

74VHCT540A Octal Buffer/Line Driver with 3-STATE Outputs

Features

- High Speed: t_{PD} = 5.4ns (Typ.) at V_{CC} = 5V
- Low Power Dissipation: $I_{CC} = 4\mu A$ (Max.) at $T_A = 25^{\circ}C$
- Power down protection is provided on all inputs and outputs
- Pin and function compatible with 74HCT540

General Description

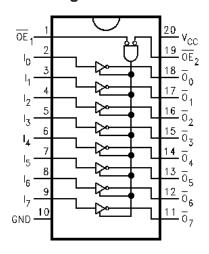
The VHCT540A is an advanced high-speed CMOS device fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The VHCT540A is an octal buffer/line driver designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers.

This device is similar in function to the VHCT240A while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes this device especially useful as an output port for microprocessors, allowing ease of layout and greater PC board density.

Protection circuits ensure that 0V to 7V can be applied to the input and output⁽¹⁾ pins without regard to the supply voltage. This device can be used to interface 3V to 5V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

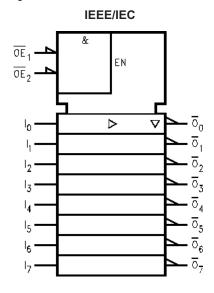
Note:


1. Outputs in OFF-State.

Ordering Information

Order Number	Package Number	Package Dissipation
74VHCT540AM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHCT540ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT540AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number. Pb-Free package per JEDEC J-STD-020B.


Connection Diagram

Pin Description

Pin Names	Description
\overline{OE}_1 , \overline{OE}_2	3-STATE Output Enable Inputs
I ₀ —I ₇	Inputs
$\overline{O}_0 - \overline{O}_7$	3-STATE Outputs

Logic Symbol

Truth Table

	Inputs		
OE ₁	OE ₂	I	Outputs
L	L	Н	L
Н	Х	Х	Z
Х	Н	Х	Z
L	L	L	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	
	Note 2	-0.5V to +7.0V
	Note 3	-0.5V to V _{CC} + 0.5V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current ⁽⁴⁾	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} / GND Current	±75mA
T _{STG}	Storage Temperature	–65°C to +150°C
T _L	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽⁵⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	4.5V to +5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	
	Note 2	0V to 5.5V
	Note 3	0V to V _{CC}
T _{OPR}	Operating Temperature	-40°C to +85°C
t _r , t _f	Input Rise and Fall Time, $V_{CC} = 5.0V \pm 0.5V$	0ns/V ~ 20ns/V

Notes

- 2. When outputs are in OFF-STATE or when $V_{CC} = 0V$.
- 3. HIGH or LOW state. I_{OUT} absolute maximum rating must be observed.
- 4. V_{OUT} < GND, V_{OUT} > V_{CC} (outputs active).
- 5. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

					Т	A = 25°	С		–40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Cor	Conditions		Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input Voltage	4.5–5.5						2.0		V
V _{IL}	LOW Level Input Voltage	4.5–5.5					0.8		0.8	V
V _{OH}	HIGH Level Output	4.5	$V_{IN} = V_{IH}$	$I_{OH} = -50\mu A$	4.4	4.5		4.4		V
	Voltage		or V _{IL}	$I_{OH} = -8mA$	3.94			3.80		
V _{OL}	LOW Level Output	4.5	V _{IN} =V _{IH} or V _{IL}	$I_{OL} = 50\mu A$		0.0	0.1		0.1	٧
	Voltage			I _{OL} = 8mA			0.36		0.44	
I _{OZ}	3-STATE Output OFF-STATE Current	5.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{OUT} = V_{CC} \text{ or GND}$				±0.25		±2.5	μA
I _{IN}	Input Leakage Current	0–5.5	V _{IN} = 5.5V or GND				±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND				4.0		40.0	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	$V_{IN} = 3.4V$, Other Inputs = V_{CC} or GND				1.35		1.50	mA
I _{OFF}	Output Leakage Current	0	V _{OUT} = 5.	5V			0.5		5.0	μA

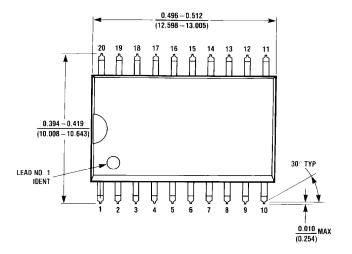
Noise Characteristics

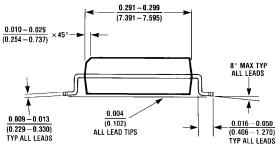
				TA		
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	Limits	Units
V _{OLP} ⁽⁶⁾	Quiet Output Maximum Dynamic V _{OL}	5.0	C _L = 50pF	1.2	1.6	V
V _{OLV} ⁽⁶⁾	Quiet Output Minimum Dynamic V _{OL}	5.0	C _L = 50pF	-1.2	1.6	V
V _{IHD} ⁽⁶⁾	Minimum HIGH Level Dynamic Input Voltage	5.0	C _L = 50pF		2.0	V
V _{ILD} ⁽⁶⁾	Maximum HIGH Level Dynamic Input Voltage	5.0	C _L = 50pF		0.8	V

Note:

