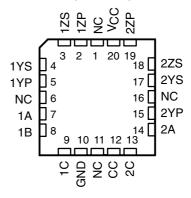

SLLS070C - SEPTEMBER 1973 - REVISED MARCH 1997

- Choice of Open-Collector, Open-Emitter, or 3-State Outputs
- High-Impedance Output State for Party-Line Applications
- Single-Ended or Differential AND/NAND Outputs
- Single 5-V Supply
- Dual Channel Operation
- Compatible With TTL
- Short-Circuit Protection
- High-Current Outputs
- Common and Individual Output Controls
- Clamp Diodes at Inputs and Outputs
- Easily Adaptable to SN55114 and SN75114 Applications
- Designed for Use With SN55115 and SN75115


description

The SN55113 and SN75113 dual differential line drivers with 3-state outputs are designed to provide all the features of the SN55114 and SN75114 line drivers with the added feature of driver output controls. Individual controls are provided for each output pair, as well as a common control for both output pairs. If any output

SN55113 . . . FK PACKAGE (TOP VIEW)

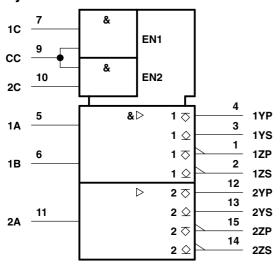
NC - No internal connection

is low, the associated output is in a high-impedance state and the output can neither drive nor load the bus. This permits many devices to be connected together on the same transmission line for party-line applications.

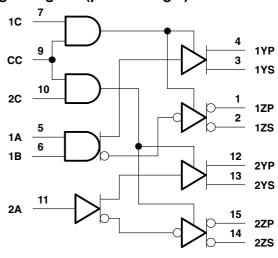
The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pullup terminals, YP and ZP, available on adjacent package pins.

The SN55113 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN75113 is characterized for operation over the temperature range of 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


SLLS070C - SEPTEMBER 1973 - REVISED MARCH 1997

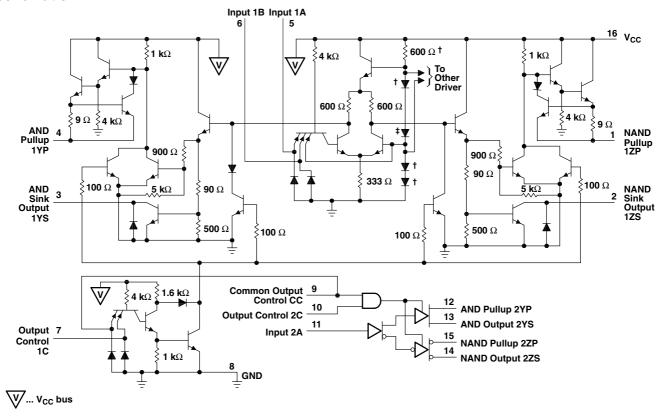
FUNCTION TABLE


	INPUTS										
OUTPUT	CONTROL	D/	ATA	AND	NAND						
С	CC	Α	Βţ	Y	Z						
L	Х	Х	Χ	Z	Z						
Х	L	Χ	Χ	Z	Z						
Н	Н	L	Χ	L	Н						
Н	Н	Х	L	L	Н						
Н	Н	Н	Н	Н	L						

H = high level, L = low level, X = irrelevant,

logic symbol‡

logic diagram (positive logic)


Pin numbers shown are for the J, N, and W packages.

Z = high impedance (off)

[†] B input and 4th line of function table are applicable only to driver number 1.

[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematic

[†] These components are common to both drivers. Resistor values shown are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V _I	5.5 V
Off-state voltage applied to open-collector outputs	12 V
Continuous total power dissipation (see Note 2)	See Dissipation Rating Table
Operating free-air temperature range, T _A : SN55113	–55°C to 125°C
SN75113	0°C to 70°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package .	260°C
Case temperature for 60 seconds: FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package	ge300°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	N/A
W	1000 mW	8.0 mW/°C	640 mW	200 mW

