

PKE5x2x series DC-DC Converters
Input 18 - 75 V, Output up to ±1.25A / 30 W

3/28701- BMR 710 Rev. E

May 2022

© Flex

Key Features

- Industry standard case dimensions
 25.4 x 25.4 x 11.4 mm (1.00 x 1.00 x 0.45 inch)
- High efficiency, typ. 88%
- 1500 Vdc input to output isolation
- Compliant with IEC/UL 62368 standard
- MTBF 4.93 Mh

General Characteristics

- Input under voltage shutdown
- Monotonic start-up
- Remote control
- Output over voltage protection
- Over temperature protection
- Output short-circuit protection
- Output voltage adjust function
- ISO 9001/14001 certified supplier

Safety Approvals

Design for Environment

Meets requirements in hightemperature lead-free soldering processes.

Contents

Ordering Information General Information		2 2
Safety Specification		
Absolute Maximum Ratings		4
Electrical Specification		
±12 V, ±0.625 A / 15 W	PKE5221	
±15 V, ±0.5 A / 15 W	PKE5225	8
±12 V, ±1.25 A / 30 W	PKE5321	11
±15 V, ±1.0 A / 30 W	PKE5325	14
EMC Specification		17
Operating Information		19
Thermal Consideration		
Connections		
Mechanical Information		
Soldering Information		
Delivery Information		
Product Qualification Specification		

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Ordering Information

Product program	Output
PKE5221	±12 V, ±0.625 A / 15 W
PKE5225	±15 V, ±0.5 A / 15 W
PKE5321	±12 V, ±1.25 A / 30 W
PKE5325	±15 V, ±1.0 A / 30 W

Product number and Packaging

PKE 5x2xPIn ₁ n ₂					
Options	n ₁	n ₂			
Remote Control logic	О				
Delivery package information		0			

Options	Des	cription
n_1	Р	Negative * Positive
n ₂	/B	Tray of 25 products
Example: a 15 W. ±12 V posi	tive loai	c product with tray packaging would be

Example: a 15 W, ±12 V positive logic product with tray packaging would be PKE5221PIP/B.

General Information Reliability

The failure rate (λ) and mean time between failures (MTBF= $1/\lambda$) is calculated at max output power and an operating ambient temperature (T_A) of +25°C. Flex uses Telcordia SR-332 Issue 2 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ) .

Telcordia SR-332 Issue 2 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

Mean steady-state failure rate, λ	Std. deviation, σ		
202.797 nFailures/h	119.564nFailures/h		

MTBF (mean value) for the PKE522X series = 4.93 Mh. MTBF at 90% confidence level = 2.75 Mh

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex products are found in the Statement of Compliance document.

Flex fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty

Warranty period and conditions are defined in Flex General Terms and Conditions of Sale.

Limitation of Liability

Flex does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

© Flex 2022

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.

^{*} Standard variant (i.e. no option selected).

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Safety Specification

General information

Flex Power DC/DC converters and DC/DC regulators are designed in accordance with the safety standards IEC 62368-1, EN 62368-1 and UL 62368-1 Audio/video, information and communication technology equipment - Part 1: Safety requirements

IEC/EN/UL 62368-1 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- · Electrically-caused fire
- Injury caused by hazardous substances
- · Mechanically-caused injury
- Skin burn
- Radiation-caused injury

On-board DC/DC converters, Power interface modules and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any safety requirements without "conditions of acceptability". Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable safety standards and regulations for the final product.

Component power supplies for general use shall comply with the requirements in IEC/EN/UL 62368-1. Product related standards, e.g. IEEE 802.3af *Power over Ethernet*, and ETS-300132-2 *Power interface at the input to telecom equipment, operated by direct current (dc)* are based on IEC/EN/UL 62368-1 with regards to safety.

Flex Power DC/DC converters, Power interface modules and DC/DC regulators are UL 62368-1 recognized and certified in accordance with EN 62368-1. The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 60695-11-10, *Fire hazard testing, test flames* – 50 W horizontal and vertical flame test methods.

Isolated DC/DC converters & Power interface modules

The product may provide basic or functional insulation between input and output according to IEC/EN/UL 62368-1 (see Safety Certificate), different conditions shall be met if the output of a basic or a functional insulated product shall be considered as ES1 energy source.

For basic insulated products (see Safety Certificate) the output is considered as ES1 energy source if one of the

following conditions is met:

- The input source provides supplementary or double or reinforced insulation from the AC mains according to IEC/EN/UL 62368-1.
- The input source provides functional or basic insulation from the AC mains and the product's output is reliably connected to protective earth according to IEC/EN/UL 62368-1.

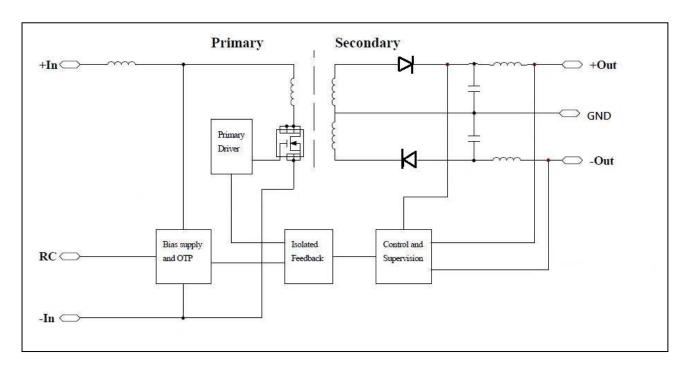
For functional insulated products (see Safety Certificate) the output is considered as ES1 energy source if one of the following conditions is met:

- The input source provides double or reinforced insulation from the AC mains according to IEC/EN/UL 62368-1.
- The input source provides basic or supplementary insulation from the AC mains and the product's output is reliably connected to protective earth according to IEC/EN/UL 62368-1.
- The input source is reliably connected to protective earth and provides basic or supplementary insulation according to IEC/EN/UL 62368-1 and the maximum input source voltage is 60 Vdc.

