
MiniMoto DRV8830 Hookup Guide 

 


CONTRIBUTORS: SFUPTOWNMAKER

Introduction

SparkFun�s MiniMoto board is an I C-based DC motor driver. It�s designed 

to be used in a system with up to 8 additional MiniMotos, all on the same 

data lines.

In addition to the benefit of being controlled via I C, which frees up data 

lines and processing on the CPU to be used for other tasks, the MiniMoto 

has the lowest voltage output capability of any current SparkFun DC motor 

driver � 2.7V. This means that low voltage systems running on single-cell 

LiPo batteries can use the MiniMoto, and low voltage motors (such as those 

which ship with Tamiya gearbox products) can be used with the MiniMoto.

Before You Begin�

You might want to review some of these documents before you get started, 

2

2

Page 1 of 8



since familiarity with these topics will be assumed for the rest of the tutorial.

� What is an Arduino? - We�ll be using the Arduino environment to 

demonstrate the MiniMoto.

� Installing the Arduino IDE - If you don�t have the Arduino software 

installed, this guide will help you out.

� Installing an Arduino Library - To get the most out of the MiniMoto, 

you�ll want to install our MiniMotolibrary. This tutorial will show you 

how.

� Pulse width modulation (PWM) - The MiniMoto uses PWM to control 

the speed of the motors. It�s probably a good idea to be familiar with 

the concept.

� I C - The MiniMoto uses I C to communicate with its controlling CPU. 

While the MiniMoto is accessible through the library with no 

knowledge of I C required, if you want to get more out of it, you can 

check out this tutorial.

Hardware

The MiniMoto is a pretty simple board; here�s a little walkthrough to get you 

up-to-speed on its various features.

� I/O header (1) - Two rows of .1" headers provide access to the I C 

lines, the FAULT signal, and a ground reference. One row is 

provided to connect to the controlling CPU; the other can be jumped 

to the next MiniMoto board. The FAULT line is open-drain, which 

means that the signal will assert low during a fault condition 

regardless of the number of MiniMoto boards connected in parallel.

� Power headers (2) - Two power header connections are provided � 

one for input and one to pass power through to the next MiniMoto 

board. There are two sets of pads for each of these: one which is 

spaced for .1" headers and one spaced for a 3.5mm screw terminal.

� Mounting holes (3) - Three mounting holes are in the corners of the 

boards; the spacing along the edges is 1" (25mm). The holes are 

sized for #4-40 screws but a metric M3 should work just as well.

� Bare metal heat sink pad (4) - On the opposite side of the board from 

the components is a piece of bare copper which is fairly tightly 

coupled to the power pad on the underside of the drive IC. This pad 

2 2

2

2

Page 2 of 8



is sized to fit our small heatsink for improved heat dissipation; you�ll 

need to hold it down with either thermal tape or thermal paste.

� Motor output header (5) - The motor output goes to this header, 

which has provision for either .1" pins or the same 3.5mm screw 

terminal used on the power connections.

� I C address select jumpers (6) - Each board has address selection 

jumpers that allow the user to set one of 9 addresses. See the next 

page for explanations of how to set addresses with these jumpers.

Electrical Considerations

The MiniMoto is designed to operate from 2.75V to 6.8V and to drive 

motors at up to 900mA of current. The minimum logic level required to 

communicate reliably with the chip varies with the supply voltage: however, 

at the maximum operating voltage of 6.8V, the minimum the chip will 

recognize as a high is 3.13V, so a 3.3V input will be recognized 

comfortably.

The I C bus can operate at up to 400kHz, depending on the additional load 

on the bus. While the chip is capable of communications at up to 400kHz, a 

heavily loaded bus may require that the data rate be dropped to maintain 

signal integrity. The MiniMoto library operates at 100kHz, which should low 

enough to work in most conditions.

Arduino Library

In order to make the MiniMoto as easy as possible to use, we�ve created a 

simple library for Arduino. Here�s the information you�ll need to get it 

working.

