October 2001 Revised November 2001

FAIRCHILD

SEMICONDUCTOR TM

74ALVC162245

Low Voltage 16-Bit Bidirectional Transceiver with 3.6V Tolerant Inputs and Outputs and 26Ω Series Resistors in A Port Outputs

General Description

The ALVC162245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate 3-STATE control inputs which can be shorted together for full 16-bit operation. The T/R inputs determine the direction of data flow through the device. The \overline{OE} inputs disable both the A and B Ports by placing them in a high impedance state.

The 74ALVC162245 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V.

The 74ALVC162245 is also designed with 26Ω series resistance in the A Port outputs. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

The 74ALVC162245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

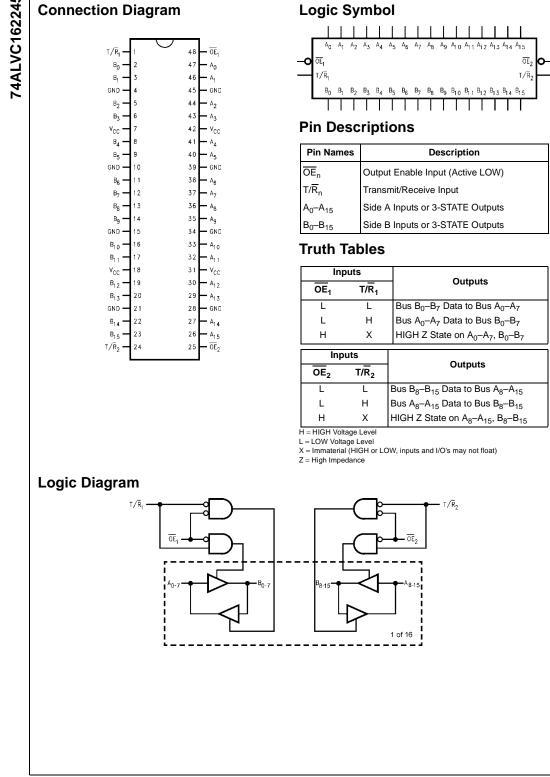
Features

- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- 26 Ω series resistors in A Port outputs ■ t_{PD}

3.9 ns max for 3.0V to 3.6V V_{CC} 4.8 ns max for 2.3V to 2.7V V_{CC}

8.6 ns max for 1.65V to 1.95V V_{CC}

- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
 ESD performance:


Human body model > 2000V Machine model >200V

Note 1: To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description			
74ALVC162245T	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

74ALVC162245

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to 4.6V
Output Voltage (V _O) (Note 3)	–0.5V to V_CC +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 4)						
Power Supply						
Operating	1.65V to 3.6V					
Input Voltage	0V to V _{CC}					
Output Voltage (V _O)	0V to V _{CC}					
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$					
Minimum Input Edge Rate ($\Delta t/\Delta V$)						
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V					
Note 2: The Absolute Maximum Ratings are those	values beyond which					

74ALVC162245

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused control inputs must be held HIGH or LOW.

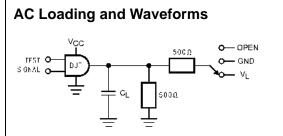
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
VIL	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
	A Outputs	$I_{OH} = -2 \text{ mA}$	1.65	1.2		
		$I_{OH} = -4 \text{ mA}$	2.3	1.9		
		$I_{OH} = -6 \text{ mA}$	2.3	1.7		
			3.0	2.4		
		I _{OH} = -8 mA	2.7	2		
		$I_{OH} = -12 \text{ mA}$	3.0	2		
	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		V
	B Outputs	$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.7		
			2.7	2.2		
			3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
	A Outputs	$I_{OL} = 2 \text{ mA}$	1.65		0.45	
		I _{OL} = 4 mA	2.3		0.4	
		$I_{OL} = 6 \text{ mA}$	2.3		0.55	
			3.0		0.55	
		I _{OL} = 8 mA	2.7		0.6	
		I _{OL} = 12 mA	3.0		0.8	V
	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
	B Outputs	I _{OL} = 4 mA	1.65		0.45	
		I _{OL} = 6 mA	2.3		0.4	
		$I_{OL} = 12 \text{ mA}$	2.3		0.7	
			2.7		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_I \le 3.6V$	1.65 - 3.6		±5.0	μA
I _{oz}	3-STATE Output Leakage	$0 \le V_Q \le 3.6V$, $V_I = V_{IH}$ or V_{IL}	1.65 - 3.6		±10	μA

