

SL28EB742

EPROCLOCK[®] GENERATOR FOR INTEL[®] CK505 COMPLIANCE

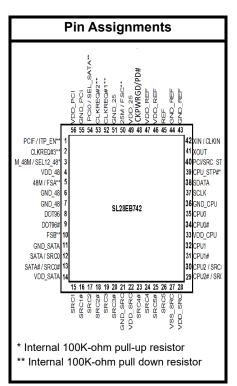
Features

- Compliant Intel CK505 Clock spec
- Low power push-pull type differential output buffers
- Integrated resistors on differential clocks
- Wireless friendly 3-bits slew rate control on single-ended clocks
- Differential CPU clocks with pin selectable frequency
- 100 MHz Differential SRC clocks
- Selectable Differential SATA or SRC clocks
- 96 MHz Differential DOT clock
- 48 MHz USB clock
- Selectable 12 or 48 MHz clock

Selectable Differential SRC or CPU Clock

CPU	SRC	SATA	DOT96	48M	48M/12 M	33M	25M	14.318M
x2/x3	x4/x7	x0/x1	x1	x1/2	x1	x2	x1	x1

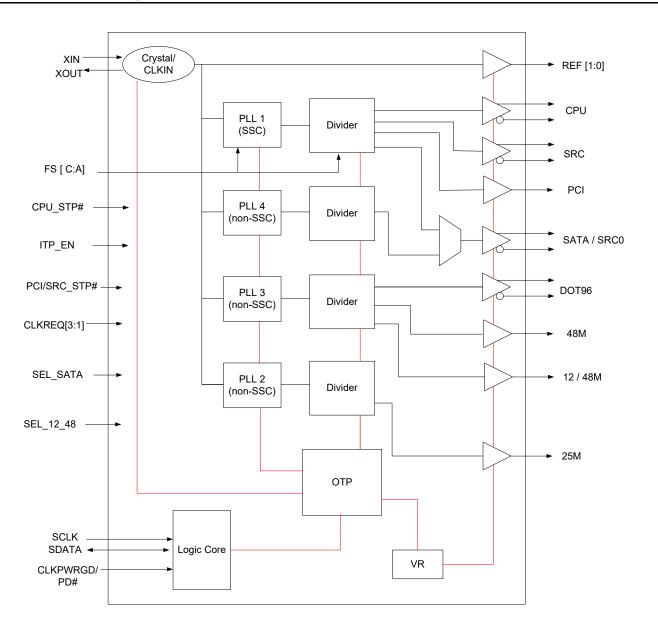
EProClock® Programmable Technology


- > 4000 bits of configurations
- hard coded
- Custom frequency sets
- Differential skew control on true or compliment or both
- Differential duty cycle control on true or compliment or both
- Differential amplitude control
- Can be configured through SMBus or Differential and single-ended slew rate control
 - Program Internal or External series resistor on single-ended clocks
 - Program different spread profiles
 - Program different spread modulation rate

Selectable Differential SRC or CPU Clock

CPU	SRC	SATA	DOT96	48M	48M/12 M	33M	25M	14.318M
x2/x3	x4/x7	x0/x1	x1	x1/2	x1	x2	x1	x1

- 25 MHz ouput
- Buffered Reference Clock 14.318 MHz
- 14.318 MHz Crystal Input or Clock input
- I²C support with readback capabilities
- Triangular Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction
- Industrial Temperature: –40 to 85 °C
- 3.3 V power supply
- 56-pin QFN package


Patents pending

Description

The SL28EB742 is a high-performance clock generator supporting Intel Cedarview platforms. The SL28EB742 is rated to support extended grade temperature. Utilizing an inexpensive 14.318 MHz crystal, it is capable of supporting multiple frequencies from four PLLs. The CPU clock can support a frequency range from 83.33 to 166 MHz by configuration of two strap pins. With a combination of strap pins and an I^2C interface, the device allows maximum configurability.

EProClock[®] is the world's first non-volatile programmable clock. The EProClock[®] technology allows board designer to promptly achieve optimum compliance and clock signal integrity; historically, attainable typically through device and/or board redesigns. EProClock[®] technology can be configured through SMBus or hard coded.

Functional Block Diagram

TABLE OF CONTENTS

Section

Page

1. Electrical Specifications
2. Functional Description
2.1. Powerdown (PD#) Clarification
2.2. Powerdown (PD#) Assertion
2.3. <u>Powerdown</u> (PD#) Deassertion12
2.4. CPU_STP# Assertion
2.5. CPU_STP# Deassertion
2.6. PCI/SRC STP# Assertion
2.7. PCI/SRC_STP# Deassertion
3. Test and Measurement Setup
3.1. Single-ended Clocks
3.2. Differential Clock Signals
4. Control Registers
4.1. Frequency Select Pin FS
4.2. Serial Data Interface
4.3. Data Protocol
5. Pin Descriptions: 56-Pin QFN
6. Ordering Guide
7. Package Outline
Document Change List
Contact Information

1. Electrical Specifications

Table 1. Recommended Operating Conditions

(VDD = 3.3 V, $T_A = 25 \degree C$)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply Voltage (extended)	VDD _(industrial)	3.3 V ±5%	3.13	3.3	3.46	V
Supply Voltage (commercial)	VDD _(commercial)	3.3 V ±10%	2.97	3.3	3.63	V

Table 2. DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Max	Unit
3.3 V Operating Voltage	VDD core	3.3 ± 5%	3.135	3.465	V
3.3 V Input High Voltage (SE)	V _{IH}		2.0	V _{DD} + 0.3	V
3.3 V Input Low Voltage (SE)	V_{IL}		V _{SS} – 0.3	0.8	V
Input High Voltage	V _{IHI2C}	SDATA, SCLK	2.2	_	V
Input Low Voltage	V _{ILI2C}	SDATA, SCLK	—	1.0	V
FS Input High Voltage	$V_{\rm IH_FS}$		0.7	VDD+0. 3	V
FS Input Low Voltage	$V_{IL_{FS}}$		V _{SS} – 0.3	0.35	V
Input High Leakage Current	Ι _{ΙΗ}	Except internal pull-down resistors, 0 < V _{IN} < V _{DD}	_	5	μA
Input Low Leakage Current	I _{IL}	Except internal pull-up resistors, 0 < V _{IN} < V _{DD}	-5	_	μA
3.3 V Output High Voltage (SE)	V _{OH}	I _{OH} = -1 mA	2.4	_	V
3.3 V Output Low Voltage (SE)	V _{OL}	I _{OL} = 1 mA		0.4	V
High-impedance Output Current	I _{OZ}		-10	10	μA
Input Pin Capacitance	C _{IN}		1.5	5	pF
Output Pin Capacitance	C _{OUT}			6	pF
Pin Inductance	L _{IN}		—	7	nH
Power Down Current	IDD_PD			1	mA
Dynamic Supply Current	IDD_3.3 V	All outputs enabled. SE clocks with 5" traces. Differential clocks with 5" traces. Loading per CK505 spec.		115	mA

