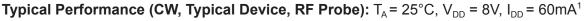
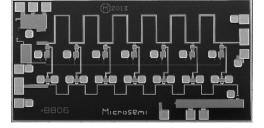

DC-22GHz, 16dB Gain Low-Noise Wideband Distributed Amplifier


Features

- Excellent combination of wide bandwidth, low noise and high associated gain
- 1.7dB NF with >15.5dB gain at 10GHz
- Output IP3 ~26-29dBm
- Input and output matched to 50Ω
- 100% DC and RF tested
- Chip size: 2.82mm x 1.50mm x 0.1mm

Applications


- Instrumentation
- Electronic warfare
- Microwave communications
- Radar

Parameter	DC - 6GHz	6 - 18GHz	18 - 22GHz	Units
Small Signal Gain	15	16	17	dB
Noise Figure	3.0	2.0	3.2	dB
Output Return Loss	15	15	12	dB
Output Power, P _{1dB}	16	15	13	dBm
Output Power P _{3dB}	18	17	15	dBm
Output IP3	29	28	25	dBm

¹ Adjust V_{GG} to set I_{DD} = 60mA, typical value is -0.5V. Recommend $I_{DD} \sim$ 45mA for improved stability down to -55°C

Table 1: Absolute Maximum Ratings, Not Simultaneous

Parameter	Rating	Units
Drain Voltage (V _{DD})	+9	V
Gate Voltage (V _{GG})	-2 to 0	V
Input Power (P _{IN})	20	dBm
Channel Temperature (T _c)	150 ²	°C
Operating Ambient Temperature (T _A)	-55 to +85	°C
Storage Temperature	-65 to +150	°C
Thermal Resistance, Channel to Die Backside (R_{TH})	40	°C/W

Caution, ESD Sensitive Device

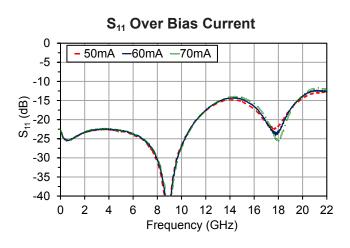

² MTTF > 10^8 hours at T_c = 150° C

Table 2: Specifications (CW, 100% Test): $T_A = 25^{\circ}C$, $V_{DD} = 8V$, $I_{DD} = 60mA^3$

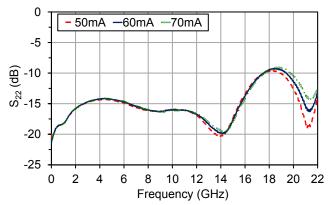
Parameter	Frequency	Min	Тур	Мах	Units
Small Signal Gain	20GHz	14.5	17	-	dB
Output Power, P _{1dB}	20GHz	12	14	-	dBm

³ Adjust V_{GG} to get I_{DD} = 60mA, typical value is -0.5V

RF Probe Measurement Set-Up With Reference Planes⁴

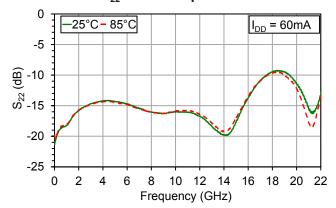

External DC blocks maybe required, refer to Table 3 for more information.

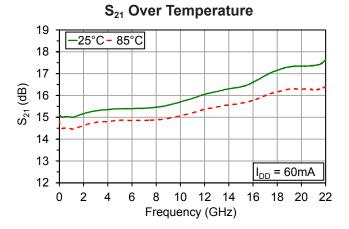
⁴ Reference planes are the same for S-parameter files downloadable on www.microsemi.com/mmics



Typical Performance, RF Probe

 $V_{DS} = 8V$, $I_{DQ} = 60$ mA, $T_A = 25^{\circ}$ C unless otherwise noted


S₂₂ Over Bias Current



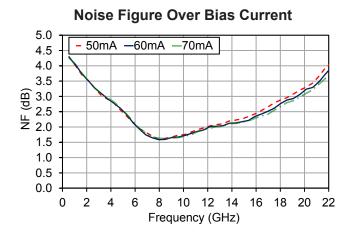
S₂₁ Over Bias Current 19 50mA -60mA 70mA 18 17 S_{21} (dB) 16 15 14 13 12 2 10 12 14 16 18 20 22 0 4 6 8 Frequency (GHz)