Galvanic isolation between input and output is verified in an electric strength test and the isolation voltage ($V_{\rm iso}$) meets the voltage strength requirement for basic insulation according to IEC/EN/UL 62368-1.

It is recommended to use a slow blow fuse at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating


PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Absolute Maximum Ratings

Char	Characteristics				max	Unit
T _{P1}	Operating Temperature (see Thermal Consideration section)				+115	°C
Ts	Storage temperature		-55		+125	°C
VI	Input voltage				75	V
V _{iso}	Isolation voltage (input to output test voltage)				1500	Vdc
V _{iso}	Isolation voltage (input to case)				1000	Vdc
V _{iso}	Isolation voltage (case to output)				1000	Vdc
V_{tr}	Input voltage transient (withstand for 1s)				100	V
V	Remote Control pin voltage Positive logic option		0		6	V
V RC	(see Operating Information section)	Negative logic option	0		6	V
V_{adj}	V _{adj} Adjust pin voltage (see Operating Information section)		0		Vo	V

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits in the Electrical Specification. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Fundamental Circuit Diagram

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Electrical Specification ±12 V, ±0.625 A / 15 W

PKE5221PI(P)

 T_{P1} = -40 to +115°C, V_I = 18 to 75 V, unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I = 48 V_I max I_O , unless otherwise specified under Conditions. Additional C_{out} = 22 μ F ceramic capacitor. See Operating Information section for selection of capacitor types.

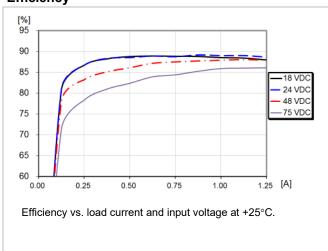
Charac	teristics	Conditions	min	typ	max	Unit	
Vı	Input voltage range		18		75	V	
V_{loff}	Turn-off input voltage	Decreasing input voltage	14	15	16	V	
V_{lon}	Turn-on input voltage	Increasing input voltage	15	16	17	V	
Cı	Internal input capacitance			1.14		μF	
Po	Output power		0		15	W	
	Efficiency	50% of max I _O , V _I = 24 V		89			
_		max I _O , V _I = 24 V		89		%	
η		50% of max I _O , V _I = 48 V		88			
		max I _O , V _I = 48 V		89			
P_d	Power Dissipation	max I _o		1.2	2.5	W	
Pli	Input idling power	I _O = 0 A, V _I = 48 V		0.25		W	
fs	Switching frequency	0-100 % of max I _O ,	340	400	460	kHz	

Ch ava at		Conditions		Output1		Output2			Unit
Charact	eristics	Conditions	min	typ	max	min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	T_{P1} = +25°C, V_I = 48 V, I_O = ±0.625 A	+11.88	+12	+12.12	-11.88	-12	-12.12	V
	Line regulation	max I ₀		+60	+120		-60	-120	mV
V_{Oi}	Load regulation	V _I = 48 V, 0-100 % of max I _O		+60	+120		-60	-120	mV
V_{tr}	Load transient voltage deviation	V _I = 48 V, Load step 50-75- 50% of max I _o , di/dt = 1		+0.3			-0.3		V
t _{tr}	Load transient recovery time	A/µs		200			200		μs
t _r	Ramp-up time (from 10-90% of Voi)	10-100% of max I _{O,}		1.2			1.2		ms
ts	Start-up time (from V _I connection to 90% of V _{Oi})	$T_{P1} = 25^{\circ}C, V_{I} = 48 V$		6			6		ms
t _f	V _I shut-down fall time	max I ₀		350			350		μs
-	(from V _I off to 10% of V _O)	I _O = 0 A		1.5			1.5		S
	RC start-up time	max I ₀		5			5		ms
t _{RC}	RC shut-down fall time	max I ₀		100			100		μs
	(from RC off to 10% of V ₀)	$I_0 = 0 A$		1.7			1.7		s
Io	Output current		0		+0.625	0		-0.625	Α
I _{lim}	Current limit threshold	T _{P1} < max T _{P1}	+0.75	+1	+1.25	-0.75	-1	-1.25	Α
I _{sc}	Short circuit current	T _{P1} = 25°C see Note 1		+0.670			-0.670		Α
C _{out}	Recommended Capacitive Load	T _{P1} = 25°C see Note 2	0		+330	0		-330	μF
V _{Oac}	Output ripple & noise	See ripple & noise section, $V_{\text{Oi,}}$ max $I_{\text{O,}}$		+30			-30		mVp-p
OVP	Over voltage protection	T_{P1} = +25°C, V_1 = 48 V, 10- 100% of max I_0		+15			-15		V
RC	Sink current, see Note 3	See operating information	10			10			mA
RC	Trigger level	See operating information	2.5			2.5			V

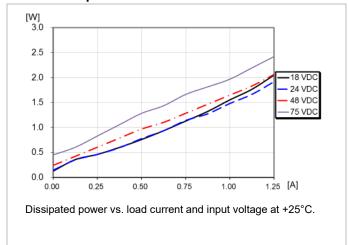
Note 1: hiccup mode

Note 2: Test condition: Electronic Capacitor and full load

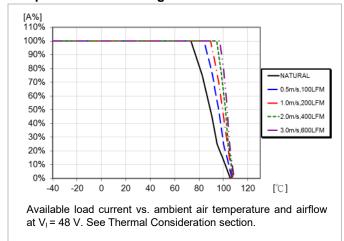
Note 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.