Table 3. AC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Max	Unit
Long-term Accuracy	L _{ACC}	Measured at VDD/2 differential		250	ppm
Clock Input					
CLKIN Duty Cycle	T _{DC}	Measured at VDD/2	47	53	%
CLKIN Rise and Fall Times	T _R /T _F	Measured between 0.2 V _{DD} and 0.8 V _{DD}	0.5	4.0	V/ns
CLKIN Cycle to Cycle Jitter	T _{CCJ}	Measured at VDD/2		250	ps
CLKIN Long Term Jitter	T _{LTJ}	Measured at VDD/2		350	ps
Input High Voltage	V _{IH}	XIN / CLKIN pin	2	VDD+0.3	V
Input Low Voltage	V _{IL}	XIN / CLKIN pin		0.8	V
Input High Current	I _{IH}	XIN / CLKIN pin, VIN = VDD		35	μA
Input Low Current	I _{IL}	XIN / CLKIN pin, 0 < VIN <0.8	-35		μA
CPU at 0.7 V	•				
CPU Duty Cycle	T _{DC}	Measured at 0 V differential	45	55	%
83.33 MHz CPU Period	T _{PERIOD}	Measured at 0 V differential at 0.1s	11.99880	12.00120	ns
83.33 MHz CPU Period, SSC	T _{PERIODSS}	Measured at 0 V differential at 0.1s	12.02887 2	12.03128	ns
83.33 MHz CPU Absolute Period	T _{PERIODAbs}	Measured at 0 V differential at 1clock	11.18969	12.16344	ns
83.33 MHz CPU Absolute Period, SSC	T _{PERIODSSAbs}	Measured at 0 V differential at 1 clock	11.89687	12.16344	ns
100 MHz CPU Period	T _{PERIOD}	Measured at 0 V differential at 0.1s	9.99900	10.0010	ns
100 MHz CPU Period, SSC	T _{PERIODSS}	Measured at 0 V differential at 0.1s	10.02406	10.02607	ns
100 MHz CPU Absolute Period	T _{PERIODAbs}	Measured at 0 V differential at 1clock	9.87400	10.1260	ns
100 MHz CPU Absolute Period, SSC	T _{PERIODSSAbs}	Measured at 0 V differential at 1 clock	9.87406	10.1762	ns
133 MHz CPU Period	T _{PERIOD}	Measured at 0 V differential at 0.1s	7.49925	7.50075	ns
133 MHz CPU Period, SSC	T _{PERIODSS}	Measured at 0 V differential at 0.1s	7.51804	7.51955	ns
133 MHz CPU Absolute Period	T _{PERIODAbs}	Measured at 0 V differential at 1 clock	7.41425	7.58575	ns
133 MHz CPU Absolute period, SSC	T _{PERIODSSAbs}	Measured at 0 V differential at 1 clock	7.41430	7.62340	ns

Table 3. AC Electrical Specifications (Continued)

Parameter	Symbol	Test Condition	Min	Max	Unit
166 MHz CPU Period	T _{PERIOD}	Measured at 0 V differential at 0.1s	5.99940	6.00060	ns
166 MHz CPU Period, SSC	T _{PERIODSS}	Measured at 0 V differential at 0.1s	6.01444	6.01564	ns
166 MHz CPU Absolute period	T _{PERIODAbs}	Measured at 0 V differential at 1 clock	5.91440	6.08560	ns
166 MHz CPU Absolute period, SSC	T _{PERIODSSAbs}	Measured at 0 V differential at 1 clock	5.91444	6.11572	ns
CPU Cycle to Cycle Jitter	T _{CCJ}	Measured at 0 V differential		85	ps
CPU Cycle to Cycle Jitter for CPU 2	T _{CCJ (CPU2)}	Measured at 0 V differential		125	ps
CPU0 to CPU1 skew	Skew	Measured at 0 V differential	_	100	ps
Long-term Accuracy	L _{ACC}	Measured at 0 V differential	_	100	ppm
CPU Rising/Falling Slew rate	T _R / T _F	Measured differentially from ±150 mV	2.5	8	V/ns
Rise/Fall Matching	T _{RFM}	Measured single-endedly from ±75 mV	—	20	%
Voltage High	V _{HIGH}			1.15	V
Voltage Low	V _{LOW}		-0.3		V
Crossing Point Voltage at 0.7 V Swing	V _{OX}		300	550	mV
SRC at 0.7 V	1			1	
SRC Duty Cycle	T _{DC}	Measured at 0 V differential	45	55	%
100 MHz SRC Period	T _{PERIOD}	Measured at 0 V differential at 0.1s	9.99900	10.0010	ns
100 MHz SRC Period, SSC	T _{PERIODSS}	Measured at 0 V differential at 0.1s	10.02406	10.02607	ns
100 MHz SRC Absolute Period	T _{PERIODAbs}	Measured at 0 V differential at 1 clock	9.87400	10.1260	ns
100 MHz SRC Absolute Period, SSC	T _{PERIODSSAbs}	Measured at 0 V differential at 1 clock	9.87406	10.1762	ns
Any SRC Clock Skew from the earliest bank	T _{SKEW(win-} dow)	Measured at 0 V differential		3.0	ns
SRC Cycle to Cycle Jitter	T _{CCJ}	Measured at 0 V differential		85	ps
SRC Long Term Accuracy	L _{ACC}	Measured at 0 V differential	—	100	ppm
SRC Rising/Falling Slew Rate	T _R / T _F	Measured differentially from ±150 mV	2.5	8	V/ns

Table 3. AC Electrical Specifications (Continued)