S₁₁ Over Temperature 0 I_{DD} = 60mA -25°C - 85°C -5 -10 (ap) -15 -20 S -25 -15 -30 -35 -40 0 2 16 18 20 22 4 6 8 10 12 14 Frequency (GHz)

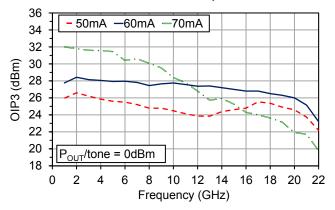
S₂₂ Over Temperature

MM-PDS-0002 Rev B Subject to Change Without Notice

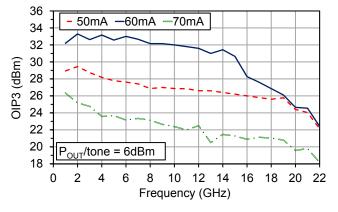
18 20 22


Typical Performance, RF Probe

 $V_{DS} = 8V$, $I_{DQ} = 60$ mA, $T_A = 25^{\circ}$ C unless otherwise noted

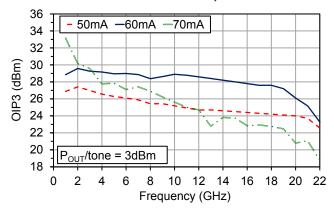

0.0

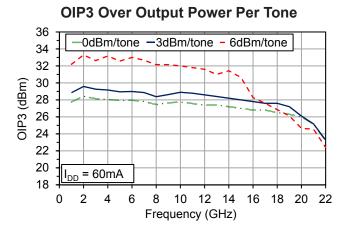
0 2

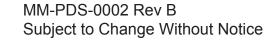

4 6 8 10 12 14 16

OIP3 Over Bias Current, 0dBm/tone

OIP3 Over Bias Current, 6dBm/tone

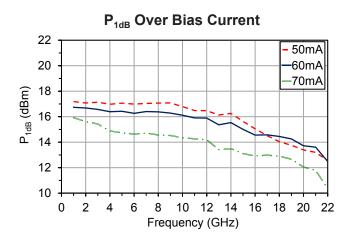


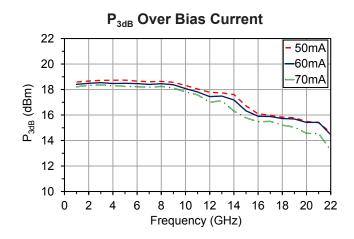

5.0 4.5 4.5 4.0 3.5 2.5 2.5 2.0 1.5 1.0 0.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.5 1.0 1.5

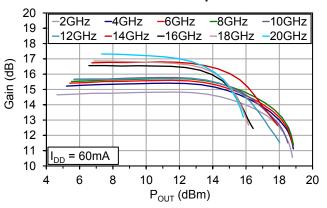

Noise Figure Over Temperature

OIP3 Over Bias Current, 3dBm/tone

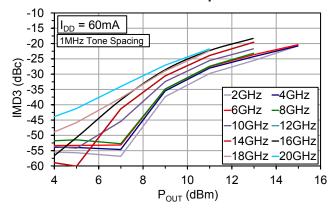
Frequency (GHz)

