

#### OSFP-8SFP28-PDAC2M-C

MSA and TAA Compliant 200GBase-CU OSFP to 8xSFP28 Direct Attach Cable (Passive Twinax, 2m)

#### **Features**

- OSFP MSA compliant
- 8 parallel full-duplex channels
- Compliant to IEEE802.3BJ
- Pluggable/Direct Attach
- Wire Gauge: 30 AWG
- 2m Length
- High-Speed Cable Assembly
- RoHS compliant



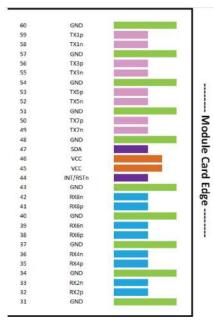
#### **Applications**

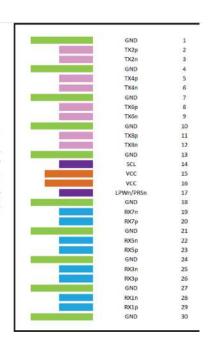
• 200G Ethernet

### **Product Description**

This is an MSA compliant 200GBase-CU OSFP to 8xSFP28 direct attach cable that operates over passive copper with a maximum reach of 2.0m (6.6ft). It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. This direct attach cable is TAA (Trade Agreements Act) compliant, and is built to comply with MSA (Multi-Source Agreement) standards. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' direct attach cables are RoHS compliant and lead-free.


TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. — made or designated country end products."

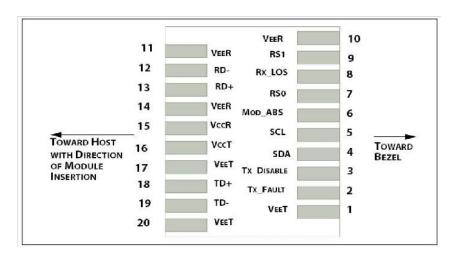



## **General Characteristics**

| Parameter                  | Specification           |
|----------------------------|-------------------------|
| Product Type Features      |                         |
| Cable Assembly Category    | High Speed              |
| Cable Assembly Type        | Pluggable/Direct Attach |
| Connector End 1 Type       | OSFP                    |
| Connector End 2 Type       | SFP28 (8)               |
| Assembly Color             | Black                   |
| Cable Assembly Length      | 2m (6.6ft)              |
| Electrical Characteristics |                         |
| Isolation Resistance       | 100 Ω                   |
| Conductor Resistance       | 2 Ω Max.                |
| Voltage                    | 5V                      |
| Dimensions                 |                         |
| Wire Gauge                 | 30 AWG                  |
| Body Features              |                         |
| Jacket Material            | PVC                     |

# **OSFP Electrical Pin-out Assignment**





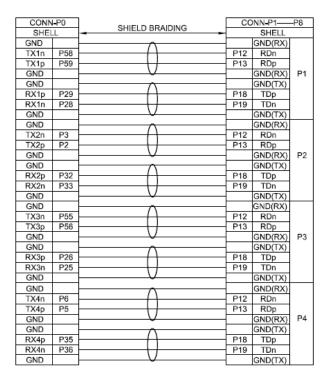

# **OSFP Pin Descriptions**

| Pin # | Symbol    | Description                     | Logic       | Direction       | Plug<br>Sequence |
|-------|-----------|---------------------------------|-------------|-----------------|------------------|
| 1     | GND       |                                 | Ground      |                 | 1                |
| 2     | TX2p      | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |
| 3     | TX2n      | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |
| 4     | GND       |                                 | Ground      |                 | 1                |
| 5     | TX4p      | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |
| 6     | TX4n      | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |
| 7     | GND       |                                 | Ground      |                 | 1                |
| 8     | TX6p      | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |
| 9     | TX6n      | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |
| 10    | GND       |                                 | Ground      |                 | 1                |
| 11    | ТХ8р      | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |
| 12    | TX8n      | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |
| 13    | GND       |                                 | Ground      |                 | 1                |
| 14    | SCL       | 2-wire Serial interface clock   | LVCMOS-I/O  | Bi-directional  | 3                |
| 15    | VCC       | +3.3V Power                     |             | Power from Host | 2                |
| 16    | VCC       | +3.3V Power                     |             | Power from Host | 2                |
| 17    | LPWn/PRSn | Low-Power Mode / Module Present | Multi-Level | Bi-directional  | 3                |
| 18    | GND       |                                 | Ground      |                 | 1                |
| 19    | RX7n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |
| 20    | RX7p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |
| 21    | GND       |                                 | Ground      |                 | 1                |
| 22    | RX5n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |
| 23    | RX5p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |
| 24    | GND       |                                 | Ground      |                 | 1                |
| 25    | RX3n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |
| 26    | RX3p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |
| 27    | GND       |                                 | Ground      |                 | 1                |
| 28    | RX1n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |
| 29    | RX1p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |
| 30    | GND       |                                 | Ground      |                 | 1                |
| 31    | GND       |                                 | Ground      |                 | 1                |
| 32    | RX2p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |
| 33    | RX2n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |
| 34    | GND       |                                 | Ground      |                 | 1                |
| 35    | RX4p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |
| 36    | RX4n      | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |
| 37    | GND       |                                 | Ground      |                 | 1                |
| 38    | RX6p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |

| Pin # | Symbol   | Description                     | Logic       | Direction       | Plug<br>Sequence |
|-------|----------|---------------------------------|-------------|-----------------|------------------|
| 39    | RX6n     | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |
| 40    | GND      |                                 | Ground      |                 | 1                |
| 41    | RX8p     | Receiver Data Non-Inverted      | CML-O       | Output to Host  | 3                |
| 42    | RX8n     | Receiver Data Inverted          | CML-O       | Output to Host  | 3                |
| 43    | GND      |                                 | Ground      |                 | 1                |
| 44    | INT/RSTn | Module Interrupt / Module Reset | Multi-Level | Bi-directional  | 3                |
| 45    | VCC      | +3.3V Power                     |             | Power from Host | 2                |
| 46    | VCC      | +3.3V Power                     |             | Power from Host | 2                |
| 47    | SDA      | 2-wire Serial interface data    | LVCMOS-I/O  | Bi-directional  | 3                |
| 48    | GND      |                                 | Ground      |                 | 1                |
| 49    | TX7n     | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |
| 50    | TX7p     | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |
| 51    | GND      |                                 | Ground      |                 | 1                |
| 52    | TX5n     | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |
| 53    | TX5p     | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |
| 54    | GND      |                                 | Ground      |                 | 1                |
| 55    | TX3n     | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |
| 56    | TX3p     | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |
| 57    | GND      |                                 | Ground      |                 | 1                |
| 58    | TX1n     | Transmitter Data Inverted       | CML-I       | Input from Host | 3                |
| 59    | TX1p     | Transmitter Data Non-Inverted   | CML-I       | Input from Host | 3                |
| 60    | GND      |                                 | Ground      |                 | 1                |

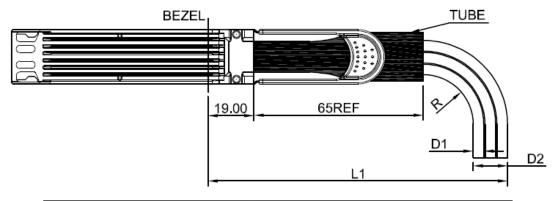
# **SFP28 Electrical Pin-out Assignment**



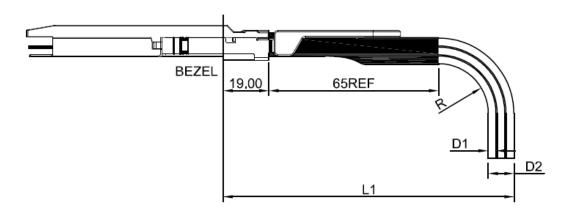

## **SFP28 Pin Descriptions**

| Pin | Logic     | Symbol     | Name/Descriptions                           | Ref. |
|-----|-----------|------------|---------------------------------------------|------|
| 1   |           | VeeT       | Module Transmitter Ground                   | 1    |
| 2   | LVTTL-O   | Tx_Fault   | Transmitter Fault                           | 2    |
| 3   | LVTTL-I   | Tx_Disable | Transmitter Disable                         | 3    |
| 4   | LVTTL-I/O | SDA        | MOD-DEF2 2-wire serial interface data line  | 4    |
| 5   | LVTTL-I/O | SCL        | MOD-DEF1 2-wire serial interface clock line | 4    |
| 6   |           | Mod_Abs    | Module Absent                               | 5    |
| 7   | LVTTL-I   | RS0        | Rate Select Zero                            |      |
| 8   | LVTTL- O  | Rx_LOS     | Module Receiver Loss of Signal              | 2    |
| 9   | LVTTL-I   | RS1        | Rate Select One                             |      |
| 10  |           | VeeR       | Module Receiver Ground                      | 1    |
| 11  |           | VeeR       | Module Receiver Ground                      | 1    |
| 12  | CML-O     | RD-        | Receiver Inverted Data Output               |      |
| 13  | CML-O     | RD+        | Receiver Non-Inverted Data Output           |      |
| 14  |           | VeeR       | Module Receiver Ground                      | 1    |
| 15  |           | VccR       | Module Receiver 3.3V Supply                 |      |
| 16  |           | VccT       | Module Transmitter 3.3V Supply              |      |
| 17  |           | VeeT       | Module Transmitter Ground                   | 1    |
| 18  | CML-I     | TD+        | Transmitter Non-Inverted Data Input         |      |
| 19  | CML-I     | TD-        | Transmitter Inverted Data Input             |      |
| 20  |           | VeeT       | Module Transmitter Ground                   | 1    |