Parameter	Symbol	Test Condition	Min	Max	Unit
Rise/Fall M-atching	T _{RFM}	Measured single-endedly from ±75 mV	_	20	%
Voltage High	V _{HIGH}			1.15	V
Voltage Low	V _{LOW}		-0.3		V
Crossing Point Voltage at 0.7 V Swing	V _{OX}		300	550	mV
DOT96 at 0.7 V					
DOT96 Duty Cycle	T _{DC}	Measured at 0 V differential	45	55	%
DOT96 Period	T _{PERIOD}	Measured at 0 V differential at 0.1s	10.4156	10.4177	ns
DOT96 Absolute Period	T _{PERIODAbs}	Measured at 0 V differential at 0.1s	10.1656	10.6677	ns
DOT96 Cycle to Cycle Jitter	T _{CCJ}	Measured at 0 V differential at 1 clock	_	250	ps
DOT96 Long Term Accuracy	L _{ACC}	Measured at 0V differential at 1 clock	_	100	ppm
DOT96 Rising/Falling Slew Rate	T _R / T _F	Measured differentially from ±150 mV	2.5	8	V/ns
Rise/Fall Matching	T _{RFM}	Measured single-endedly from ±75 mV		20	%
Voltage High	V _{HIGH}			1.15	V
Voltage Low	V _{LOW}		-0.3	_	V
Crossing Point Voltage at 0.7 V Swing	V _{OX}		300	550	mV
SATA at 0.7 V					
SATAM Duty Cycle	T _{DC}	Measured at 0V differential	45	55	%
SATA Cycle to Cycle Jitter	T _{CCJ}	Measured at 0V differential at 1 clock	_	125	ps
SATA Long Term Accuracy	L _{ACC}	Measured at 0V differential at 1 clock	—	100	ppm
SATA Rising/Falling Slew Rate	T _R / T _F	Measured differentially from ±150 mV	2.5	8	V/ns
Rise/Fall Matching	T _{RFM}	Measured single-endedly from ±75 mV	_	20	%
Voltage High	V _{HIGH}			1.15	V
Voltage Low	V _{LOW}		-0.3		V

Table 3. AC Electrical Specifications (Continued)

Parameter	Symbol	Test Condition	Min	Max	Unit
Crossing Point Voltage at 0.7 V Swing	V _{OX}		300	550	mV
PCI/PCIF at 3.3 V					
PCI Duty Cycle	T _{DC}	Measurement at 1.5 V	45	55	%
Spread Disabled PCIF/PCI Period	T _{PERIOD}	Measurement at 1.5 V	29.99700	30.00300	ns
Spread Enabled PCIF/PCI Period	T _{PERIODSS}	Measurement at 1.5 V	30.08421	30.23459	ns
Spread Disabled PCIF/PCI Period	T _{PERIODAbs}	Measurement at 1.5 V	29.49700	30.50300	ns
Spread Enabled PCIF/PCI Period	T _{PERIODSSAbs}	Measurement at 1.5 V	29.56617	30.58421	ns
Spread Enabled PCIF and PCI High Time	T _{HIGH}	Measurement at 2 V	12.27095	16.27995	ns
Spread Enabled PCIF and PCI Low Time	T _{LOW}	Measurement at 0.8 V	11.87095	16.07995	ns
Spread Disabled PCIF and PCI High Time	T _{HIGH}	Measurement at 2.0 V	12.27365	16.27665	ns
Spread Disabled PCIF and PCI Low Time	T _{LOW}	Measurement at 0.8 V	11.87365	16.07665	ns
PCIF/PCI Rising/Falling Slew Rate	T _R / T _F	Measured between 0.8 V and 2.0 V	1.0	4.0	V/ns
Any PCI clock to Any PCI clock Skew	T _{SKEW}	Measurement at 1.5 V	—	1000	ps
PCIF and PCI Cycle to Cycle Jitter	T _{CCJ}	Measurement at 1.5 V		300	ps
PCIF/PCI Long Term Accuracy	L _{ACC}	Measurement at 1.5 V	—	100	ppm
48M, 12_48M at 3.3 V					
Duty Cycle	T _{DC}	Measurement at 1.5 V	45	55	%
48 MHz Period	T _{PERIOD}	Measurement at 1.5 V	20.83125	20.83542	ns
48 MHz Absolute Period	T _{PERIODAbs}	Measurement at 1.5 V	20.48125	21.18542	ns
48 MHz High Time	T _{HIGH}	Measurement at 2 V	8.216563	11.15198	ns
48 MHz Low Time	T _{LOW}	Measurement at 0.8 V	7.816563	10.95198	ns
Rising and Falling Edge Rate	T _R / T _F (48M)	Measured between 0.8 V and 2.0 V	1.0	2.0	V/ns
Rising and Falling Edge Rate	T _R / T _F (12_48M)	Measured between 0.8 V and 2.0 V	1.0	2.0	V/ns
Cycle to Cycle Jitter	T _{CCJ}	Measurement at 1.5 V		300	ps

Parameter	Symbol	Test Condition	Min	Мах	Unit
48M Long Term Accuracy	L _{ACC}	Measurement at 1.5 V		100	ppm
25M at 3.3 V					
Duty Cycle	T _{DC}	Measurement at 1.5 V	45	55	%
Period	T _{PERIOD}	Measurement at 1.5 V	39.996	40.004	ns
Absolute Period	T _{PERIODAbs}	Measurement at 1.5 V	39.32360	40.67640	ns
Rising and Falling Edge Rate	T _R / T _F	Measured between 0.8 V and 2.0 V	1.0	4.0	V/ns
Cycle to Cycle Jitter	T _{CCJ}	Measurement at 1.5 V	—	300	ps
25M Long Term Accuracy	L _{ACC}	Measured at 1.5 V	_	100	ppm
14.318M, at 3.3 V					
Duty Cycle	T _{DC}	Measurement at 1.5 V	45	55	%
Period	T _{PERIOD}	Measurement at 1.5 V	69.82033	69.86224	ns
Absolute Period	T _{PERIODAbs}	Measurement at 1.5 V	68.83429	70.84826	ns
High Time	T _{HIGH}	Measurement at 2 V	29.97543	38.46654	ns
Low Time	T _{LOW}	Measurement at 0.8 V	29.57543	38.26654	ns
Rising and Falling Edge Rate	T _R / T _F	Measured between 0.8 V and 2.0 V	1.0	4.0	V/ns
Cycle to Cycle Jitter	T _{CCJ}	Measurement at 1.5 V		500	ps
Long Term Accuracy	L _{ACC}	Measurement at 1.5 V		100	ppm
ENABLE/DISABLE and SET-U	2		I	I	1
Clock Stabilization from Powerup	T _{STABLE}			1.8	ms
Stop clock Set-up Time	T _{SS}		10.0	_	ns

Table 4. Thermal Conditions

Parameter	Symbol	Condition	Min	Max	Unit			
Temperature, Storage	Τ _S	Non-functional	-65	150	°C			
Temperature, Operating Ambient, Extended	T _A	Functional	-40	85	°C			
Temperature, Operating Ambient, Commercial	Τ _Α	Functional	0	70	°C			
Temperature, Junction	TJ	Functional	—	150	°C			
Dissipation, Junction to Case	Ø _{JC}	JEDEC (JESD 51)	—	20	°C/W			
Dissipation, Junction to Ambient	Ø _{JA}	JEDEC (JESD 51)	—	60	°C/W			
Note: For multiple supplies, the voltage on any input or I/O pin cannot exceed the power pin during powerup. Power supply sequencing is not required.								