SN55113, SN75113 DUAL DIFFERENTIAL LINE DRIVERS

SLLS070C - SEPTEMBER 1973 - REVISED MARCH 1997

recommended operating conditions

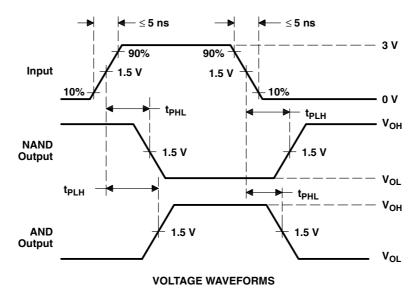
	;	SN55113			SN75113			
	MIN	MIN NOM MAX MIN NOM M		MAX	X UNIT			
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V	
High-level input voltage, V _{IH}	2			2			V	
Low-level input voltage, $V_{\rm IL}$			8.0			8.0	V	
High-level output current, I _{OH}			- 40			- 40	mA	
Low-level output current, I _{OL}			40			40	mA	
Operating free-air temperature, T _A	-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						5	SN55113			N75113						
	PARAMETER	l	15	EST CONDITION	IST	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT				
V_{IK}	Input clamp vo	ltage	$V_{CC} = MIN,$	$I_1 = -12 \text{ mA}$			-0.9	-1.5		-0.9	-1.5	V				
.,	High-level out	out	V _{CC} = MIN,	V _{IH} = 2 V,	$I_{OH} = -10 \text{ mA}$	2.4	3.4		2.4	3.4		.,				
V _{OH}	voltage		$V_{IL} = 0.8 \text{ V}$		$I_{OH} = -40 \text{ mA}$	2	3.0		2	3.0		V				
V _{OL}	Low-level outp	out	$V_{CC} = MIN,$ $I_{OL} = 40 \text{ mA}$	V _{IH} = 2 V,	V _{IL} = 0.8 V,		0.23	0.4		0.23	0.4	٧				
V _{OK}	Output clamp	voltage	$V_{CC} = MAX$,	$I_{O} = -40 \text{ mA}$			-1.1	-1.5		-1.1	-1.5	V				
				V 40V	T _A = 25°C		1	10								
	Off-state	a. starst	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{OH} = 12 V	T _A = 125°C			200				^				
I _{O(off)}	open-collector output current	$V_{CC} = MAX$	V _{OH} = 5.25 V	$T_A = 25^{\circ}C$					1	10	μΑ					
					T _A = 70°C							20				
				$T_A = 25^{\circ}C$,	$V_O = 0$ to V_{CC}			±10			±10					
	Off-state	$V_{CC} = MAX$,		V _O = 0			-150			-20	μА					
I_{OZ}	(high-impedance-state)		Output $T_A = MAX$	T MANY	$V_0 = 0.4 \text{ V}$			±80				±20				
	output current		0.8 V					IA = MAX	$V_0 = 2.4 \text{ V}$			±80			±20	
					$V_O = V_{CC}$			80			20					
	Input current	A, B, C						1			1					
I _I	at maximum input voltage	СС	$V_{CC} = MAX$,	$V_1 = 5.5 \text{ V}$				2			2	mA				
	High-level	A, B, C	.,	V 04V				40			40					
- _{IH}	input current	CC	$V_{CC} = MAX,$	V _I = 2.4 V				80			80	μΑ				
	Low-level	A, B, C	\/ \ \AA\/					-1.6			-1.6	mA				
IIL	input current	CC	$V_{CC} = MAX$,	$V_1 = 0.4 \text{ V}$				-3.2			-3.2	mA				
los	Short-circuit output current	§	V _{CC} = MAX,	$V_O = 0$,	T _A = 25°C	-40	-90	-120	-40	-90	-120	mA				
	Supply current	t	All inputs at 0	V, No load,	$V_{CC} = MAX$		47	65		47	65	mA				
I _{CC}	(both drivers)		T _A = 25°C		$V_{CC} = 7 V$		65	85		65	85	IIIA				

[†] All parameters with the exception of off-state open-collector output current are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

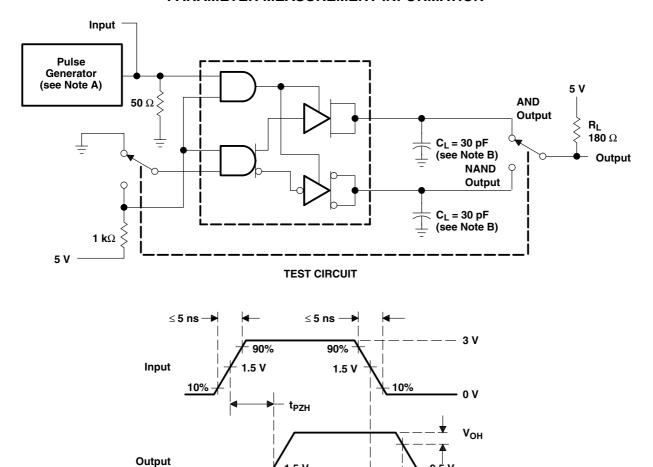
 $^{^\}ddagger$ All typical values are at T_A = 25°C and V_{CC} = 5 V, with the exception of V_{CC} at 7 V.