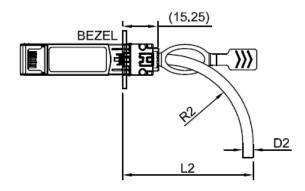
### **Notes:**


- 1. The module signal grounds, VeeR and VeeT, shall be isolated from the module case.
- 2. This is an open collector/drain output and shall be pulled up with 4.7-10k to Vcc\_Host on the host board. Pull ups can be connected to multiple power supplies, however the host board design shall ensure that no module has voltage exceeding module VccT/R + 0.5 V.
- 3. This is an open collector/drain input and shall be pulled up with 4.7-10k to VccT in the module.
- 4. See 2-wire electrical specification.
- 5. This shall be pulled up with 4.7-10k to Vcc\_Host on the host board.

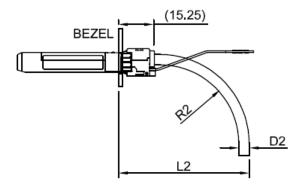
# **Wiring Table**




| CONN |     | SHIELD BRAIDING                                  | CC  | NN-P1   | -P8 |
|------|-----|--------------------------------------------------|-----|---------|-----|
| SHE  | LL  | SHIELD BRAIDING                                  | -   | SHELL   |     |
| GND  |     | ^                                                | -   | GND(RX) |     |
| TX5n | P52 | <del>                                     </del> | P12 | RDn     |     |
| TX5p | P53 | 1                                                | P13 | RDp     |     |
| GND  |     | \                                                |     | GND(RX) | P5  |
| GND  |     | ^                                                | -   | GND(TX) |     |
| RX5p | P23 | <del>                                     </del> | P18 | TDp     |     |
| RX5n | P22 | \                                                | P19 | TDn     |     |
| GND  |     | }V                                               |     | GND(TX) |     |
| GND  |     | ^                                                |     | GND(RX) |     |
| TX6n | P9  | 1                                                | P12 | RDn     |     |
| TX6p | P8  | 1                                                | P13 | RDp     |     |
| GND  |     | V                                                | -   | GND(RX) | P6  |
| GND  |     | ^                                                |     | GND(TX) |     |
| RX6p | P38 | <del>                                     </del> | P18 | TDp     |     |
| RX6n | P39 | \                                                | P19 | TDn     |     |
| GND  |     | }V                                               |     | GND(TX) |     |
| GND  |     | ^                                                | -   | GND(RX) |     |
| TX7n | P49 | <u> </u>                                         | P12 | RDn     |     |
| TX7p | P50 | 1                                                | P13 | RDp     |     |
| GND  |     | l – – – – – – – – – – – – – – – – – – –          |     | GND(RX) | P7  |
| GND  |     | ^                                                | -   | GND(TX) |     |
| RX7p | P20 | <del>                                     </del> | P18 | TDp     |     |
| RX7n | P19 | \                                                | P19 | TDn     |     |
| GND  |     | \                                                |     | GND(TX) |     |
| GND  |     | ^                                                | -   | GND(RX) |     |
| TX8n | P12 | <del>                                     </del> | P12 | RDn     |     |
| TX8p | P11 |                                                  | P13 | RDp     |     |
| GND  |     | ļV                                               |     | GND(RX) | P8  |
| GND  |     |                                                  |     | GND(TX) |     |
| RX8p | P41 | 1                                                | P18 | TDp     |     |
| RX8n | P42 | l                                                | P19 | TDn     |     |
| GND  |     |                                                  |     | GND(TX) |     |