Table 5. Absolute Maximum Conditions

Parameter	Symbol	Test Condition	Min	Max	Unit	
Main Supply Voltage	V _{DD_3.3 V}	Functional	_	4.6	V	
Input Voltage	V _{IN}	Relative to V _{SS}	-0.5	4.6	V_{DC}	
Temperature, Storage	Τ _S	Non-functional	-65	150	°C	
Temperature, Operating Ambient	T _A	Functional	-40	85	°C	
Temperature, Junction	ТJ	Functional	_	150	°C	
Dissipation, Junction to Case	Ø _{JC}	JEDEC (JESD 51)	_	20	°C/ W	
Dissipation, Junction to Ambient	Ø _{JA}	JEDEC (JESD 51)	_	60	°C/ W	
ESD Protection (Human Body Model)	ESD _{HBM}	JEDEC (JESD 22 - A114)	2000	_	V	
Flammability Rating	UL-94	UL (Class)	V-0			
Moisture Sensitivity Level	MSL	JEDEC (J-STD-020)	1			
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequenc- ng is NOT required.						

2. Functional Description

2.1. Powerdown (PD#) Clarification

The CKPWRGD/PD# pin is a dual-function pin. During initial powerup, the pin functions as CKPWRGD. Once CKPWRGD has been sampled high by the clock chip, the pin assumes PD# functionality. The PD# pin is an asynchronous active low input used to shut off all clocks cleanly before shutting off power to the device. This signal is synchronized internally to the device before powering down the clock synthesizer. PD# is also an asynchronous input for powering up the system. When PD# is asserted low, clocks are driven to a low value and held before turning off the VCOs and the crystal oscillator.

2.2. Powerdown (PD#) Assertion

When PD# is sampled low by two consecutive rising edges of CPUC, all single-ended outputs clocks will be held low on their next high-to-low transition and differential clocks will be held low. When powerdown mode is desired as the initial power on state, PD# must be asserted low in less than 10 µs after asserting CKPWRGD.

		CPU_STP# Asserted	PCI_STP# Asserted	CLKREQ# Asserted	SMBus OE Disabled
Single-ended	Stoppable	Running	Driven low	Running	Driven low
Clocks	Non-stoppable	Running	Running	Running	
Differential Clocks	Stoppable	Clock driven high	Clock driven high	Clock driven low	Clock driven low
		Clock driven low	Clock driven low	Clock driven low	
	Non-stoppable	Running	Running	Running	

Table 6. Output Driver Status during CPU_STP and PCIS_STP#

Table 7. Output Driver Status

	All Single-e	nded Clocks	All Differential Clocks		
	w/o Strap	w/ Strap	Clock	Clock#	
PD# = 0 (Powerdown)	Low	Hi-z	Low	Low	

2.3. Powerdown (PD#) Deassertion

The powerup latency is less than 1.8 ms. This is the time from the deassertion of the PD# pin or the ramping of the power supply until the time that stable clocks are generated from the clock chip. All differential outputs stopped in a three-state condition resulting from powerdown are driven high in less than 300 μ s of PD# deassertion to a voltage greater than 200 mV. After the clock chip's internal PLL is powered up and locked, all outputs are enabled within a few clock cycles. Figure 2 is an example showing the relationship of clocks coming up.

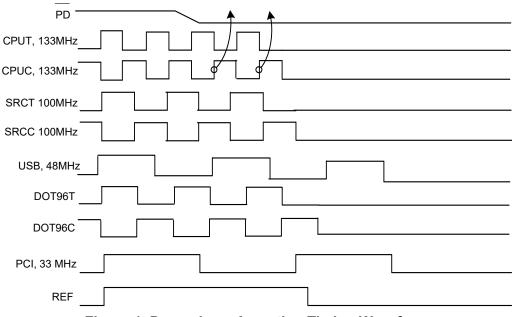
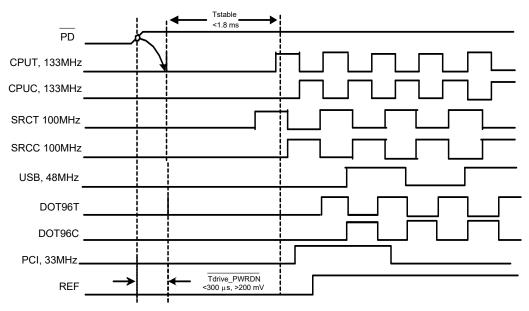



Figure 1. Powerdown Assertion Timing Waveform

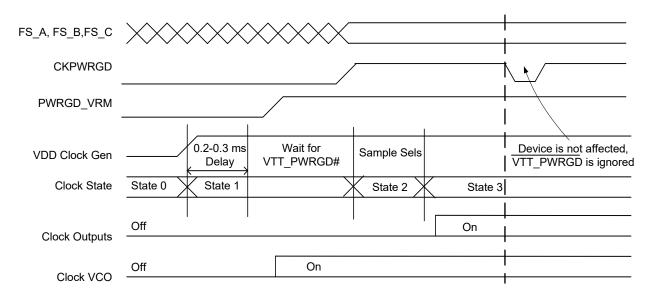


Figure 3. CKPWRGD Timing Diagram

2.4. CPU_STP# Assertion

The CPU_STP# signal is an active LOW input used for synchronous stopping and starting the CPU output clocks while the rest of the clock generator continues to function. When the CPU_STP# pin is asserted, all CPU outputs that are set with the I^2 C configuration to be stoppable are stopped within two to six CPU clock periods after being sampled by two rising edges of the internal CPUC clock. The final states of the stopped CPU signals are CPUT = High and CPUC = Low.

2.5. CPU_STP# Deassertion

The deassertion of the CPU_STP# signal causes all stopped CPU outputs to resume normal operation in a synchronous manner. No short or stretched clock pulses are produced when the clock resumes. The maximum latency from the deassertion to active outputs is no more than two CPU clock cycles.

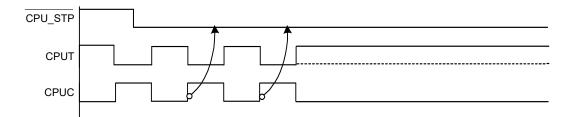


Figure 4. CPU_STP# Assertion Waveform

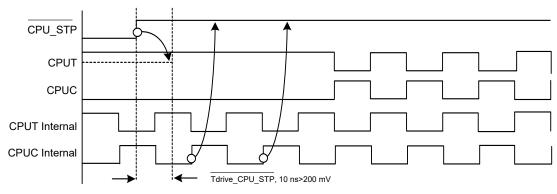


Figure 5. CPU_STP# Deassertion Waveform

2.6. PCI/SRC_STP# Assertion

The PCI/SRC_STP# signal is an active low input used for synchronously stopping and starting the PCI outputs while the rest of the clock generator continues to function. The set-up time for capturing PCI/SRC_STP# going low is 10 ns (t_{SU}) (refer to Figure 6). The PCIF and SRC clocks are affected by the PCI/SRC pin if their corresponding control bit in the I²C register is set to allow them to be free running. For SRC clocks assertion description, refer to the CPU_STP# descriptions in Section 2.4 and Section 2.5.