[§] Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25°C

	DADAMETED	TEST CONDITIONS	SN55113 MIN TYP MAX			S	LINUT		
	PARAMETER	TEST CONDITIONS				MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high level output	Con Figure 4		13	20		13	30	ns
t _{PHL}	Propagation delay time, high-to-low-level output	See Figure 1		12	20		12	30	ns
t _{PZH}	Output enable time to high level	R_L = 180 Ω, See Figure 2		7	15		7	20	ns
t_{PZL}	Output enable time to low level	R_L = 250 Ω, See Figure 3		14	30		14	40	ns
t _{PHZ}	Output disable time from high level	R_L = 180 Ω, See Figure 2		10	20		10	30	ns
t_{PLZ}	Output disable time from low level	R_L = 250 Ω, See Figure 3		17	35		17	35	ns

PARAMETER MEASUREMENT INFORMATION


NOTES: A. The pulse generator has the following characteristics: Z_{O} = 50 Ω , PRR \leq 500 kHz, t_{W} = 100 ns.

B. C_L includes probe and jig capacitance.

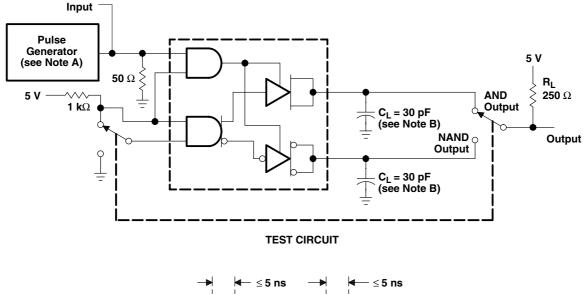
Figure 1. Test Circuit and Voltage Waveforms t_{PLH} and t_{PHL}

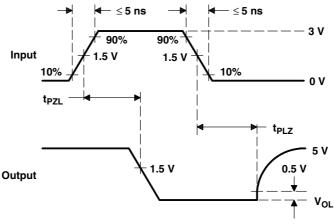
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, PRR $\leq 500 \ kHz$, $t_w = 100 \ ns$.

