5.5V, V _{IH} = 7V				0.1	mA
	Input Voltage	VCC = 5.5 V, VIH = 7 V				0.1	1101
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.1	mA
Io	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
I _{OZH}	OFF-State Output Current	$V_{CC} = 5.5V, V_{IH} = 2V$ $V_{O} = 2.7V$				20	μА
	HIGH Level Voltage Applied					20	
I _{OZL}	OFF-State Output Current	$V_{CC} = 5.5V, V_{IH} = 2V$				-20	μА
	LOW Level Voltage Applied	$V_0 = 0.4V$					
I _{CC}	Supply Current	V _{CC} = 5.5V	Outputs HIGH		10	17	mA
		Outputs OPEN	Outputs LOW		16	26	mA
		Outputs Disable			17	29	mA

Switching Characteristics over recommended operating free air temperature range Symbol Parameter Conditions From То Min Max Units V_{CC} = 4.5V to 5.5V Propagation Delay Time Data Any $\overline{\mathbf{Q}}$ 3 18 ns LOW-to-HIGH Level Output $R_L = 500\Omega$ Propagation Delay Time $C_L = 50 pF$ Data Any Q 3 14 ns HIGH-to-LOW Level Output Propagation Delay Time t_{PLH} Enable Any $\overline{\mathbf{Q}}$ 8 22 ns LOW-to-HIGH Level Output Propagation Delay Time t_{PHL} Enable Any \overline{Q} 8 21 ns HIGH-to-LOW Level Output t_{PZH} Output Enable Time Output Any Q 18 ns to HIGH Level Output Control Output Enable Time Output t_{PZL} Any Q 18 ns to LOW Level Output Control Output Disable Time Output t_{PHZ} Any $\overline{\mathbf{Q}}$ 2 ns Control from HIGH Level Output Output Disable Time Output $\mathsf{t}_{\mathsf{PLZ}}$ Any $\overline{\mathbf{Q}}$ 3 15 ns from LOW Level Output Control

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide Package Number M20B

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com