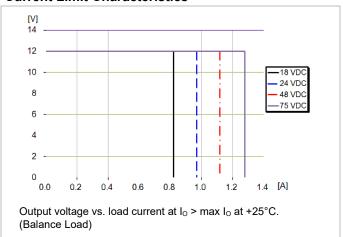


PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	


Electrical Specification ±12 V, ±0.625 A / 15 W

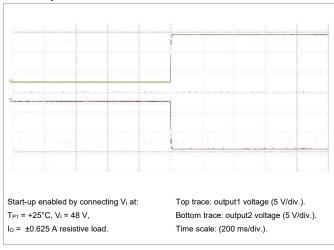
PKE5221PI(P)


Efficiency

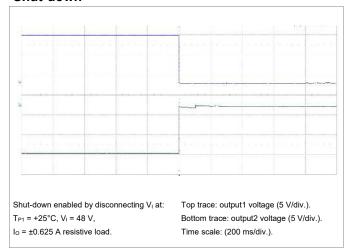

Power Dissipation

Output Current Derating

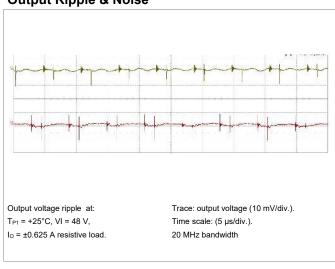
Current Limit Characteristics

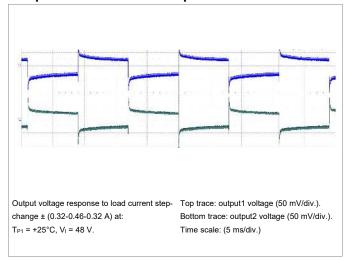


PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	


Electrical Specification ±12 V, ±0.625 A / 15 W

PKE5221PI(P)


Start-up


Shut-down

Output Ripple & Noise

Output Load Transient Response

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Electrical Specification ±15 V, ±0.5 A / 15 W

PKE5225PI(P)

 T_{P1} = -40 to +115°C, V_I = 18 to 75 V, unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I = 48 V, max I_O , unless otherwise specified under Conditions. Additional C_{out} = 22 μ F ceramic capacitor. See Operating Information section for selection of capacitor types.

Charac	teristics	Conditions	min	typ	max	Unit
V _I	Input voltage range		18		75	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	14	15	16	V
V_{lon}	Turn-on input voltage	Increasing input voltage	15	16	17	V
Cı	Internal input capacitance			1.14		μF
Po	Output power		0		15	W
		50% of max I _O , V _I = 24 V		89		
_	Efficiency	max I_0 , $V_1 = 24 V$		89		%
η	Efficiency	50% of max I _O , V _I = 48 V		87		70
		max I _O , V _I = 48 V		88		
P_d	Power Dissipation	max I _o		1.2	2.5	W
Pii	Input idling power	I _O = 0 A, V _I = 48 V		0.3		W
fs	Switching frequency	0-100 % of max I _O ,	340	400	460	kHz

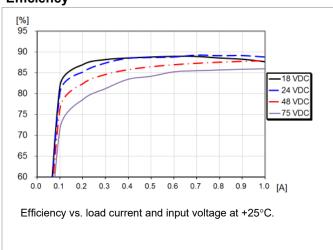
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Solid And accuracy Solid	Unit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
Load regulation V ₁ 48 V, Load step 50-75-50% of max I ₀ , di/dt = 1 40.3 -0.3 -0.3 t _{tr} Load transient recovery time A/μs 200 200 200 t _{tr} Ramp-up time (from 10-90% of V ₀) 10-100% of max I ₀ , T _{P1} = 25°C, V ₁ = 48 V 6 6 t _{tr} V ₁ shut-down fall time (from V ₁ connection to 90% of V ₀) T _{P1} = 25°C, V ₁ = 48 V 6 6 t _{tr} V ₁ shut-down fall time (from V ₁ of to 10% of V ₀) T ₀ = 0 A 1.5 1.5 RC start-up time max I ₀ 5 5 RC shut-down fall time (from RC off to 10% of V ₀) T ₀ = 0 A 1.7 1.7 t ₀ Output current 0 +0.5 0 -0.5 t ₁₀ Current limit threshold T _{P1} < max T _{P1} +0.6 +0.8 +1.0 -0.6 -0.8 -1.0 t ₁₀ Recommended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220 0 +220 0 -220 t ₁₀ Commended Capacitive T ₁₀ = 25°C see Note 2 0 +220	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ms
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ms
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	µs s
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ms
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	μs
I_{lim} Current limit threshold $T_{P1} < max T_{P1}$ +0.6 +0.8 +1.0 -0.6 -0.8 -1.0 I_{sc} Short circuit current $T_{P1} = 25^{\circ}\text{C}$ see Note 1 +0.623 -0.623	s
I_{sc} Short circuit current $T_{P1} = 25^{\circ}\text{C}$ see Note 1 +0.623 -0.623	Α
C Recommended Capacitive T ₋₁ = 25°C see Note 2 0 ±220 0	Α
	Α
Cout Load Ipi 23 C see Note 2 0 7220 0 -220	μF
max I _{O,}	mVp-p
OVP Over voltage protection $T_{P1} = +25^{\circ}\text{C}, V_{I} = 48 \text{ V}, 10-100\% \text{ of max } I_{O}$ +18 -18	V
Sink current, see Note 3 See operating information 10 10	mA
Trigger level See operating information 2.5 2.5	V

Note 1: hiccup mode

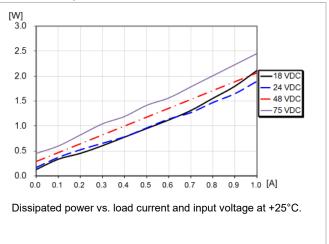
Note 2: Test condition: Electronic Capacitor and full load

Note 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.