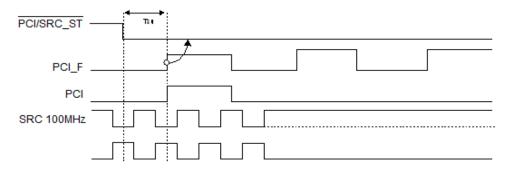


Figure 6. PCI/SRC_STP# Assertion Waveform

2.7. PCI/SRC_STP# Deassertion

The deassertion of the PCI/SRC_STP# signal causes all PCI and stoppable PCIF to resume running in a synchronous manner within two PCI clock periods and after PCI/SRC_STP# transitions to a high level. Similarly, PCI/SRC_STP# deassertion will cause stoppable SRC clocks to resume running. For an SRC clocks deassertion description, refer to the CPU_STP# description Section 2.4 and Section 2.5.

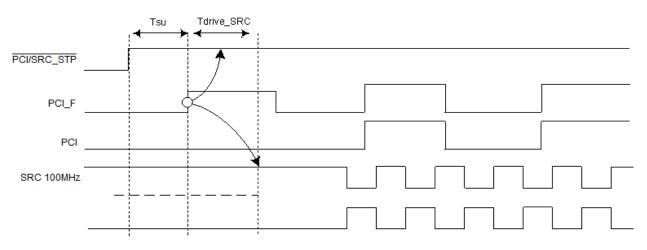


Figure 7. PCI/SRC_STP# Deassertion Waveform

3. Test and Measurement Setup

3.1. Single-ended Clocks

Figure 8 shows the test load configuration for single-ended clock output signals.

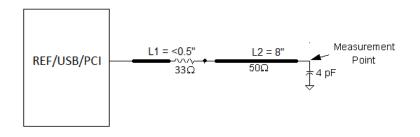


Figure 8. Single-ended Clocks Single Load Configuration

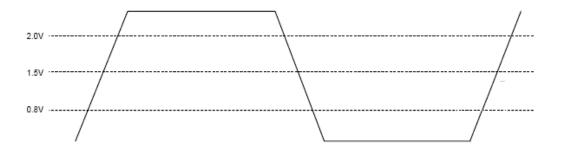


Figure 9. Single-ended Output Signals (for AC Parameters Measurement)

3.2. Differential Clock Signals

Figure 10 shows the test load configuration for differential clock signals.

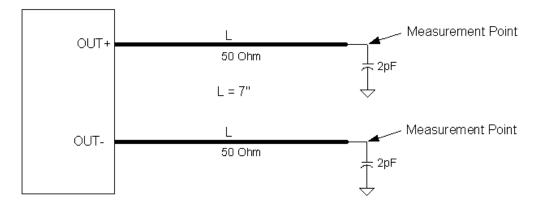


Figure 10. 0.7 V Differential Load Configuration

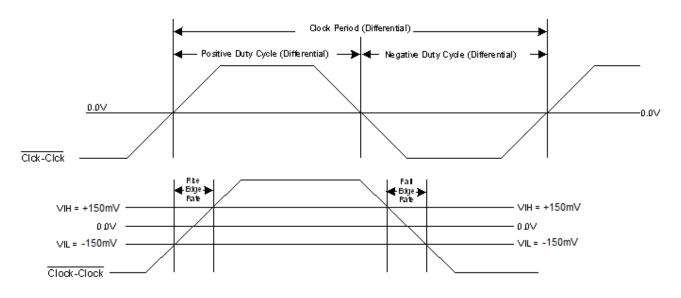


Figure 11. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)

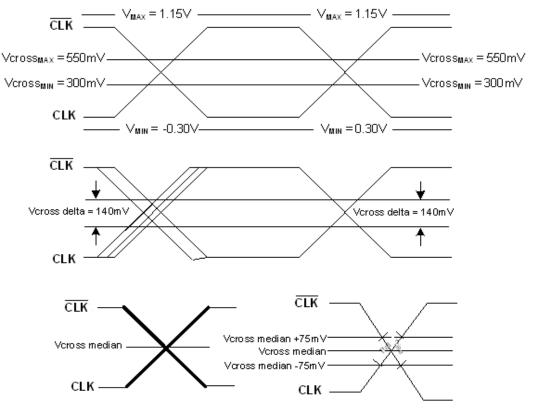


Figure 12. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)

4. Control Registers

4.1. Frequency Select Pin FS

Apply the appropriate logic levels to FS inputs before CKPWRGD assertion to achieve host clock frequency selection. When the clock chip sampled HIGH on CKPWRGD and indicates that VTT voltage is stable then FS input values are sampled. This process employs a one-shot functionality and once the CKPWRGD sampled a valid HIGH, all other FS, and CKPWRGD transitions are ignored except in test mode.

SEL_SATA	FSC	FSB	FSA	CPU	SRC	SATA	PCI
0	0	0	0	100.00	100.00	100.00	33.33
0	0	0	1	100.00	100.00	100.00	33.33
0	0	1	0	83.33	100.00	100.00	33.33
0	0	1	1	83.33	100.00	100.00	33.33
0	1	0	0	133.33	100.00	100.00	33.33
0	1	0	1	133.33	100.00	100.00	33.33
0	1	1	0	166.67	100.00	100.00	33.33
0	1	1	1	166.67	100.00	100.00	33.33
1	0	0	0	100.00	100.00	100.00	33.33
1	0	0	1	100.00	100.00	100.00	33.33
1	0	1	0	83.33	100.00	100.00	33.33
1	0	1	1	83.33	100.00	100.00	33.33
1	1	0	0	133.33	100.00	100.00	33.33
1	1	0	1	133.33	100.00	100.00	33.33
1	1	1	0	166.67	100.00	100.00	33.33
1	1	1	1	166.67	100.00	100.00	33.33

 Table 8. Frequency Select Pin (FS)

4.2. Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers are individually enabled or disabled. The registers associated with the Serial Data Interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required. The interface cannot be used during system operation for power management functions.

4.3. Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code described in Table 9.

The block write and block read protocol is outlined in Table 10 while Table 11 outlines byte write and byte read protocol. The slave receiver address is 11010010 (D2h).

Bit	Description
7	0 = Block read or block write operation; 1 = Byte read or byte write operation.
(6:0)	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'.