B. C_L includes probe and jig capacitance.

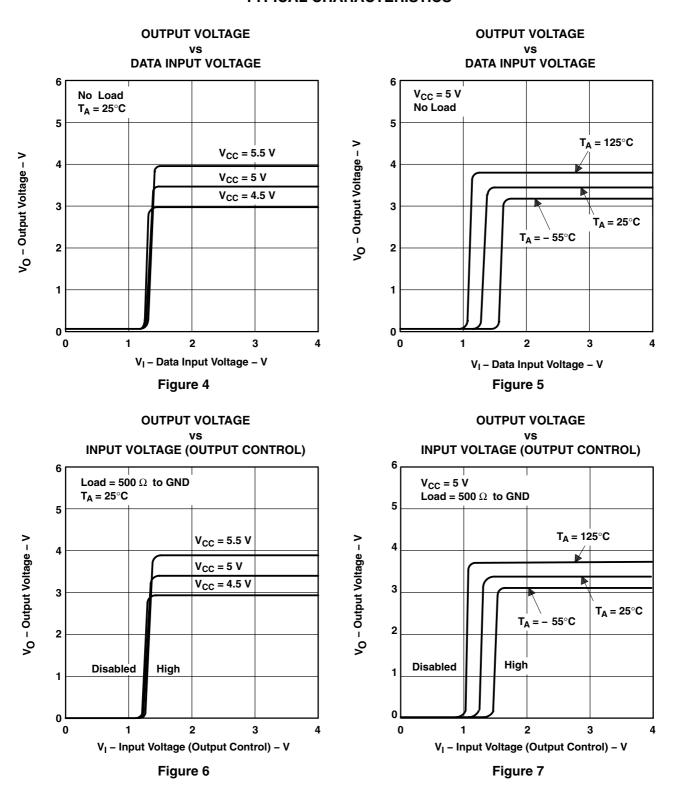

Figure 2. Test Circuit and Voltage Waveforms tpZH and tpHZ


t_{PHZ}

0.5 V

 $V_{off}\approx 0~V$

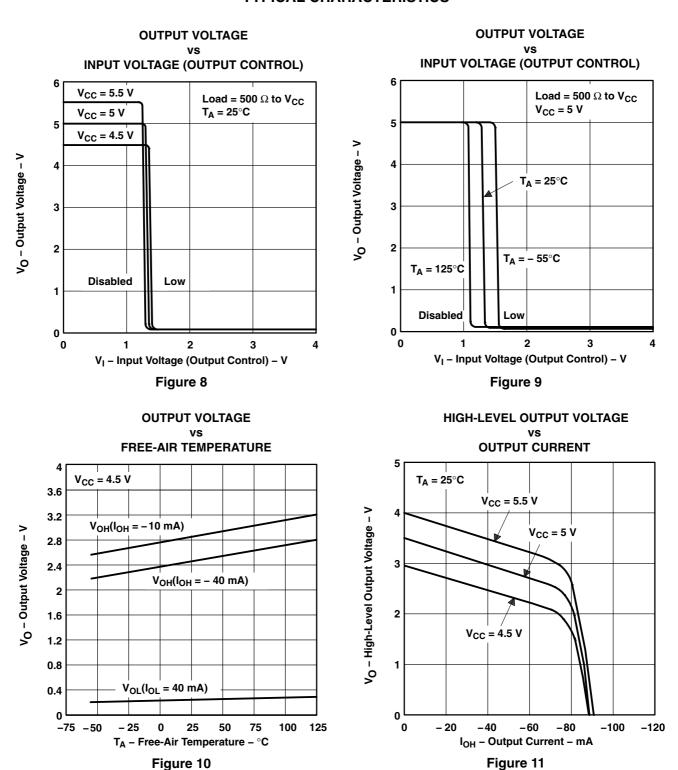
PARAMETER MEASUREMENT INFORMATION



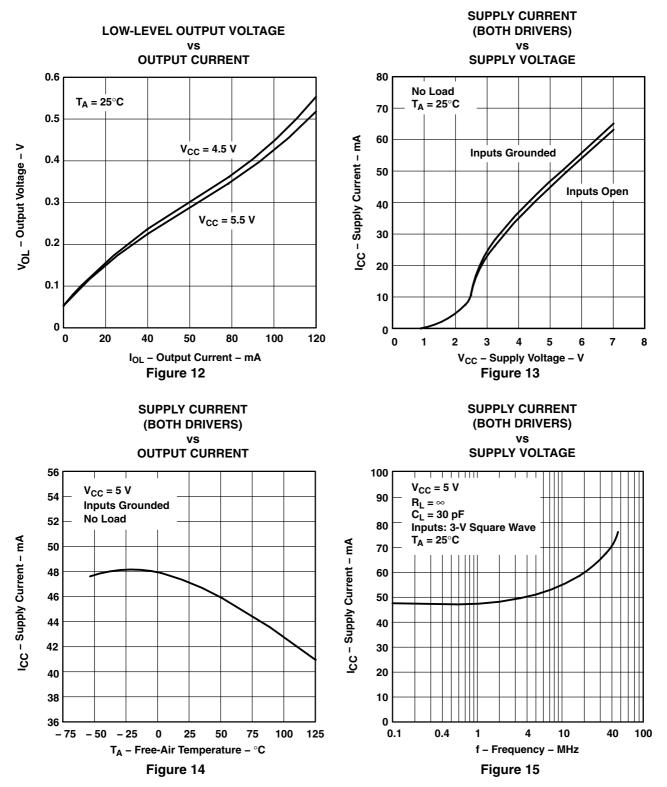
 $\label{eq:VOLTAGE WAVEFORMS}$ NOTES: A. The pulse generator has the following characteristics: Z_O = 50 Ω , PRR \leq 500 kHz, t_W = 100 ns.