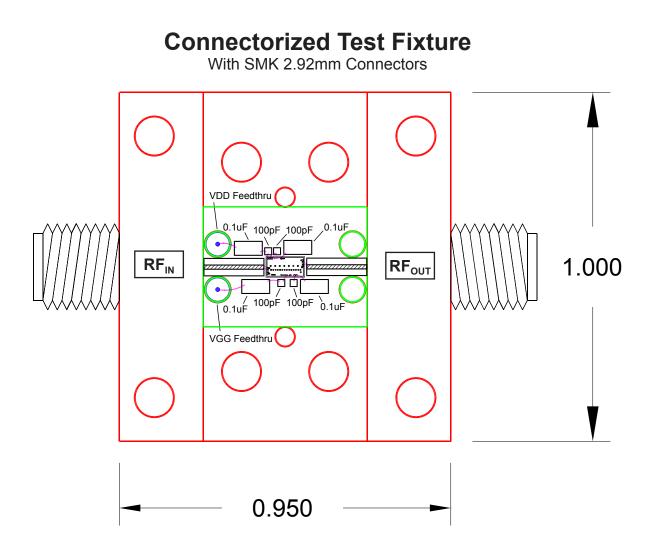




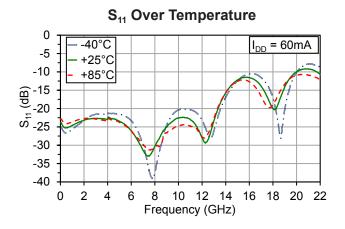


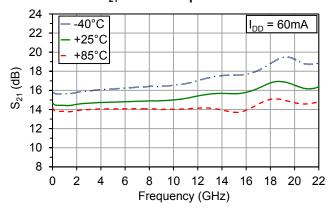
Typical Performance, RF Probe V_{DS} = 8V, I_{DQ} = 60mA, T_A = 25°C unless otherwise noted



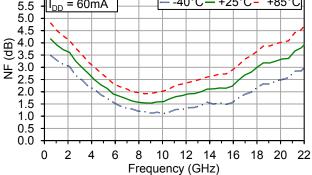

Power Sweep

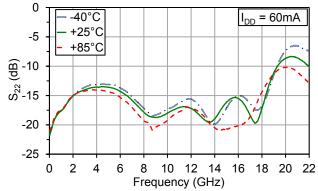
IMD3 Sweep

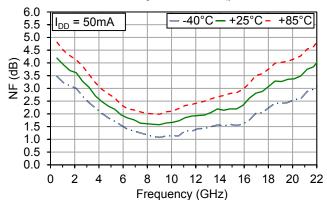




Typical Performance, Connectorized Test Fixture

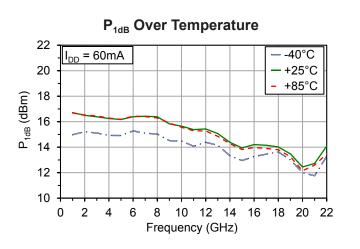

 V_{DS} = 8V, I_{DQ} = 60mA, T_A = 25°C unless otherwise noted


S₂₁ Over Temperature

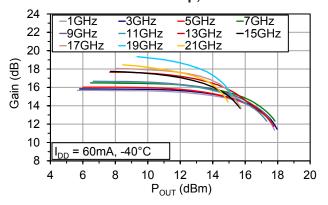

NF Over Temperature, $I_{DQ} = 60mA$ 5.5 $I_{DD} = 60mA$ $-40^{\circ}C - +25^{\circ}C - +85^{\circ}C$

S₂₂ Over Temperature

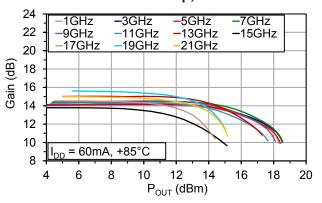
NF Over Temperature, I_{DQ} = 50mA



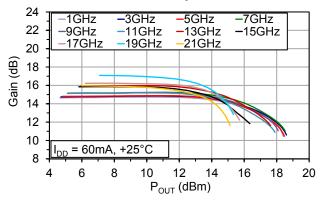
MM-PDS-0002 Rev B Subject to Change Without Notice

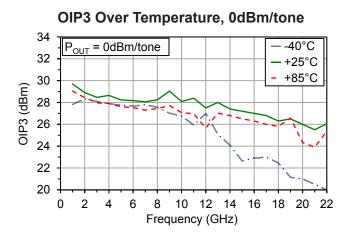


Typical Performance, Connectorized Test Fixture

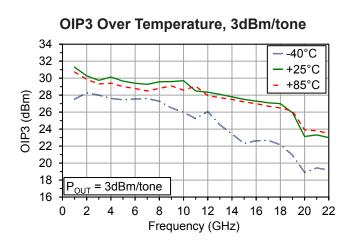

 V_{DS} = 8V, I_{DQ} = 60mA, T_A = 25°C unless otherwise noted

Power Sweep, -40°C

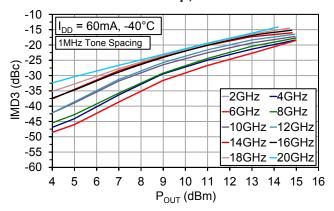



Power Sweep, +85°C

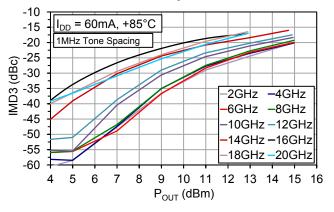
Power Sweep, +25°C



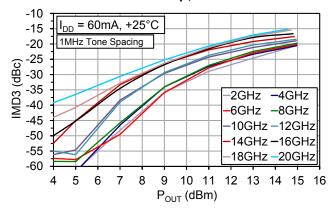
MM-PDS-0002 Rev B Subject to Change Without Notice