Table 9. Command Code Definition

Table 10. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Byte Count–8 bits	20	Repeat start
28	Acknowledge from slave	27:21	Slave address–7 bits
36:29	Data byte 1–8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2–8 bits	37:30	Byte Count from slave–8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte /Slave Acknowledges	46:39	Data byte 1 from slave–8 bits

Table 10. Block Read and Block Write Protocol (Continued)

	Block Write Protocol	Block Read Protocol		
Bit	Description	Bit Description		
	Data Byte N–8 bits	47	Acknowledge	
	Acknowledge from slave	55:48	Data byte 2 from slave–8 bits	
	Stop	56	Acknowledge	
			Data bytes from slave / Acknowledge	
			Data Byte N from slave–8 bits	
			NOT Acknowledge	
			Stop	

Table 11. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address–7 bits	8:2	Slave address–7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code–8 bits	18:11	Command Code–8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Data byte–8 bits	20	Repeated start
28	Acknowledge from slave	27:21	Slave address–7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		37:30	Data from slave–8 bits
		38	NOT Acknowledge
		39	Stop

Control Register 0. Byte 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			Spread Enable	SEL_SATA		FSC	FSB	FSA
Туре	R/W	R/W	R/W	R	R/W	R	R	R

Reset settings = 000x0xxx

Bit	Name	Function
7:6	Reserved	
5	Spread Enable	Enable spread for CPU/SRC/PCI outputs 0 = Disable, 1 = –0.5%
4	SEL_SATA	See Table 9 for SATA/SRC selection.
3	Reserved	
2	FSC	See Table 9 for CPU Frequency Selection Table.
1	FSB	
0	FSA	

Register 1. Byte 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DOT96_ OE	SATA/SRC 0_OE	CPU2/SRC 6_OE	SRC2	SRC1		WOL_EN	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function
7	DOT96_OE	Output enable for DOT96. 0 = Output Disabled, 1 = Output Enabled
6	SATA/SRC0_OE	Output enable for SATA/SRC0. 0 = Output Disabled, 1 = Output Enabled
5	CPU2/SRC6_OE	Output enable for CPU2/SRC6. 0 = Output Disabled, 1 = Output Enabled
4	SRC2	Output enable for SRC2. 0 = Output Disabled, 1 = Output Enabled
3	SRC1	Output enable for SRC1. 0 = Output Disabled, 1 = Output Enabled
2	Reserved	
1	WOL_EN	Wake-On-LAN Enable bit. 25 MHz free running during VDD Suspend (S-states). If this bit is set to 0, the XTAL OSC will also be powered down in the Suspend States)
0	Reserved	

Register 2. Byte 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	48M_OE		25M_OE	REF_OE	12_48M_OE	PCI0_OE	PCIF_OE	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function
7	48M_OE	Output Enable for 48M. 0: Output disabled. 1: Output enabled.
6	Reserved	
5	25M_OE	Output ENABLE for 25M. 0 = Output Disabled, 1 = Output Enabled
4	REF_OE	Output Enable for REF. 0 = Output Disabled, 1 = Output Enabled
3	12_48M_OE	Output Enable for 12_48M. 0 = Output Disabled, 1 = Output Enabled
2	PCI0_OE	Output Enable for PCI0. 0 = Output Disabled, 1 = Output Enabled
1	PCIF_OE	Output Enable for PCIF. 0 = Output Disabled, 1 = Output Enabled
0	Reserved	

Register 3. Byte 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CPU1_OE	CPU0_OE	CLKREQ#_3	CLKREQ#_3	CLKREQ#_2	CLKREQ#_2	CLKREQ#_1	CLKREQ#_1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function
7	CPU1_OE	Output Enable for CPU1. 0 = Output Disabled, 1 = Output Enabled
6	CPU0_OE	Output Enable for CPU0. 0 = Output Disabled, 1 = Output Enabled
5	CLKREQ#_3	Clock Request for SRC2. 0 = Not controlled, 1 = Controlled
4	CLKREQ#_3	Clock Request for SRC6 (does not apply to CPU clock). 0 = Not controlled, 1 = Controlled
3	CLKREQ#_2	Clock Request for SRC2. 0 = Not controlled, 1 = Controlled
2	CLKREQ#_2	Clock Request for SATA75M/SRC0. 0 = Not controlled, 1 = Controlled
1	CLKREQ#_1	Clock Request for SRC1. 0 = Not controlled, 1 = Controlled
0	CLKREQ#_1	Clock Request for SATA75M/SRC0. 0 = Not controlled, 1 = Controlled

Register 4. Byte 4

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		CPU1	12_48M	CPU2	ITP_EN		CPU0	
Туре	R/W	R/W	R	R/W	R	R/W	R/W	R/W

Reset settings = 00x0x000

Bit	Name	Function
7	Reserved	
6	CPU1	CPU1 Free Run Control. 0 = Free Running, 1 = Stoppable
5	12_48M	Selectable 12_48M Status. 0 = 48M, 1 = 12M
4	CPU2	CPU2 Free Run Control. 0 = Free Running, 1 = Stoppable
3	ITP_EN	Selectable CPUe_ITP/ SRC6 Status. 0 = SRC6, 1 = CPU2
2	Reserved	
1	CPU0	CPU0 Free Run Control. 0 = Free Running, 1 = Stoppable
0	Reserved	

Register 5. Byte 5

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				SATA75/SRC0	SRC6	SRC2	SRC1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 00010000

Bit	Name	Function
7:5	Reserved	
4	SATA75/SRC0	SATA75/SRC0 Free Run Control. 0 = Free Running, 1 = Stoppable
3	SRC6	SRC6 Free Run Control. 0 = Free Running, 1 = Stoppable
2	SRC2	SRC2 Free Run Control. 0 = Free Running, 1 = Stoppable
1	SRC1	SRC1 Free Run Control. 0 = Free Running, 1 = Stoppable
0	Reserved	

Register 6. Byte 6

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CPU_AMP		SRC_AMP		DOT96_AMP		SATA_AMP	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function
7:6	CPU_AMP	CPU Amplitude Adjustment. 00 = 700 mV, 01 = 800 mV, 10 = 900 mV, 11 = 1000 mV
5:4	SRC_AMP	SRC Amplitude Adjustment. 00 = 700 mV, 01 = 800 mV, 10 = 900 mV, 11 = 1000 mV
3:2	DOT96_AMP	DOT96 Amplitude Adjustment. 00 = 700 mV, 01 = 800 mV, 10 = 900 mV, 11 = 1000 mV
1:0	SATA_AMP	SATA75/SRC0 Amplitude Adjustment. 00 = 700 mV, 01 = 800 mV, 10 = 900 mV, 11 = 1000 mV

Register 7. Byte 7

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Rev Code Bit 3	Rev Code Bit 2	Rev Code Bit 1	Rev Code Bit 0	Vendor ID Bit 3	Vendor ID Bit 2	Vendor ID Bit 1	Vendor ID Bit 0
Туре	R	R	R	R	R	R	R	R

