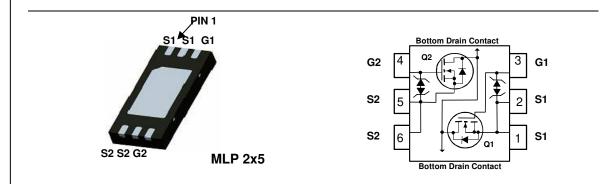
October 2005

FDMW2512NZ

FAIRCHILC SEMICONDUCTOR

Monolithic Common Drain N-Channel 2.5V Specified PowerTrench[®] MOSFET

General Description


This dual N-Channel MOSFET has been designed using Fairchild Semiconductor's advanced Power Trench process to optimize the $R_{\text{DS}(\text{ON})} @ V_{\text{GS}} = 2.5 \text{v}$ on special MicroFET lead frame with all the drains on one side of the package.

Applications

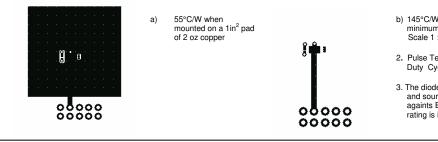
Li-Ion Battery Pack

Features

- 7.2 A, 20 V $R_{DS(ON)} = 26 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 34 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$
- ESD protection Diode(note 3)
- Low Profile 0.8 mm maximum in the new package MicroFET 2 x 5 mm

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage		±12	V
I _D	Drain Current – Continuous	(Note 1a)	7.2	A
	- Pulsed		28	
PD	Power Dissipation (Steady State)	(Note 1a)	2.2	W
		(Note 1b)	0.8	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

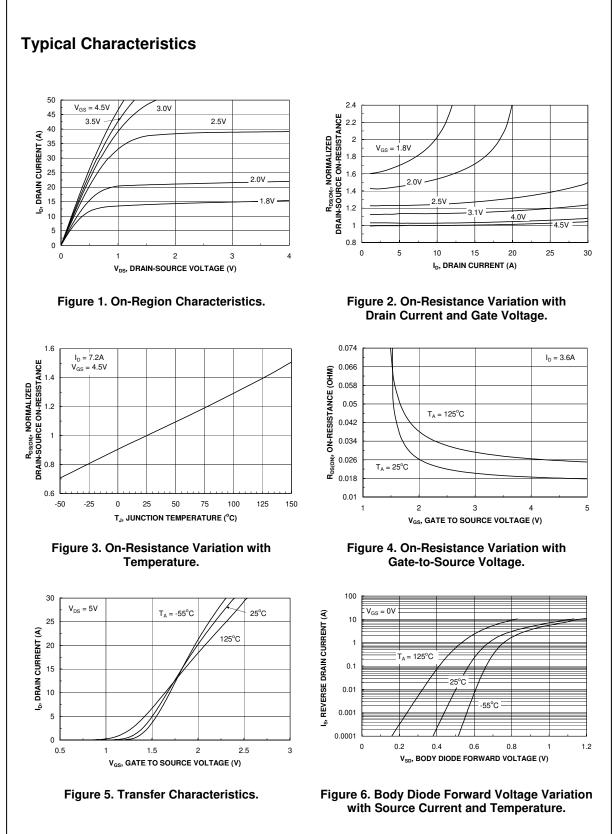

R _e	JA	Thermal Resistance, Junction-to-Ambient	(Note 1a)	55	°C/W
R ₀	JA	Thermal Resistance, Junction-to-Ambient	(Note 1b)	145	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
2512Z	FDMW2512NZ	13"	12mm	3000 units
				•