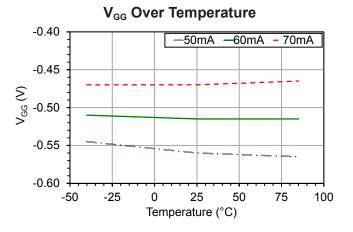


Typical Performance, Connectorized Test Fixture


 $V_{DS} = 8V$, $I_{DQ} = 60$ mA, $T_A = 25^{\circ}$ C unless otherwise noted

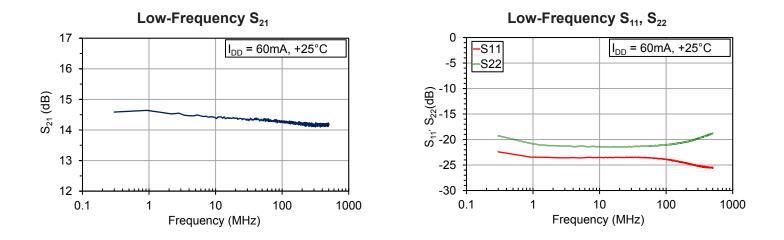
IMD Sweep, -40°C



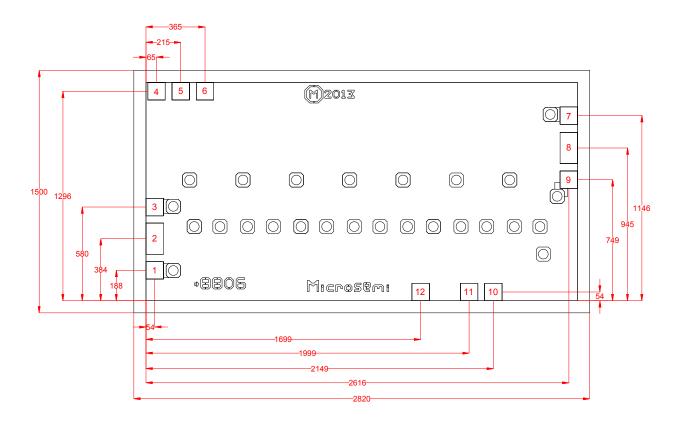


OIP3 Over Temperature, 6dBm/tone 34 -40°C 32 +25°C 30 +85°C 28 OIP3 (dBm) 26 24 22 20 18 = 6dBm/tone 16 20 22 0 2 4 6 8 10 12 14 16 18 Frequency (GHz)

IMD Sweep, +25°C



MM-PDS-0002 Rev B Subject to Change Without Notice


Typical Performance, Connectorized Test Fixture V_{DS} = 8V, I_{DQ} = 60mA, T_A = 25°C unless otherwise noted

Chip layout showing pad locations.

All dimensions are in microns. Die thickness is 100 microns. Backside metal is gold, bond pad metal is gold. Refer to Die Handling Application Note MM-APP-0001 (visit www.microsemi.com/mmics).

Table 3: Pad Descriptions

Pad #	Description	Pad Dimensions (µm)
1, 3, 7, 9	Ground	100 x 100
2	RF _{IN} , Pad Is DC Coupled. Use External DC block	100 x 190
8	RF _{OUT} , Pad Is DC Coupled. Use External DC Block	100 x 190
4	V _{DD}	100 x 100
12	V _{GG}	100 x 100
5, 6, 10, 11	Low Frequency Terminations	100 x 100
Die Backside	Must be connected to ground	-

Biasing

1. Set $V_{GG} = -2V$

- 2. Set V_{DD} = 8V 3. Adjust V_{GG} to set I_{DD}

Information contained in this document is proprietary to Microsemi. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996	Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at www.microsemi.com .

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.