Bit	Name	Function
7	Rev Code Bit 3	Revision Code Bit 3
6	Rev Code Bit 2	Revision Code Bit 2
5	Rev Code Bit 1	Revision Code Bit 1
4	Rev Code Bit 0	Revision Code Bit 0
3	Vendor ID Bit 3	Vendor ID Bit 3
2	Vendor ID Bit 2	Vendor ID Bit 2
1	Vendor ID Bit 1	Vendor ID Bit 1
0	Vendor ID Bit 0	Vendor ID Bit 0

Register 8. Byte 8

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
Туре	R/W							

Bit	Name	Function
7	BC7	Byte count register for block read operation.
6	BC6	The default value for Byte count is 15. In order to read beyond Byte 15, the user should change the byte count limit
5	BC5	to or beyond the byte that is desired to be read.
4	BC4	
3	BC3	
2	BC2	
1	BC1	
0	BC0	

Register 9. Byte 9

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	SRC5	SRC4	SRC3	SRC5	SRC4	SRC3	PCI0	PCIF
Туре	R/W							

Bit	Name	Function
7	SRC5	Output Enable for SRC5. 0 = Output Disabled, 1 = Output Enabled
6	SRC4	Output Enable for SRC4. 0 = Output Disabled, 1 = Output Enabled
5	SRC3	Output Enable for SRC3. 0 = Output Disabled, 1 = Output Enabled
4	SRC5	SRC5 Free Run Control. 0 = Free Running, 1 = Stoppable
3	SRC4	SRC4 Free Run Control. 0 = Free Running, 1 = Stoppable
2	SRC3	SRC3 Free Run Control. 0 = Free Running, 1 = Stoppable
1	PCI0	PCI0 Free Run Control. 0 = Free Running, 1 = Stoppable
0	PCIF	PCIF Free Run Control. 0 = Free Running, 1 = Stoppable

Register 10. Byte 10

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								
Туре	R/W							
_		-						

Reset settings = 00000000

Bit	Name	Function
7:0	Reserved	

Register 11. Byte 11

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	14M_Bit2	14M_Bit1	14M_Bit0	25M_Bit2	25M_Bit1	25M_Bit0	12_48M_ Bit2	12_48M_ Bit0
Туре	R/W	R/W						

Bit	Name				Func	tion	
7	14M_Bit2	-		-	-	mode default '10	
6	14M_Bit1	Wireless Frie	ndly Moo	de default	t to '111'		
5	14M_Bit0	Mode	Bit2	Bit1	Bit0	Buffer Strength	
4	25M_Bit2		0	0	0	Strong	
4			0	0	1		
3	25M Bit1		0	1	0		
	—		0	1	1		
2	25M_Bit0		1	0	0		
4	40 40M DH0	Default	1	0	1		
Ĩ	12_48M_Bit2		1	1	0	1 ↓	
0	12_48M_Bit0	Wireless Friendly	1	1	1	Weak	
-	· · · · · · _ _ · · · ·						

Register 12. Byte 12

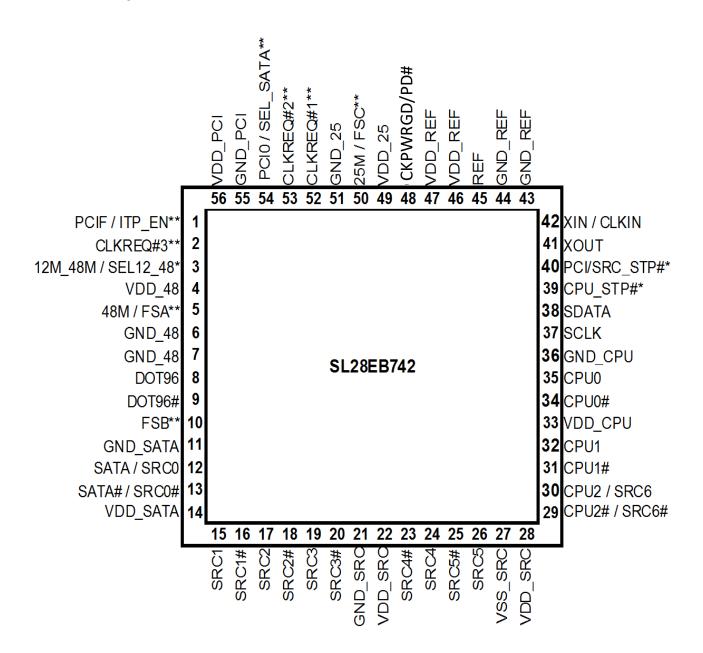
Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	48M_Bit2	48M_Bit1	48M_Bit0	PCI0_Bit2	PCI0_Bit1	PCI0_Bit0		12_48M_Bit1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset settings = 10110100

Bit	Name				Func	tion
7	48M_Bit2	-		-	-	mode default '101'
6	48M_Bit1	Wireless Frie	ndly Moo	le defaul	t to '111'	
5	48M_Bit0	Mode	Bit2	Bit1	Bit0	Buffer Strength
4			0	0	0	Strong
4	PCI0_Bit2		0	0	1	
3	PCI0 Bit1		0	1	0	
U U		-	0	1	1	
2	PCI0_Bit0		1	0	0	1
4		Default	1	0	1	
1	Reserved		1	1	0] ↓
0	12_48M_Bit1	Wireless Friendly	1	1	1	Weak
2						

Register 13. Byte 13

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	PCIF_Bit2	PCIF_Bit1	PCIF_Bit0					Wireless Friendly Mode
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W


Bit	Name				Func	tion	
7	_	-		-	-	mode default 101	
6	PCIF_Bit1	Wireless Frie	ndly Moo	le defaul	t to '111'		
5	PCIF_Bit0	Mode	Bit2	Bit1	Bit0	Buffer Strength	
			0	0	0	Strong	
			0	0	1		
			0	1	0		
			0	1	1		
			1	0	0		
		Default	1	0	1		
			1	1	0] 🖌	
		Wireless Friendly	1	1	1	Weak	
4:1	Reserved						
0	Mode		Default	all single		locks slew rate config bits to 101 ocks slew rate config bits to 111	

Register 14. Byte 14

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				OTP_4	OTP_3	OTP_2	OTP_1	OTP_0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Function
7:5	Reserved	
4	OTP_4	OTP_ID.
3	OTP_3	Identification for programmed device
2	OTP_2	
1	OTP_1	
0	OTP_0	