B. C_L includes probe and jig capacitance.

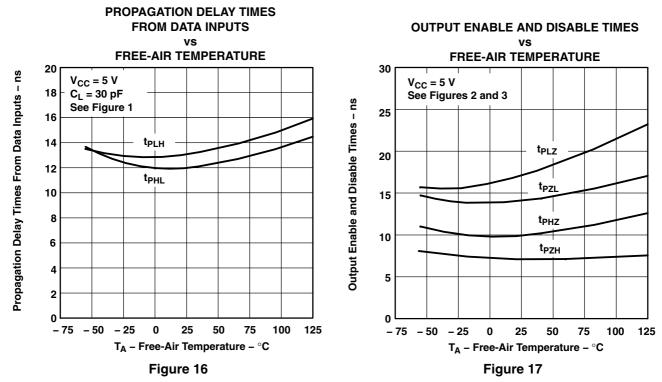
Figure 3. Test Circuit and Voltage Waveforms, tpzL and tpLZ

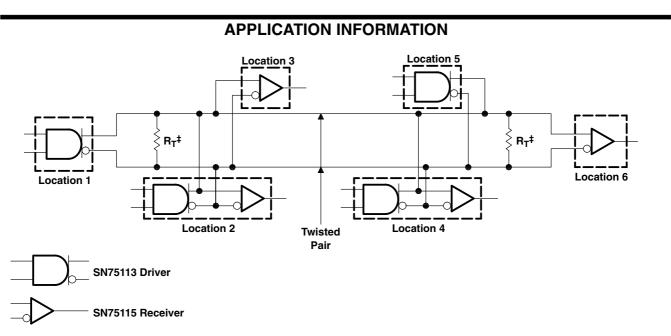

TYPICAL CHARACTERISTICS†

[†] Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55113 circuits only. These parameters were measured with the active pullup connected to the sink output.


TYPICAL CHARACTERISTICS†

[†] Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55113 circuits only. These parameters were measured with the active pullup connected to the sink output.


TYPICAL CHARACTERISTICS[†]


[†] Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55113 circuits only. These parameters were measured with the active pullup connected to the sink output.

TYPICAL CHARACTERISTICS[†]

[†] Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55113 circuits only. These parameters were measured with the active pullup connected to the sink output.

 ‡ R_T = Z_O. A capacitor may be connected in series with R_T to reduce power dissipation.

Figure 18. Basic Party-Line or Data-Bus Differential Data Transmission

25-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-88744012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88744012A SNJ55 113FK	Samples
5962-8874401EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8874401EA SNJ55113J	Samples
5962-8874401FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8874401FA SNJ55113W	Samples
JM38510/10405BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510 /10405BEA	Samples
M38510/10405BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510 /10405BEA	Samples
SN55113J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN55113J	Samples
SN75113D	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		
SN75113DR	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		
SN75113N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75113N	Sample
SN75113NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75113N	Sample
SN75113NSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75113	Samples
SNJ55113FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 88744012A SNJ55 113FK	Samples
SNJ55113J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8874401EA SNJ55113J	Samples
SNJ55113W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8874401FA SNJ55113W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

PACKAGE OPTION ADDENDUM

25-Oct-2016

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55113, SN75113:

Catalog: SN75113

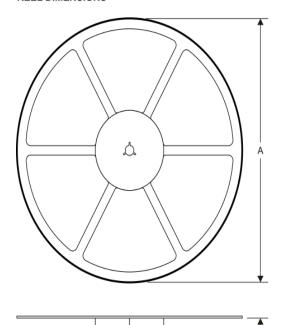
Military: SN55113

NOTE: Qualified Version Definitions:

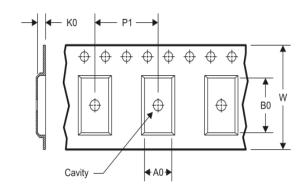
Catalog - TI's standard catalog product

PACKAGE OPTION ADDENDUM

25-Oct-2016


• Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

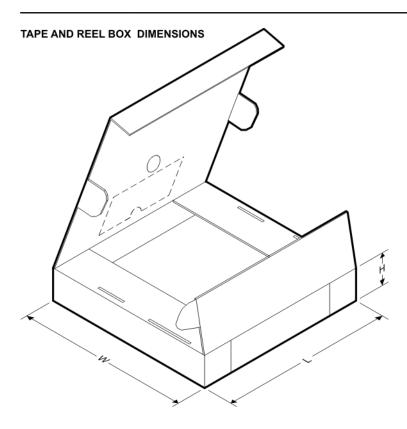

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

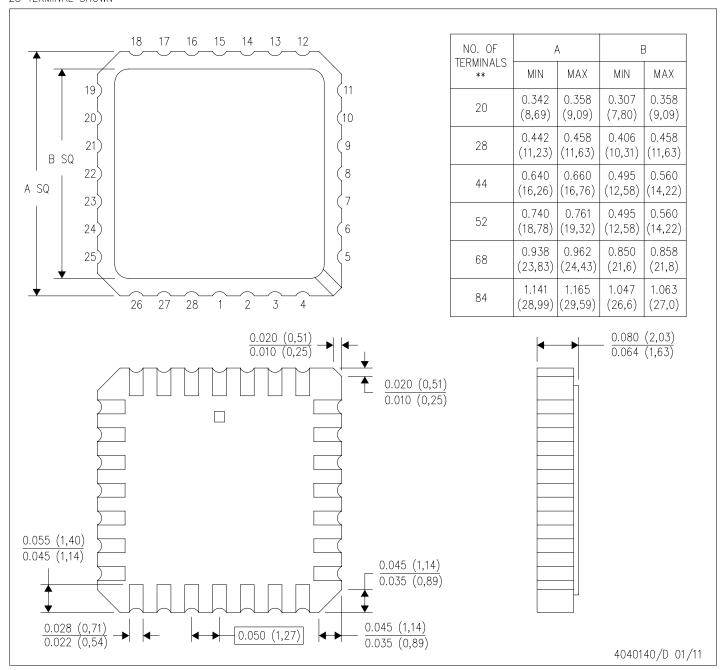

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75113NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

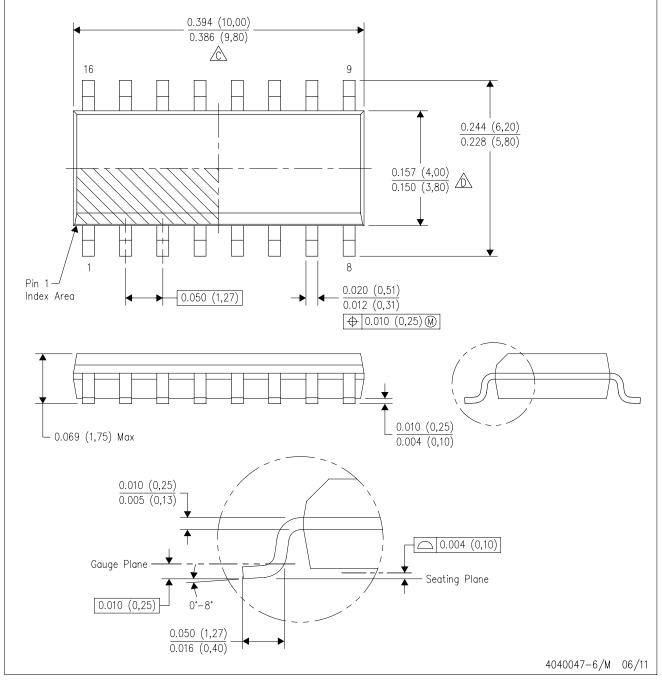

*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	ength (mm) Width (mm)			
	SN75113NSR	SO	NS	16	2000	367.0	367.0	38.0		