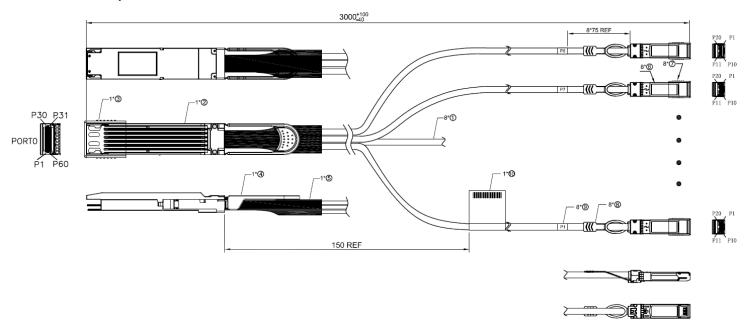

# Wire Gauge and Bend Radius



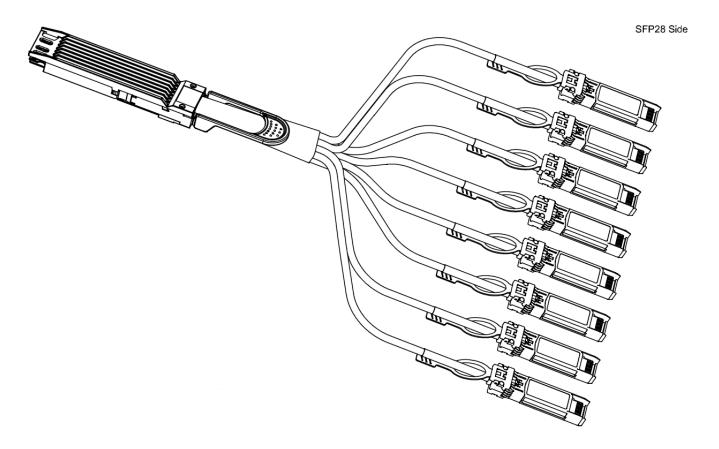

| OSFP (Vertical Direction) |          |          |            |            |
|---------------------------|----------|----------|------------|------------|
| CABLE                     | DIAMETER | DIAMETER | MIN.BEND   | MIN.BEND   |
| GUAGE                     | "D1"     | "D2"     | RADIUS "R" | SPACE "L1" |
| 30AWG                     | 4.1MM    | 12.3MM   | 21MM       | 118MM      |



| OSFP ( Horizontal Direction) |          |          |             |            |
|------------------------------|----------|----------|-------------|------------|
| CABLE                        | DIAMETER | DIAMETER | MIN.BEND    | MIN.BEND   |
| GUAGE                        | "D1"     | "D2"     | RADIUS "R1" | SPACE "L1" |
| 30AWG                        | 4.1MM    | 12.3MM   | 21MM        | 118MM      |




| SFP28 ( Horlzontal Direction)    |       |            |             |  |
|----------------------------------|-------|------------|-------------|--|
| CABLE DIAMETER MIN.BEND MIN.BEND |       |            |             |  |
| GUAGE                            | "D2"  | RADIUS "R2 | 'SPACE "L2" |  |
| 30AWG                            | 4.1MM | 20MM       | 40MM        |  |




| SFP28 (VertIcal Direction) |                                        |            |             |  |  |
|----------------------------|----------------------------------------|------------|-------------|--|--|
| CABLE                      | CABLE   DIAMETER   MIN.BEND   MIN.BEND |            |             |  |  |
| GUAGE                      | "D2"                                   | RADIUS "R2 | 'SPACE "L2" |  |  |
| 30AWG                      | 4.1MM                                  | 20MM       | 40MM        |  |  |

# **Mechanical Specifications**



| Item | Name       | Description                       | Quantity | Unit |
|------|------------|-----------------------------------|----------|------|
| 1    | Cable      | SFP28 2P PVC                      | A/R      | mm   |
| 2    | Plug 1     | OSFP Plug, Reference OSFP MSA 3.0 | 1        | PCS  |
| 3    | Dust Cap 1 | OSFP Dust Cap Black               | 1        | PCS  |
| 4    | Pull Tab 1 | Stainless Steel + TPV, White      | 1        | PCS  |
| 5    | HST        | Heat Shrink Tube, Black           | 1        | PCS  |
| 6    | Plug 2     | SFP28 Plug                        | 8        | PCS  |
| 7    | Dust Cap 2 | SFP28 Dust Cap Blue               | 8        | PCS  |
| 8    | Pull Tab 2 | SFP28 Latch PA66 Black            | 8        | PCS  |
| 9    | Label 1    | 15x35mm, White                    | 8        | PCS  |
| 10   | Label 2    | 26x57mm, White                    | 1        | PCS  |



#### **About ProLabs**

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

### **Complete Portfolio of Network Solutions**

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

#### **Trusted Partner**

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

#### **Contact Information**

ProLabs US

Email: <a href="mailto:sales@prolabs.com">sales@prolabs.com</a>
Telephone: 952-852-0252

ProLabs UK

Email: <a href="mailto:salessupport@prolabs.com">salessupport@prolabs.com</a>
Telephone: +44 1285 719 600