Setting the I C Address

The MiniMoto board has two jumpers for setting its I C address. The 

jumpers can be in one of three states: open, 1, or 0. They ship by default in 

the 1-1 state, which sets an address of 0xD0 for the part.

By adding or removing solder, you can change the address. Here�s a little 

chart explaining the settings.

A1 A0 Address

0 0 0xC0

0 open 0xC2

0 1 0xC4

open 0 0xC6

open open 0xC8

open 1 0xCA

1 0 0xCC

1 open 0xCE

1 1 0xD0

2

2

2

2

Page 3 of 8



When you declare an object of MiniMoto class, the only parameter to pass 

is the address of that board, according to this chart.

Library Functions

The DRV8830 chip on the MiniMoto is a fairly simple chip, having only two 

registers, and the library is similarly simple.

MiniMoto(byte addr);

This is the class constructor for the MiniMoto class. The addr parameter is 

the value from the chart above, determined by the jumper settings on the 

board.

void drive(int speed); 

The MiniMoto drives the motor by PWM; the magnitude can range from 

6-63. Attempts to set speed lower than 6 will be ignored; speeds higher 

than 63 will be truncated to 63. The sign of the value determines the 

direction of the motion.

void stop(); 
void brake(); 

Both of these functions will halt the motor�s motion; stop() allows the 

motor to coast to a halt, while brake() basically shorts the motor wires 

together, presenting a heavy load to the motor and dragging it to a halt 

quicker. It will also cause the motor to be harder to turn, providing a braking 

function on slopes or against loads attempting to turn the motor.

byte getFault(); 

There are several faults which can occur; when a fault occurs, the FAULTn 

line will be asserted low and the getFault() function can be called to 

determine the nature of the fault. Calling getFault() clears the fault bit 

and allows the driver to resume operation, although if the condition which 

caused the fault still exists, the driver may immediately return to fault status.

To determine the nature of the fault, several constants have been defined:

� FAULT - if FAULT bit is not set, no fault has occurred. This is an 

important check, as the FAULTn pin can be asserted, and other bits 

in the return value can be set, without fault conditions existing.

� ILIMIT - the ILIMIT bit will be set if the current limit set by the sense 

resistor has been violated for more than 275ms. This will not result in 

the motor driver being disabled.

Page 4 of 8



� OTS - indicates a thermal shutdown event. The output will be 

disabled, but operation will resume automatically when the die 

temperature has fallen to safe levels.

� UVLO - undervoltage lockout due to supply voltage dipping below a 

safe level (~2.5V). Operation will resume when the supply voltage 

rises to a safe level again (~2.75V).

� OCP - a significant overcurrent event has occurred. This is different 

to the ILIMIT fault because it is intrinsic to the driver; it generally 

indicates that the output is shorted or some similar issue. When an 

OCP error occurs, operation will be suspended until the fault bit is 

cleared.

Note that it is possible for the FAULTn line to be asserted without a fault 

having occurred; however, the FAULT bit will always be set if a fault has 

occurred.

Example

Here�s a simple example of an Arduino sketch, using the library to control 

the two DC motors on a Tamiya twin motor gearbox. We�ll take the sketch 

bit by bit, and explain it as we go.

#include <minimoto.h>  // Include the MiniMoto library 

// Create two MiniMoto instances, with different address setti
ngs. 
MiniMoto motor0(0xCE); // A1 = 1, A0 = clear 
MiniMoto motor1(0xD0); // A1 = 1, A0 = 1 (default) 

This first section lays the groundwork for the use of the library. In this case, 

we�re using two MiniMoto boards, one with the address jumpers in the 

default state and one with jumper A0 cleared.

#define FAULTn  16     // Pin used for fault detection. 