6. Parameter guaranteed by design.

AC Electrical Characteristics


					T _A = 25°C		T _A = -40°C to +85°C			
Symbol	Parameter	V _{CC} (V)	Conditions		Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay	5.0 ± 0.5		C _L = 15pF		5.4	7.4	1.0	8.5	ns
	Time			$C_L = 50pF$		5.9	8.4	1.0	9.5	
t _{PZL} , t _{PZH}	3-STATE Output	5.0 ± 0.5	$R_L = 1k\Omega$	C _L = 15pF		8.3	11.3	1.0	13.0	ns
	Enable Time			C _L = 50pF		8.8	12.3	1.0	14.0	
t _{PLZ} , t _{PHZ}	3-STATE Output Disable Time	5.0 ± 0.5	$R_L = 1k\Omega$	C _L = 50pF		9.4	11.9	1.0	13.5	ns
t _{OSLH} , t _{OSHL}	Output to Output Skew	5.0 ± 0.5	(7)	C _L = 50pF			1.0		1.0	ns
C _{IN}	Input Capacitance		V _{CC} = Open			4	10		10	pF
C _{OUT}	Output Capacitance		V _{CC} = 5.0V			9				pF
C _{PD}	Power Dissipation Capacitance		(8)			19				pF


Notes:

- 7. Parameter guaranteed by design. $t_{OSLH} = |t_{PLHmax} t_{PLHmin}|; \ t_{OSLH} = |t_{PHLmax} t_{PHLmin}|$
- 8. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating c urrent consumption without load. Average operating current can be obtained by the equation: I_{CC} (Opr.) = C_{PD} V_{CC} f_{IN} + I_{CC} / 8 (per bit).

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

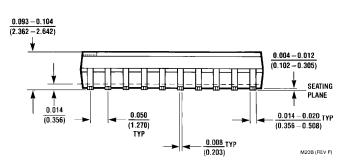


Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted.

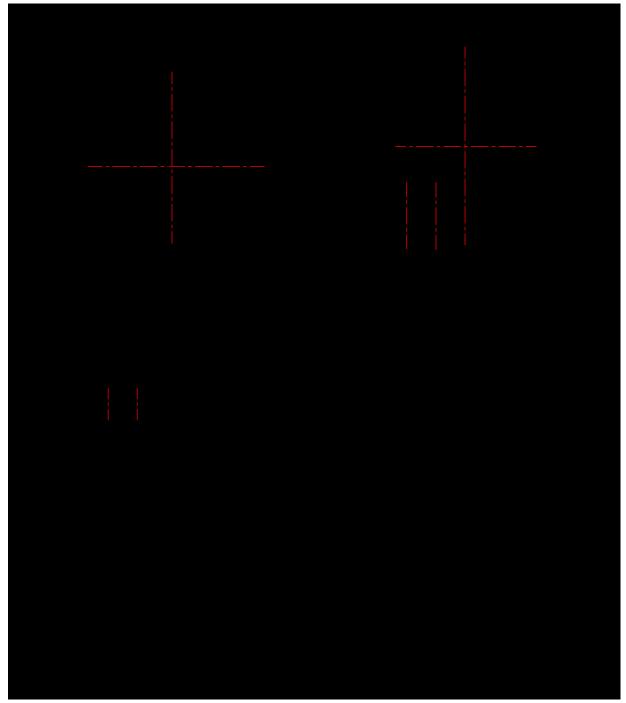
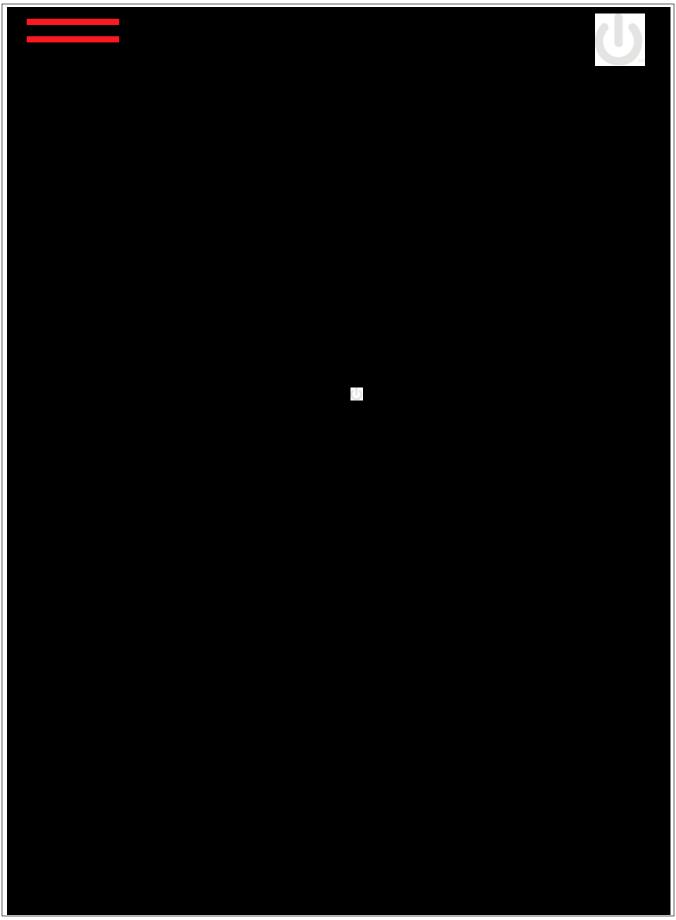



Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