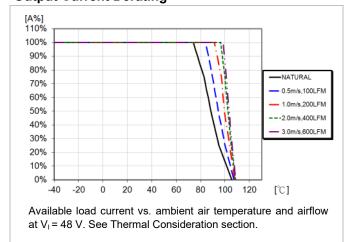
flex

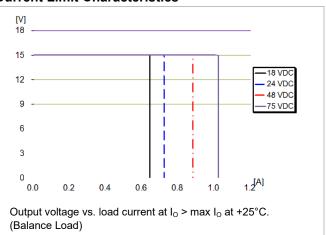

Technical Specification

	•	
PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	


Electrical Specification ±15 V, ±0.5 A / 15 W

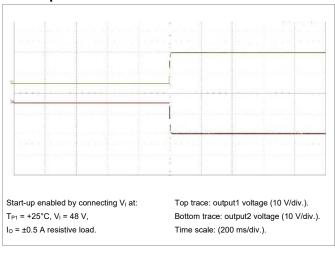
PKE 5225 PI


Efficiency

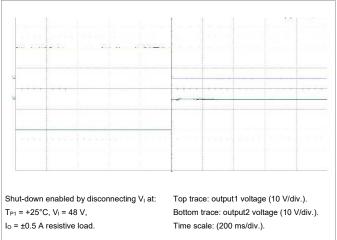

Power Dissipation

Output Current Derating

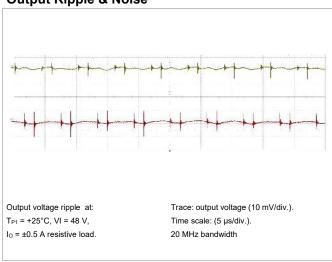
Current Limit Characteristics

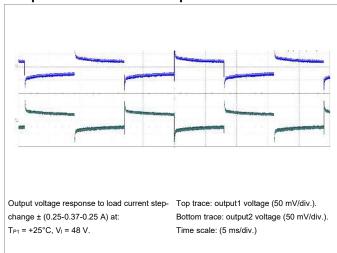


PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	


Electrical Specification ±15 V, ±0.5 Å / 15 W

PKE5225PI(P)


Start-up


Shut-down

Output Ripple & Noise

Output Load Transient Response

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Electrical Specification ±12 V, ±1.25 A / 30 W

PKE5321PI(P)

 T_{P1} = -40 to +115°C, V_I = 18 to 75 V, unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I = 48 V_I max I_O , unless otherwise specified under Conditions.

Additional C_{in} = 220 µF. C_{out} = 0.1 µF ceramic Cap. and 10 µF E-Cap. See Operating Information section for selection of capacitor types.

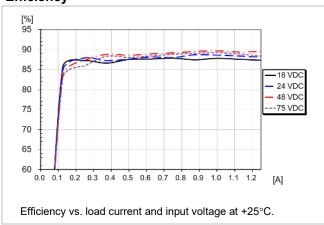
Chara	cteristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		18		75	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	16.0	16.5	17.0	V
V _{Ion}	Turn-on input voltage	Increasing input voltage	17.0	17.5	18.0	V
Cı	Internal input capacitance			34		μF
Po	Output power	see Note 4	0		30	W
		50% of max I _O , V _I = 24 V		88		
_	T#Geionou	max I _O , V _I = 24 V		88		%
[]	Efficiency	50% of max I _O , V _I = 48 V		89		70
		max I _O , V _I = 48 V		89		
P_d	Power Dissipation	max I _O		1.9	3.6	W
P _{li}	Input idling power	I _O = 0 A, V _I = 48 V		0.2		W
fs	Switching frequency	0-100 % of max I _O ,	238	280	322	kHz

		0 100		Output1			Output2		11.7
Charac	teristics	Conditions	min	typ	max	min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	$T_{P1} = +25^{\circ}C$, $V_{I} = 48 \text{ V}$, $I_{O} = \pm 1.25 \text{A}$	+11.88	+12	+12.12	-11.88	-12	-12.12	V
	Line regulation	max I _O		+60	+120		-60	-120	mV
Vo	Load regulation	V _I = 48 V, 0-100 % of max I _O		+60	+120		-60	-120	mV
V_{tr}	Load transient voltage deviation	V _I = 48 V, Load step 25-50- 25% of max I _o , di/dt = 1		±275	±500		±275	±500	mV
t _{tr}	Load transient recovery time	A/µs		250	500		200	500	μs
t _r	Ramp-up time (from 10-90% of V _{Oi})	100% of max I _{o,}		5	10		5	10	ms
t _s	Start-up time (from V _i connection to 90% of V _{Oi})	$T_{P1} = 25^{\circ}C, V_{I} = 48 \text{ V}$		8	15		8	15	ms
t _{RC}	RC start-up time	max I _O		2	5		2	5	ms
Io	Output current		0		+1.25	0		-1.25	Α
I _{lim}	Current limit threshold	T _{P1} < max T _{P1}	+1.5	+2	+2.5	-1.5	-2	-2.5	Α
I _{sc}	Short circuit current	T _{P1} = 25°C see Note 1		+0.67			-0.67		Α
Cout	Recommended Capacitive Load	T _{P1} = 25°C see Note 2	0		+680	0		-680	μF
V_{Oac}	Output ripple & noise	See ripple & noise section, $V_{\text{Oi,}}$ max $I_{\text{O,}}$		+35			-35		mVp-p
OVP	Over voltage protection	T _{P1} = +25°C, V _I = 48 V, 10- 100% of max I _O		+15	-		-15		V
RC	Sink current, see Note 3	See operating information	10			10			mA
INC	Trigger level	See operating information		0.8/2.5			0.8/2.5		V

Note 1: Output Current (RMS): hiccup mode

Note 2: Test condition: Electronic Capacitor and full load

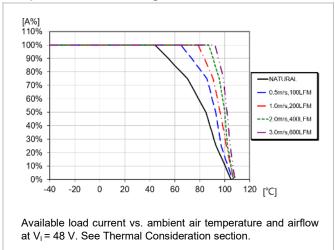
Note 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.

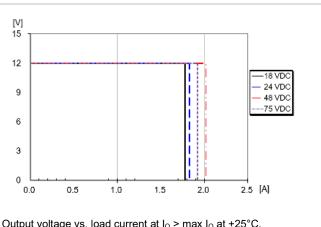


PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Typical Characteristics ±12 V, ±1.25 A / 30 W

PKE5321PI(P)

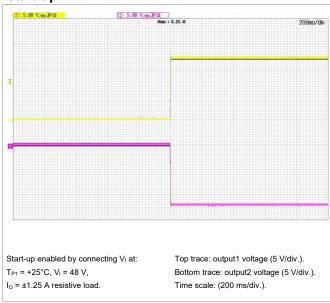

Efficiency


Power Dissipation

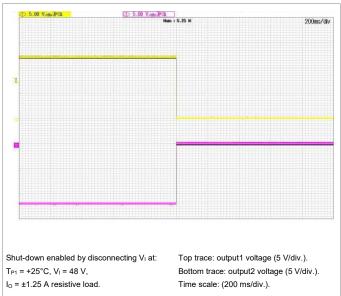
Output Current Derating

Current Limit Characteristics

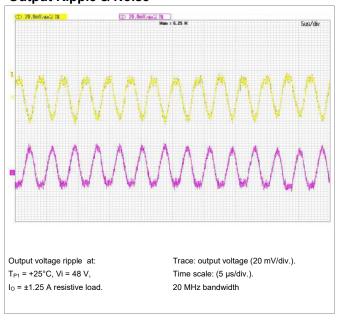
Output voltage vs. load current at I_0 > max I_0 at +25°C. (Balance Load)



PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	


Typical Characteristics +-12 V, +-1.25A / 30 W

PKE 5321 PI


Start-up

Shut-down

Output Ripple & Noise

Output Load Transient Response

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Electrical Specification ±15 V, ±1.0 Å / 30 W

PKE5325PI(P)

 T_{P1} = -40 to +115°C, V_I = 18 to 75 V, unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I = 48 V_I max I_O , unless otherwise specified under Conditions. Additional C_{in} = 220 μ F. C_{out} = 0.1 μ F ceramic Cap. and 10 μ F E-Cap. See Operating Information section for selection of capacitor types.

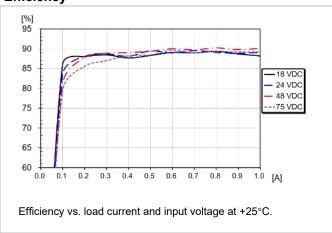
						<i>,</i> ,
Chara	cteristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		18		75	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	16.0	16.5	17.0	V
V_{lon}	Turn-on input voltage	Increasing input voltage	17.0	17.5	18.0	V
Cı	Internal input capacitance			34		μF
Po	Output power	see Note 4	0		30	W
		50% of max I _O , V _I = 24 V		89		- %
_	Efficiency	max I _O , V _I = 24 V		89		
Ц	Efficiency	50% of max I _O , V _I = 48 V		89		70
		max I _O , V _I = 48 V		90		
P _d	Power Dissipation	max I _O		1.8	3.4	W
P _{li}	Input idling power	I _O = 0 A, V _I = 48 V		0.2		W
fs	Switching frequency	0-100 % of max I _O ,	238	280	322	kHz

		O and this area		Output1		Output2			
Charac	teristics	Conditions	min	typ	max	min	typ	max	Unit
V_{Oi}	Output voltage initial setting and accuracy	T _{P1} = +25°C, V _I = 48 V, I _O =± 1.0 A	+14.85	+15	+15.15	-14.85	-15	-15.15	V
	Line regulation	max I ₀		+75	+150		-75	-150	mV
V _{Oi}	Load regulation	V _i = 48 V, 0-100 % of max I _O		+75	+150		-75	-150	mV
V_{tr}	Load transient voltage deviation	V _I = 48 V, Load step 25-50- 25% of max I _o , di/dt = 1		±300			±300		mV
t _{tr}	Load transient recovery time	A/µs		250	500		250	500	μs
t _r	Ramp-up time (from 10-90% of Voi)	10-100% of max I _{O,}		1.2			1.2		ms
ts	Start-up time (from V _I connection to 90% of V _{Oi})	$T_{P1} = 25^{\circ}C, V_{I} = 48 \text{ V}$		6			6		ms
t _{RC}	RC start-up time	max I ₀		5			5		ms
Io	Output current		0		+1.0	0		-1.0	Α
I _{lim}	Current limit threshold	T _{P1} < max T _{P1}	+1.2	+1.6	+2.0	-1.2	-1.6	-2.0	Α
I _{sc}	Short circuit current	T _{P1} = 25°C see Note 1		+0.59			-0.59		Α
C _{out}	Recommended Capacitive Load	T _{P1} = 25°C see Note 2	0		+470	0		-470	μF
V_{Oac}	Output ripple & noise	See ripple & noise section, $V_{\text{Oi,}}$ max $I_{\text{O,}}$		+40			-40		mVp-p
OVP	Over voltage protection	T_{P1} = +25°C, V_{I} = 48 V, 10-100% of max I_{O}		+18			-18		V
RC	Sink current, see Note 3	See operating information	10			10			mA
	Trigger level	See operating information		0.8/2.5			0.8/2.5		V

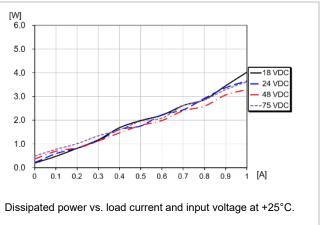
Note 1: Output Current (RMS): hiccup mode

Note 2: Test condition: Electronic Capacitor and full load

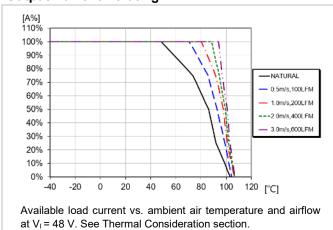
Note 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.

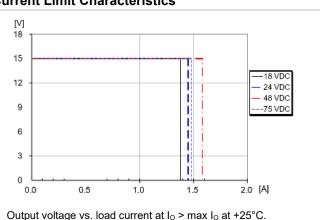


PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	


Typical Characteristics ±15 V, ±1.0A / 30 W

PKE5325PI(P)

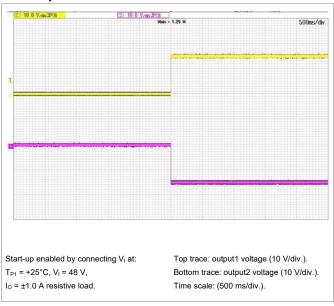

Efficiency


Power Dissipation

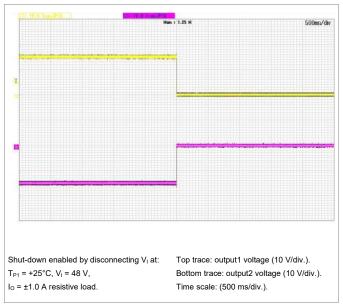
Output Current Derating

Current Limit Characteristics

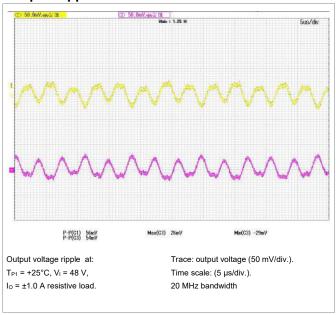
Output voltage vs. load current at I_0 > max I_0 at +25°C. (Balance Load)

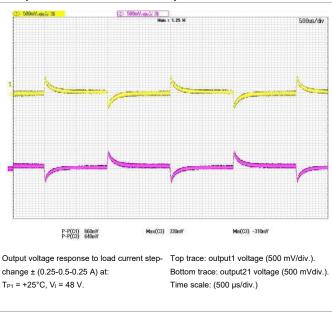


PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	


Typical Characteristics ±15 V, ±1.0 A / 30 W

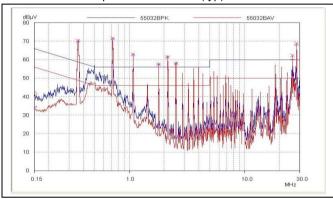
PKE5325PI(P)


Start-up


Shut-down

Output Ripple & Noise

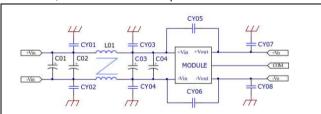
Output Load Transient Response



PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

EMC Specification

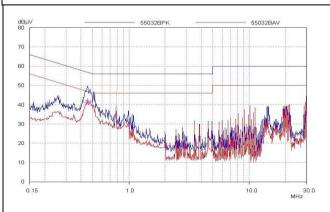
Conducted EMI measured according to EN55032, CISPR 32 and FCC part 15J (see test set-up). See Design Note 029 for further information. The fundamental switching frequency is 400 kHz for PKE5221PI at $V_1 = 48 \text{ V}$ and max I_0 .


Conducted EMI Input terminal value (typ)

EMI without filter

Optional external filter for class B

Suggested external input filter in order to meet class B in EN 55032, CISPR 32 and FCC part 15J.

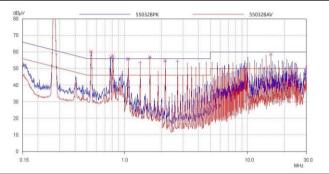


Filter components:

CY03, CY04: 680pF (Y CAP.) CY05, CY06: 3.3nF (Y CAP.) CY07, CY08: 1nF (Y CAP.)

C01 \ C02 \ C03 \ C04 : 100 \ \mu F (AL-CAP.)

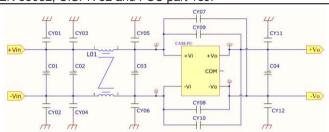
L01: 1.6mH (CM CHOKE)



EMI with filter

EMC Specification

Conducted EMI measured according to EN55032, CISPR 32 and FCC part 15J (see test set-up). See Design Note 029 for further information. The fundamental switching frequency is 280 kHz for PKE5321PI at $V_I = 48 \text{ V}$ and max Io.