The FAULTn pin is an open drain output, so any number of MiniMoto 

boards can be connected to a single input. A pullup resistor is included on 

the MiniMoto board. Pin 16 corresponds to pin A2.

void setup() 
{ 
  Serial.begin(9600); 
  Serial.println("Hello, world!"); 
  pinMode(FAULTn, INPUT); 
} 

setup() is pretty simple; initialize the serial port, print a welcome 

Page 5 of 8



message, and initialize the FAULTn detection pin.

void loop() 
{ 
  Serial.println("Forward!"); 
  motor0.drive(10); 
  motor1.drive(10); 
  delayUntil(10000); 
  Serial.println("Stop!"); 
  motor0.stop(); 
  motor1.stop(); 
  delay(2000); 
  Serial.println("Reverse!"); 
  motor0.drive(10); 
  motor1.drive(10); 
  delayUntil(10000); 
  Serial.println("Brake!"); 
  motor0.brake(); 
  motor1.brake(); 
  delay(2000); 
} 

loop() turns the motors one way for a bit, then stops or brakes them, then 

goes the other way for a bit. We�ll talk about delayUntil() momentarily; 

for now, just know that it�s a custom function which includes polling for fault 

conditions.

void delayUntil(unsigned long elapsedTime) 
{ 
  unsigned long startTime = millis(); 
  while (startTime + elapsedTime > millis()) 
  { 

delayUntil() is a custom replacement for delay() which polls for fault 

conditions on the MiniMoto boards and reports them if they exist. The delay 

portion of the function is handled by this while() loop; for more 

information on how that works, see the built-in Arduino example 

�BlinkWithoutDelay�.

    if (digitalRead(FAULTn) == LOW) 
    { 

Our first-level check for faults is done by watching the FAULTn pin. We 

could skip this and go directly to polling the devices by calling getFault()

for each one; this is faster, but requires the use of an additional IO pin.

Page 6 of 8



      byte result = motor0.getFault(); 

The return value from getFault() is nothing more than the contents of 

register 0x01 of the DRV8830. We abstract it a bit to make this easier for 

the user, who doesn�t have to care about registers and things like that to 

use this part.

      if (result & FAULT) 
      { 

This is where we definitively detect whether a fault has occurred or not. It is 

possible (and indeed, not uncommon) for the FAULTn pin to go low without 

a fault actually having occurred. The FAULT constant is a single bit (bit 0, in 

fact) which, if set, indicates that a fault condition has actually occurred. If 

the result of an AND of that constant with the result from getFault() is 

non-zero, we know that bit is set and can then proceed to identify which 

fault bit is set.

        Serial.print("Motor 0 fault: "); 
        if (result & OCP) Serial.println("Chip overcurrent!"); 
        if (result & ILIMIT) Serial.println("Load current limi
t!"); 
        if (result & UVLO) Serial.println("Undervoltage!"); 
        if (result & OTS) Serial.println("Over temp!"); 
        break;  
      } 

We use the same method (ANDing the result with a single-bit constant) to 

determine which of the bits in the fault register was set, then we report that 

to the user via the serial port. Since a fault occurred, we want to bail out of 

the loop, so we include a break statement.

      result = motor1.getFault(); 
      if (result & FAULT) 
      { 
        Serial.print("Motor 1 fault: "); 
        if (result & OCP) Serial.println("Chip overcurrent!"); 
        if (result & ILIMIT) Serial.println("Load current limi
t!"); 
        if (result & UVLO) Serial.println("Undervoltage!"); 
        if (result & OTS) Serial.println("Over temp!"); 
        break; 
      } 
    } 
  } 
} 

Page 7 of 8



Repeat for the second motor.

This example code is included with the library, and the library can be found 

by downloading the zip file of the product GitHub repository.

Resources and Going Further

With that, you should have all the knowledge to get your motors up and 

spinning. Here are some other resources to explore.

� MiniMoto GitHub page

� MiniMoto Datasheet (DRV8830)

Here are some other motor related products and hookup guides for you to 

check out.

� AutoDriver Hookup

� RedBot Hookup

Page 8 of 8

2/12/2015https://learn.sparkfun.com/tutorials/minimoto-drv8830-hookup-guide?_ga=1.76092819.725293211.1423760...


