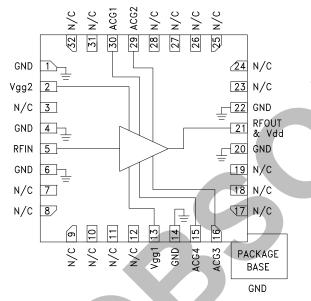


HMC994ALP5E

v01.1215


GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

Typical Applications

The HMC994ALP5E is ideal for:

- Test Instrumentation
- Microwave Radio & VSAT
- Telecom Infrastructure
- Military & Space
- Fiber optics

Functional Diagram

Features

P1dB Output Power: +27 dBm Psat Output Power: +29 dBm High Gain: 13 dB Output IP3: +38 dBm Supply Voltage: Vdd = +10V @ 250 mA 50 Ohm Matched Input/Output 32 Lead 5x5 mm SMT Package: 25 mm²

General Description

The HMC994ALP5E is a GaAs pHEMT MMIC Distributed Wideband Power Amplifier which operates between DC and 28 GHz. The amplifier provides 13 dB of gain, +29 dBm of saturated output power, and 23% PAE from a +10V supply. With up to +38 dBm Output IP3 the HMC994ALP5E is ideal for high linearity applications in military and space as well as point-to-point and point-to-multi-point radios. The HMC994ALP5E exhibits a very flat gain from 4 to 16 GHz making it ideal for EW, ECM, Radar and test equipment applications. The HMC994LP4E amplifier I/Os are internally matched to 50 Ohms and is packaged in a leadless QFN 5x5 mm surface mount package.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vdd = +10V, Vgg2 = +3.5V ldd = 250 mA^[1]

Parameter	Min.	Тур.	Max.	Min.	Typ.	Max.	Min.	Тур	Max.	Units
Frequency Range		DC - 10			10 - 20			20 - 28		GHz
Gain	11	13		11	13		11	13		dB
Gain Flatness		±0.5			±0.5			±0.5		dB
Gain Variation Over Temperature		0.008			0.011			1.016		dB/ °C
Input Return Loss		18			15			12		dB
Output Return Loss		18			16			12		dB
Output Power for 1 dB Compression (P1dB)	26	28		24.5	27		22.5	25		dBm
Saturated Output Power (Psat)		30			29.5			28		dBm
Output Third Order Intercept (IP3) [2]		41			37			35		dBm
Noise Figure		4			4			5		dB
Total Supply Current		250	300		250	300		250	300	mA

[1] Adjust Vgg1 between -2 to 0V to achieve Idd = 250 mA typical.

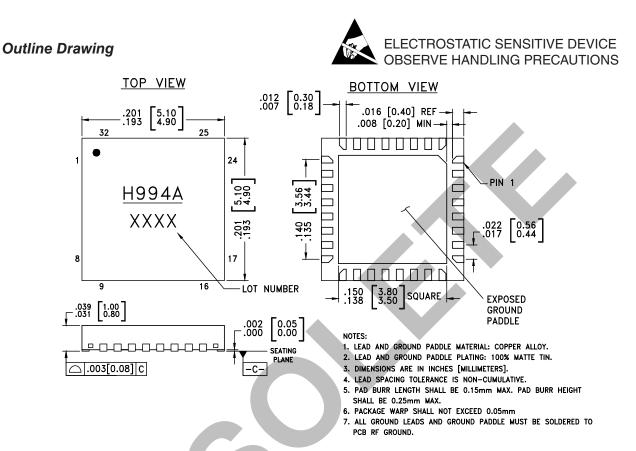
[2] Measurement taken at Pout / tone = +16 dBm.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC994ALP5E

vol.1215 GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic			
1, 4, 6, 14, 20, 22, Package Bottom	GND	These pins & exposed ground paddle must be con- nected to RF/DC ground.				
2	VGG2	Gate control 2 for amplifier. Attach bypass capacitor per application circuit herein. For nominal operation +3.5V should be applied to Vgg2	VGG20			
3, 7, 8, 9, 10, 11, 12, 17, 18, 19, 23, 24, 25, 26, 27, 28, 31, 32	N/C	No connection required. These pins may be con- nected to RF/DC ground without affecting perfor- mance.				
5	RFIN	This pin is DC coupled and matched to 50 Ohms. Blocking capacitor is required.				
13	Vgg1	Gate control 1 for amplifier. Attach bypass capacitor per application circuit herein. Please follow "MMIC Amplifier Biasing Procedure" application note.				
15	ACG4	Low Frequency termination. Attach bypass capacitor				
16	ACG3	per application circuit herein.				
21	RFOUT & Vdd	RF output for amplifier. Connect DC bias (Vdd) net- work to provide drain current (Idd). See application circuit herein.				
29	ACG2	Low frequency termination. Attach bypass capacitor	ACG2O ACG2O ACG2O ACG2O ACG2O ACG2O ACG2O			
30	ACG1	per application circuit herein	=			

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

HMC994ALP5E

vol.1215 GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating ^[2]	Package Marking ^[1]
HMC994ALP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3	H994A XXXX

[1] 4-Digit lot number XXXX
[2] Max peak reflow temperature of 260 °C