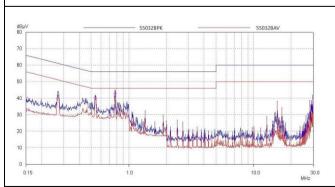

Conducted EMI Input terminal value (typ)

EMI without filter

Optional external filter for class B

Suggested external input filter in order to meet class B in EN 55032, CISPR 32 and FCC part 15J.

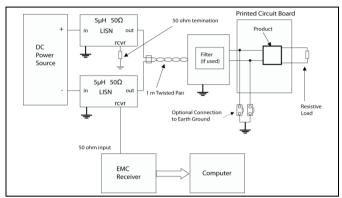
Filter components:


CY03, CY04 = 4.7nF (Y CAP.)

CY05, CY07 = 470 pF (Y CAP.)

CY07, CY08, CY09, CY10 = 2.2 nF (Y CAP.)

L01=4.6mH (CM CHOKE)


C02, C03 = 100 μ F (AL-CAP.)

EMI with filter

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Test set-up

Layout recommendations

The radiated EMI performance of the product will depend on the PWB layout and ground layer design. It is also important to consider the stand-off of the product.

A ground layer will increase the stray capacitance in the PWB and improve the high frequency EMC performance.

Output ripple and noise

Output ripple and noise measured according to figure below.

Output ripple and noise test setup

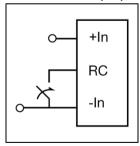
PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Operating Information

Input Voltage

The input voltage range is 18 to 75 Vdc.

At input voltages exceeding 75 V, the power loss will be higher than at normal input voltage and T_{P1} must be limited to absolute max +115°C. The absolute maximum continuous input voltage is 75 Vdc.


Short duration transient disturbances can occur on the DC distribution and input of the product when a short circuit fault occurs on the equipment side of a protective device (fuse or circuit breaker). The voltage level, duration and energy of the disturbance are dependant on the particular DC distribution network characteristics and can be sufficient to damage the product unless measures are taken to suppress or absorb this energy. The transient voltage can be limited by capacitors and other energy absorbing devices like zener diodes connected across the positive and negative input conductors at a number of strategic points in the distribution network. The end-user must secure that the transient voltage will not exceed the value stated in the Absolute maximum ratings. ETSI TR 100 283 examines the parameters of DC distribution networks and provides guidelines for controlling the transient and reduce its harmful effect.

{Turn-off Input Voltage}

The products monitor the input voltage and will turn on and turn off at predetermined levels.

The minimum hysteresis between turn on and turn off input voltage is about 1 V.

Remote Control (RC)

The products are fitted with a remote control function referenced to the primary negative input connection -In, with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor or mechanical switch. The RC pin has an internal pull up resistor to +In.

The external device must provide a minimum required sink current to guarantee a voltage not higher than maximum voltage on the RC pin (see Electrical characteristics table). When the RC pin is left open, the voltage generated on the RC pin is $3-6\ V$.

The standard product is provided with "negative logic" RC and will be on until the RC pin is connected to the -In. To turn off the product the RC pin should be left open, or connected to a voltage higher than 2 V referenced to -In. In situations where it is desired to have the product to power up automatically without the need for control signals or a switch, the RC pin can be wired directly to -In.

The second option is "positive logic" remote control, which can be ordered by adding the suffix "P" to the end of the part number. When the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to the -In. The product will restart automatically when this connection is opened.

See Design Note 021 for detailed information.

Input and Output Impedance

The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. The products are designed for stable operation without external capacitors connected to the input or output. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors.

If the input voltage source contains significant inductance, the addition of a 22 μF capacitor across the input of the product will ensure stable operation. The capacitor is not required when powering the product from an input source with an inductance below 10 μH . The minimum required capacitance value depends on the output power and the input voltage. The higher output power the higher input capacitance is needed. Approximately doubled capacitance value is required for a 24 V input voltage source compared to a 48 V input voltage source.

External Decoupling Capacitors

When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PWB layouts and cabling.

External decoupling capacitors will become part of the product's control loop. The control loop is optimized for a wide range of external capacitance and the maximum recommended value that could be used without any additional analysis is found in the Electrical specification.

The ESR of the capacitors is a very important parameter.

The ESR of the capacitors is a very important parameter. Stable operation is guaranteed with a verified ESR value of >5 $m\Omega$ across the output connections.

For further information please contact your local Flex representative.

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E	May 2022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Over Temperature Protection (OTP)

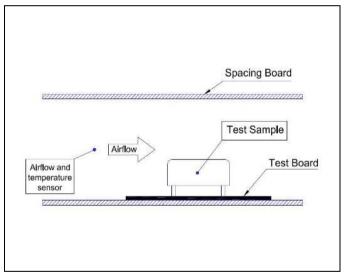
The products are protected from thermal overload by an internal over temperature shutdown circuit. When T_{P1} as defined in thermal consideration section exceeds 115°C the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped >5°C below the temperature threshold.

Over Voltage Protection (OVP)

The products have output over voltage protection that will shut down the product in over voltage conditions. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically after removal of the over voltage condition.

Over Current Protection (OCP)

The products include current limiting circuitry for protection at continuous overload. The output voltage will decrease towards zero for output currents in excess of max output current (max lo). The product will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output short circuit current specified.


Thermal Consideration

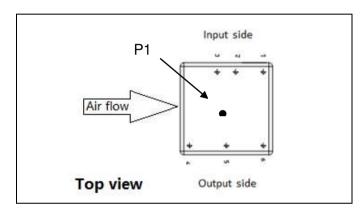
General

The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

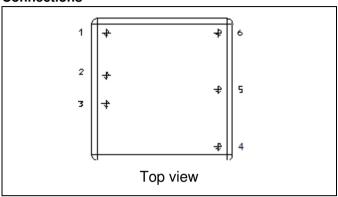
For products mounted on a PWB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at $V_1 = 48 \text{ V}$.

The product is tested on a 107 x 45 mm, 70 μ m (2 oz), 1-layer test board in a wind box with 370 x 220 mm.

For products with base plate used in a sealed box application. Cooling is achieved mainly by airflowing. The Output Current Derating graphs are found in the Output section for each model. The product is tested in a sealed box test set up with ambient temperatures 25°C.



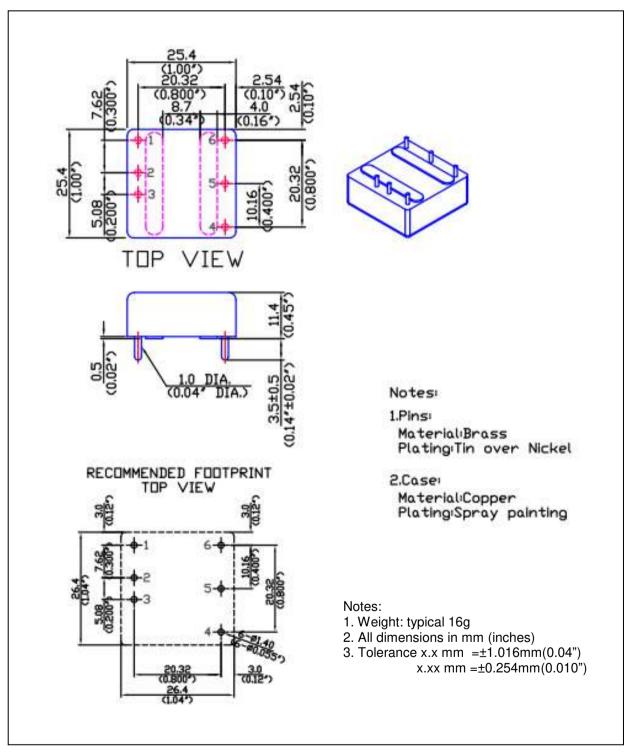
PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E May 2	022
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	


Definition of product operating temperature

The product operating temperatures is used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at positions P1. The temperature at this position (T_{P1}) should not exceed the maximum temperatures in the table below. Temperature above maximum T_{P1} , measured at the reference point P1 are not allowed and may cause permanent damage.

Position	Description	Max Temp.
P1	Reference point	T _{P1} =115º C

Connections


DUAL OUTPUT

Pin	Designation	Function
1	On/Off Control	Remote control
2	-Input	Negative input
3	+Input	Positive input
4	Vo1(+Out)	Vo1 output
5	GND	Common ground
6	Vo2(-Out)	Vo2 output

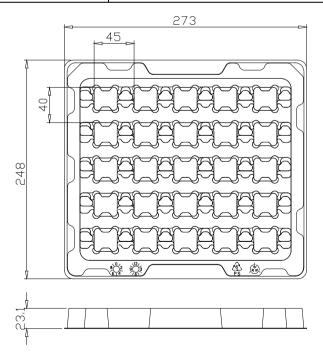
PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E May 2	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

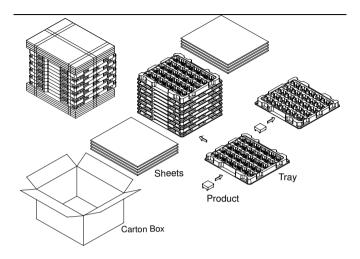
Mechanical Information

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E May 2	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Soldering Information - Hole Mounting

The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.


A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.


A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information

The products are delivered in antistatic clamshell trays

Tray Specifications		
Material	Antistatic PS	
Surface resistance	10 ⁵ < Ohm/square < 10 ¹¹	
Bakeability	This tray is not bake-able	
Tray thickness	23.1 mm [0.9094 inch]	
Box capacity	250 products (10 full trays/box)	
Tray weight	60 g empty, 510 g full tray	

PKE5x2x series DC-DC Converters	3/28701- BMR 710 Rev. E May 20	
Input 18 - 75 V, Output up to ±1.25A / 30 W	© Flex	

Product Qualification Specification

Characteristics			
External visual inspection	IPC-A-610		
Change of temperature (Temperature cycling)	IEC 60068-2-14 Na	Temperature range Number of cycles Dwell/transfer time	-55 to 105°C 20 30 min/3 min
Cold (in operation)	IEC 60068-2-1	Temperature T _A Duration	-45°C 72 h
Damp heat	IEC 60068-2-30	Temperature Humidity Duration	45°C 95 % RH 72 hours
Electrostatic discharge susceptibility	IEC 61340-3-1, JESD 22-A114	Human body model (HBM)	Class 2, 2000 V
Mechanical shock	IEC 60068-2-27 Ea	Peak acceleration Duration	200 g 6 ms
Operational life test	MIL-STD-202G, method 108A	Duration	1000 h
Resistance to soldering heat	IEC 60068-2-20 Tb, method 1A	Solder temperature Duration	270°C 10-13 s
Robustness of terminations	IEC 60068-2-21 Test Ua1	Through hole mount products	All leads
Solderability	IEC 60068-2-20 test Ta	Temperature, SnPb Eutectic Temperature, Pb-free	235°C 245°C
Vibration, broad band random	IEC 60068-2-64 Fh, method 1	Frequency Spectral density Duration	10 to 500 Hz 0.07 g ² /Hz 10 min in each direction