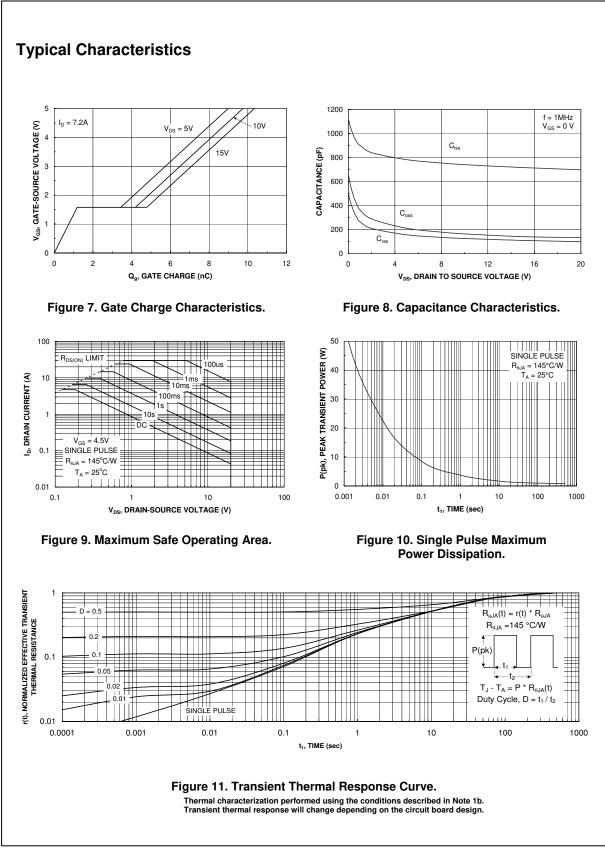
©2005 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS}=0~V, \qquad I_D=250~\mu A$	20			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		12		mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 16 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
I _{GSS}	Gate-Body Leakage,	$V_{GS}=\pm 12~V, ~~V_{DS}=0~V$			±10	μA
On Chara	Acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.5	0.8	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25 C		-3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = 4.5 \ V, & I_D = 7.2 \ A \\ V_{GS} = 4.0 \ V, & I_D = 7.2 \ A \\ V_{GS} = 3.1 \ V, & I_D = 6.4 \ A \\ V_{GS} = 2.5 \ V, & I_D = 6.4 \ A \\ V_{GS} = 4.5 \ V, \ I_D = 7.2 \ A, \ T_J = 125^\circ C \end{array} $		19 20 22 23 25	26 28 32 34 39	mΩ
g fs	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 7.2 A$		30		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		740		pF
Coss	Output Capacitance	f = 1.0 MHz		165		pF
C _{rss}	Reverse Transfer Capacitance			127		pF
R _G	Gate Resistance	f = 1.0 MHz		1.4		Ω
Switching	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 10 V, I_D = 1 A,$		8	16	ns
t _r	Turn–On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$		10	20	ns
t _{d(off)}	Turn–Off Delay Time			16	29	ns
t _f	Turn–Off Fall Time			13	23	ns
Qg	Total Gate Charge	$V_{DS} = 10 \text{ V}, \qquad I_D = 7.2 \text{ A},$		9	13	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 4.5 V		1		nC
Q _{gd}	Gate–Drain Charge			3		nC
Drain-Sou	Irce Diode Characteristics					
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \ V, I_S = 1.8 \ A (Note 2)$		0.7	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_{\rm F} = 7.2 {\rm A},$		15		nS
Q _{rr}	Diode Reverse Recovery Charge	dI _F /dt = 100 A/μs		4		nC

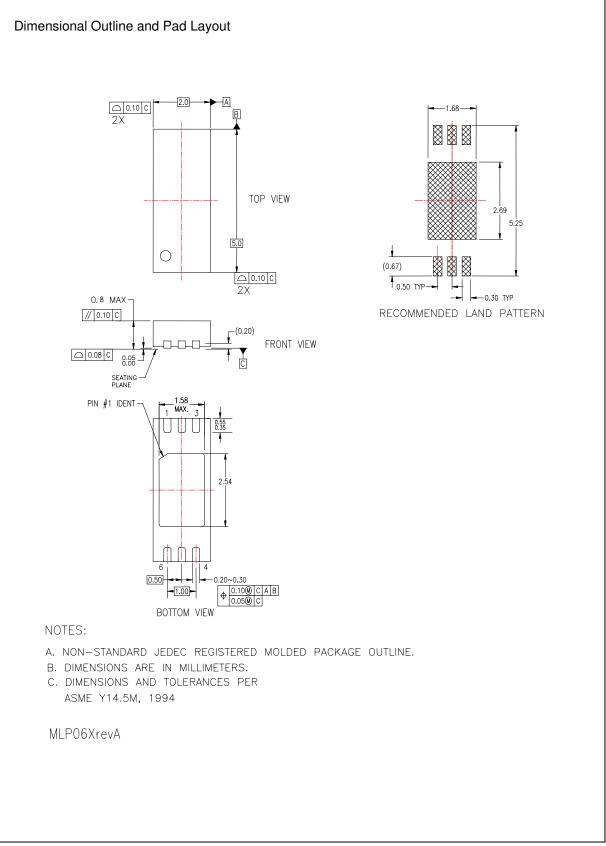

b) 145°C/W when mounted on a minimum pad of 2 oz copper Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%

 The diode connected between the gate and source serves only as protection againts ESD. No gate overvoltage rating is implied.


FDMW2512NZ Rev D

FDMW2512NZ


FDMW2512NZ

FDMW2512NZ Rev D

FDMW2512NZ

FDMW2512NZ Rev D

FDMW2512NZ

FDMW2512NZ Rev D

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ FRFET™ CoolFET™ GlobalOptoisolator™ CROSSVOLT™ GTO™ DOME™ HiSeC™ EcoSPARK™ I²C™ E^2CMOS™ <i>i</i> -Lo™ EnSigna™ ImpliedDisconnect™ FACT™ IntelliMAX™ FACT Quiet Series™	ISOPLANAR TM LittleFET TM MICROCOUPLER TM MicroFET TM MICROWIRE TM MICROWIRE TM MSX TM MSXPro TM OCX TM OCXPro TM OCXPro TM OPTOLOGIC [®] OPTOPLANAR TM	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] µSerDes [™] ScalarPump [™] SILENT SWITCHER [®] SMART START [™]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UHC [™] UltraFET [®] UniFET [™] VCX [™] Wire [™]
Across the board. Around the world. [™]	PACMAN™ POP™ Power247™ PowerEdge™	SPM™ Stealth™ SuperFET™ SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 117