DC Electrical Characteristics

www.fairchildsemi.com

74ALVC162245

DC Electrical Characteristics (Continued)


Symbol	Parameter	Conditions	v _{cc} (V)	Min	Max	Units
I _{OFF}	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	mA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μΑ

AC Electrical Characteristics

			$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$							
Symbol	Parameter		C _L = 50 pF			$C_L = 30 \text{ pF}$			Units	
	Falameter	V _{CC} = 3.	$V_{CC}=3.3V\pm0.3V\qquad V_{CC}=2.7V$		$V_{CC}=2.5\pm0.2V$		$V_{CC}=1.8V\pm0.15V$		Units	
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay A to B	1.3	3.0	1.5	3.5	1	3.0	1.5	6.0	
	Propagation Delay B to A	1.3	3.9	1.5	4.8	1	4.3	1.5	8.6	ns
t _{PZL} , t _{PZH}	Output Enable Time A to B	1.3	4.3	1.5	5.4	1.0	4.9	1.5	9.3	
	Output Enable Time B to A	1.3	4.7	1.5	6.2	1.0	5.7	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time A to B	1.3	4.2	1.5	4.7	1.0	4.2	1.5	7.6	20
	Output Disable Time B to A	1.3	4.6	1.5	5.3	1.0	4.8	1.5	8.6	ns

Capacitance

Symbol	Devemator		Conditions	T _A = -	Units	
Symbol Parameter			Conditions	V _{CC}	Typical	Units
CIN	Input Capacitance		$V_1 = 0V \text{ or } V_{CC}$	3.3	6	pF
CIO	Input, Output Capacitance		$V_0 = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 50 pF	3.3	20	pF
				2.5	20	рг

TABLE 1. Values for Figure 1				
TEST	SWITCH			
t _{PLH} , t _{PHL}	Open			
t _{PZL} , t _{PLZ}	VL			

 $t_{\mathsf{PZH}},\,t_{\mathsf{PHZ}}$

GND

74ALVC162245

FIGURE 1. AC Test Circuit

	TABLE 2. Variable Matrix
(Input	Characteristics: f = 1MHz; t _r = t _f = 2ns; Z _O = 50 Ω)

Symbol	V _{cc}						
Symbol	3.3V ± 0.3V 2.7V		$\textbf{2.5}\pm\textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$			
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2			
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2			
V _X	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V			
V _Y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V			
VL	6V	6V	V _{CC} *2	V _{CC} *2			

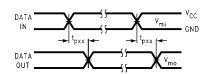


FIGURE 2. Waveform for Inverting and Non-inverting Functions

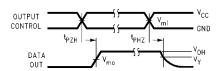


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

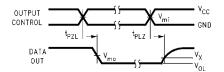
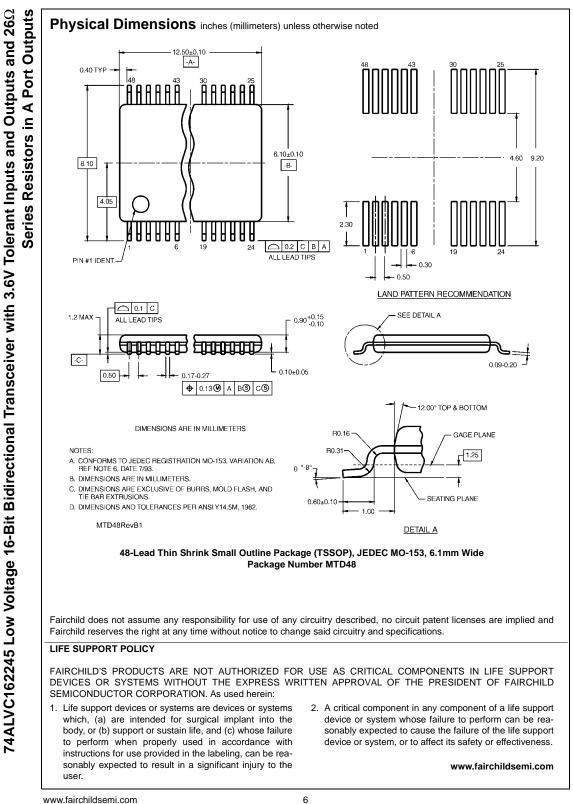



FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