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

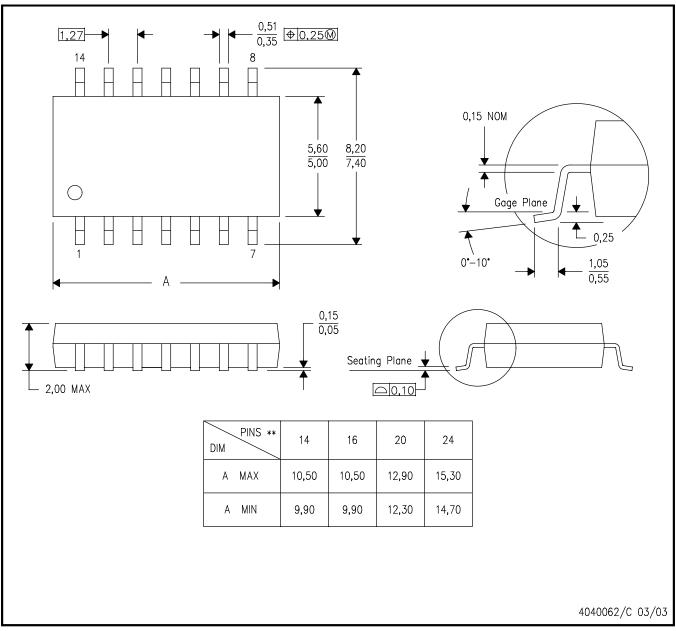


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

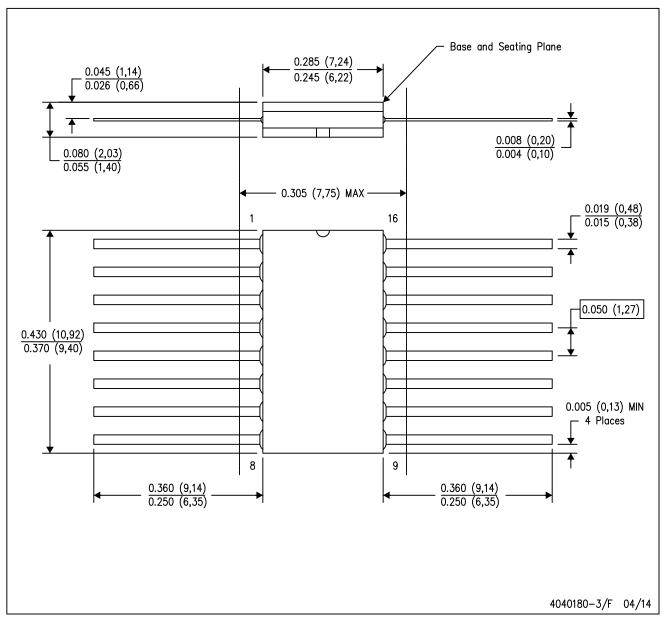


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

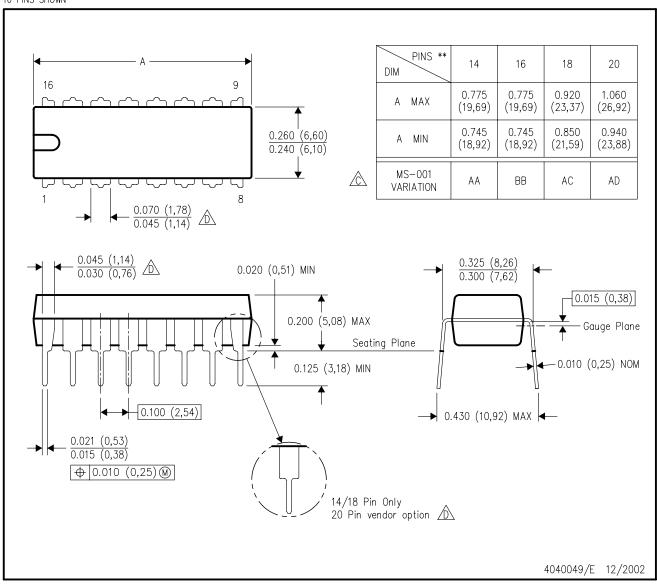
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

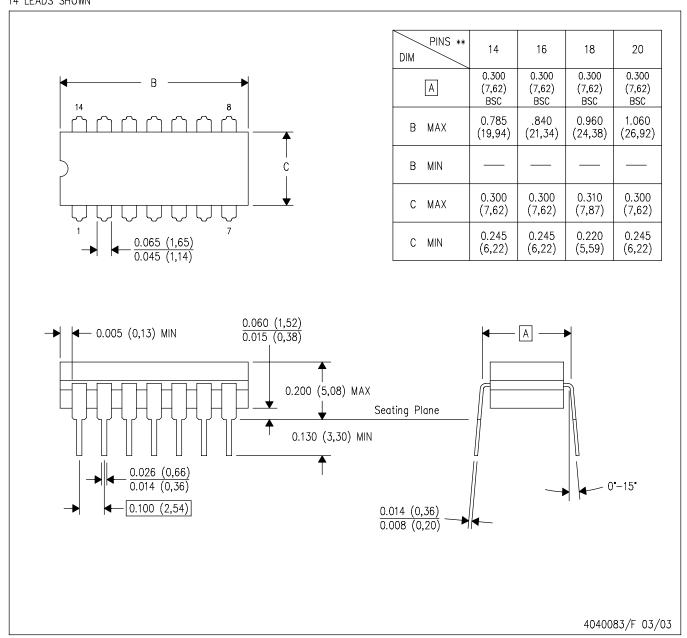
W (R-GDFP-F16)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE


16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity