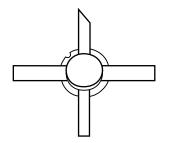
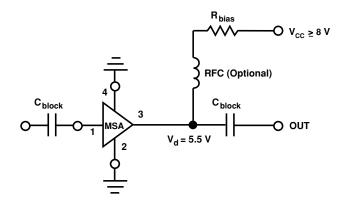
MSA-1120 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description


The MSA-1120 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic BeO disk package for good thermal characteristics. This MMIC is designed for high dynamic range in either 50 or 75 Ω systems by combining low noise figure with high IP₃. Typical applications include narrow and broadband linear amplifiers in industrial and military systems.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- High Dynamic Range Cascadable 50Ω or 75Ω Gain Block
- 3 dB Bandwidth: 50 MHz to 1.6 GHz
- 17.5 dBm Typical P1 dB at 0.5 GHz
- 12 dB Typical 50 Ω Gain at 0.5 GHz
- 3.5 dB Typical Noise Figure at 0.5 GHz
- Hermetic Metal/ Beryllia Microstrip Package

200 mil BeO Package

Typical Biasing Configuration

MSA-1120 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]			
Device Current	100 mA			
Power Dissipation ^[2,3]	650 mW			
RF Input Power	+13 dBm			
Junction Temperature	200°C			
Storage Temperature	-65 to 200°C			

Thermal Resistance^[2,4]:

 $\theta_{ic} = 60^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. T_{CASE} = 25°C.

3. Derate at 16.7 mW/°C for $T_C > 161$ °C. 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods.

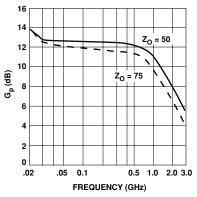
Symbol	Parameters and Test Conditions: I _d = 6	Units	Min.	Тур.	Max.	
Gp	Power Gain (S ₂₁ ²)	f = 0.1 GHz	dB	11.5	12.5	13.5
$\Delta {\sf G}_{\sf P}$	Gain Flatness	f = 0.1 to 1.0 GHz	dB		±0.7	±1.0
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		1.6	
NCIMD	Input VSWR	f = 0.1 to 1.5 GHz			1.7:1	
VSWR —	Output VSWR	f = 0.1 to 1.5 GHz			1.9:1	
NF	50 Ω Noise Figure	f = 0.5 GHz	dB		3.5	4.5
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 0.5 GHz	dBm	16.0	17.5	
IP ₃	Third Order Intercept Point	f = 0.5 GHz	dBm		30.0	
t _D	Group Delay	f = 0.5 GHz	psec		200	
V _d	Device Voltage		V	4.5	5.5	6.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

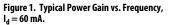
Electrical Specifications^[1], $T_A = 25^{\circ}C$

Notes:

1. The recommended operating current range for this device is 40 to 75 mA.

Typical performance as a function of current is on the following page.


2. Referenced from 50 MHz gain (GP).


Freq.	S	11	S ₂₁			S ₁₂			S ₂₂		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
.0005	.78	-21	19.6	9.53	168	-25.1	.057	50	.79	-21	0.51
.005	.19	-72	13.8	4.91	165	-16.8	.144	11	.19	-72	0.98
.025	.05	-56	12.9	4.44	174	-16.5	.149	3	.06	-75	1.08
.050	.04	-52	12.5	4.23	174	-16.1	.156	2	.04	-79	1.08
.100	.04	-56	12.5	4.22	172	-16.2	.155	1	.04	-78	1.09
.200	.05	-72	12.4	4.19	165	-16.1	.157	1	.06	-91	1.08
.300	.07	-84	12.4	4.15	158	-16.0	.159	2	.09	-101	1.07
.400	.09	-96	12.3	4.10	151	-15.9	.161	2	.11	-109	1.06
.500	.10	-105	12.1	4.04	144	-15.8	.163	3	.13	-117	1.05
.600	.12	-113	12.0	3.98	137	-15.6	.166	3	.16	-124	1.04
.700	.14	-120	11.8	3.89	131	-15.4	.169	2	.18	-130	1.03
.800	.15	-127	11.6	3.80	124	-15.2	.173	2	.20	-136	1.01
.900	.17	-134	11.4	3.71	118	-15.0	.178	1	.22	-142	1.00
1.000	.19	-140	11.1	3.60	112	-14.8	.181	2	.24	-148	0.99
1.500	.25	-167	9.8	3.10	83	-14.0	.200	-3	.31	-174	0.95
2.000	.31	171	8.4	2.64	58	-13.3	.216	-10	.35	163	0.95
2.500	.35	157	7.3	2.31	39	-12.8	.228	-16	.36	148	0.96
3.000	.40	140	6.1	2.02	19	-12.5	.236	-23	.36	134	0.99

MSA-1120 Typical Scattering Parameters $(Z_0 = 50 \ \Omega, T_A = 25^{\circ}C, I_d = 60 \ mA)$

Typical Performance, $T_A=25^\circ C,\, Z_0=50~\Omega$

(unless otherwise noted)

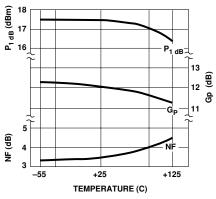


Figure 4. Output Power at 1 dB Gain Compression, Noise Figure and Power Gain vs. Case Temperature, f = 0.5 GHz, I_d = 60 mA.

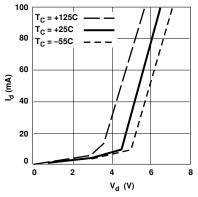


Figure 2. Device Current vs. Voltage.

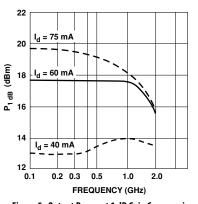


Figure 5. Output Power at 1 dB Gain Compression vs. Frequency.

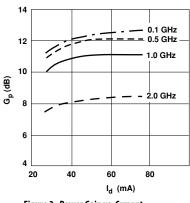


Figure 3. Power Gain vs. Current.

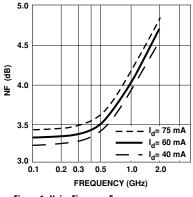
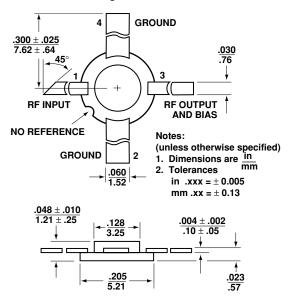
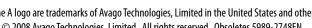



Figure 6. Noise Figure vs. Frequency.


Ordering Information

Part Numbers	No. of Devices	Comments
MSA-1120	100	Bulk

200 mil BeO Package Dimensions

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2008 Avago Technologies, Limited. All rights reserved. Obsoletes 5989-2748EN AV02-1234EN May 14, 2008