5. Pin Descriptions: 56-Pin QFN

Table	12.	56-QFN	Pin	Definitions
-------	-----	--------	-----	-------------

Pin #	Name	Туре	Description
1	PCIF/ITP_EN**	I/O, SE, PD	33 MHz free running clock output/3.3 V LVTTL input to enable SRC6 or CPU2_ITP (sampled on the CKPWRGD assertion). 0 = SRC6, 1 = CPU2
2	CLKREQ#3**	I, PD	3.3 V clock request input (internal 100 k Ω pull-down)
3	12_48M / SEL12_48	I/O, SE PU	12/48 MHz Clock output/3.3 V-tolerance input for 12 MHz or 48 MHz selection (Sampled at CKPWRGD assertion) (internal 100 k Ω pull-up). 0 = 48M, 1 = 12M
4	VDD_48	PWR	3.3 V Power supply
5	48M/FSA**	I/O PD	Fixed 48 MHz clock output/3.3 V-tolerant input for CPU frequency selection (internal 100 k Ω pull-down). Refer to Table 2 for Vil_FS and Vih_FS specifications.
6	GND_48	GND	Ground.
7	GND_48	GND	Ground.
8	DOT96	O, DIF	Fixed true 96 MHz clock output.
9	DOT96#	O, DIF	Fixed complement 96 MHz clock output.
10	FSB**	I, PD	3.3 V-tolerant input for CPU frequency selection (internal 100 k Ω pull-down). Refer to Table 2 for Vil_FS and Vih_FS specifications.
11	GND_SATA	GND	Ground.
12	SATA/SRC0	O, DIF	100 MHz True differential serial reference clock.
13	SATA/SRC0#	O, DIF	100 MHz Complement differential serial reference clock.
14	VDD_SATA	PWR	3.3 V Power supply.
15	SRC1	O, DIF	100 MHz True differential serial reference clock.
16	SRC1#	O, DIF	100 MHz Complement differential serial reference clock.
17	SRC2	O, DIF	100 MHz True differential serial reference clock.
18	SRC2#	O, DIF	100 MHz Complement differential serial reference clock.
19	SRC3	O, DIF	100 MHz True differential serial reference clock.
20	SRC3#	O, DIF	100 MHz Complement differential serial reference clock.
21	GND_SRC	GND	Ground.
22	VDD_SRC	PWR	3.3 V Power supply.
23	SRC4#	O, DIF	100 MHz True differential serial reference clock.
24	SRC4	O, DIF	100 MHz Complement differential serial reference clock.

 ³⁶ Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com

 Rev. 1.0 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 7, 2021

Pin #	Name	Туре	Description
25	SRC5#	O, DIF	100 MHz True differential serial reference clock.
26	SRC5	O, DIF	100 MHz Complement differential serial reference clock.
27	GND_SRC	GND	Ground.
28	VDD_SRC	PWR	3.3 V Power supply.
29	SRC6#/CPU2_ITP#	O, DIF	Selectable complementary differential CPU or SRC clock output. ITP_EN = 0 @ CKPWRGD assertion = SRC6 ITP_EN = 1 @ CKPWRGD assertion = CPU2
30	SRC6/CPU2_ITP	O, DIF	Selectable True differential CPU or SRC clock output. ITP_EN = 0 @ CKPWRGD assertion = SRC6 ITP_EN = 1 @ CKPWRGD assertion = CPU2
31	CPU1#	O, DIF	Complement differential CPU clock output.
32	CPU1	O, DIF	True differential CPU clock output.
33	VDD_CPU	PWR	3.3 V Power supply.
34	CPU0#	O, DIF	Complement differential CPU clock output.
35	CPU0	O, DIF	True differential CPU clock output.
36	GND_CPU	GND	Ground
37	SCLK	I	SMBus compatible SCLOCK.
38	SDATA	I/O	SMBus compatible SDATA.
39	CPU_STP#*	I, PU	3.3 V-tolerant input for stopping CPU outputs (internal 100 k Ω pull-up).
40	PCI/SRC_STP#*	I, PU	3.3 V-tolerant input for stopping PCI and SRC outputs (internal 100 k Ω pull-up).
41	XOUT	0	14.318 MHz Crystal output. Float XOUT if using only CLKIN (Clock input).
42	XIN/CLKIN	I	14.318 MHz Crystal input or 3.3 V, 14.318 MHz Clock Input
43	GND_REF	GND	Ground for REF clock and WOL support.
44	GND_REF	GND	Ground for REF clock and WOL support.
45	REF	0	14.318 MHz reference output clock.
46	VDD_REF	PWR	3.3 V Power Supply for REF clock and power to support WOL.
47	VDD_REF	PWR	3.3 V Power Supply for REF clock and power to support WOL.
48	CKPWRGD/PD#	Ι	3.3 V LVTTL input. This pin is a level sensitive strobe used to deter- mine when latch inputs are valid and are ready to be sampled.
49	VDD_25	PWR	3.3 V Power supply.

Pin #	Name	Туре	Description
50	25M/FSC**	I/O, PD	Fixed 25 MHz clock output/3.3 V-tolerant input for CPU frequency selection (internal 100 k Ω pull-up). Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.
51	GND_25	GND	Ground.
52	CLKREQ#1**	I, PD	3.3 V clock request input (internal 100 k Ω pull-down)
53	CLKREQ#2**	I, PD	3.3 V clock request input (internal 100 k Ω pull-down)
54	PCI0/SEL_SATA**	-	33 MHz clock output/3.3 V LVTTL input to enable 100 MHz SATA (internal 100 k Ω pull-up). 0 = SATA/SRC0 = SRC0 1 = SATA/SRC0 = SATA
55	GND_PCI	GND	Ground.
56	VDD_PCI	PWR	3.3 V Power supply.

Table 12	. 56-QFN	Pin	Definitions	(Continued)
----------	----------	-----	-------------	-------------

6. Ordering Guide

Part Number	Package Type	Product Flow
Lead-free		
SL28EB742ALC	56-pin QFN	Industrial, 0 to 70 °C
SL28EB742ALCT	56-pin QFN Tape and Reel	Industrial, 0 to 70 °C
SL28EB742ALI	56-pin QFN	Industrial, –40 to 85 °C
SL28EB742ALIT	56-pin QFN Tape and Reel	Industrial, –40 to 85 °C

7. Package Outline

Figure 13 illustrates the package details for the SL28EB742. Table 13 lists the values for the dimensions shown in the illustration.

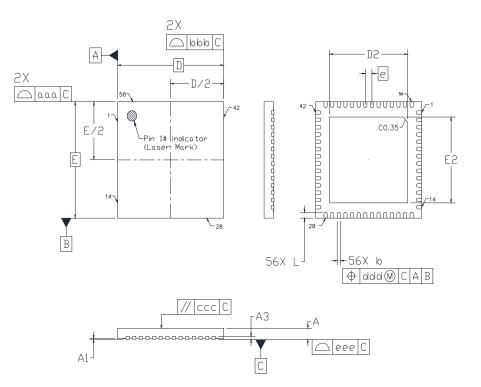


Figure 13. 56-Lead QFN Package

Symbol	Millimeters					
	Min	Nom	Мах			
A	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
A3		0.20 REF				
b	0.18	0.25	0.30			
D		8.00 BSC				
D2	5.80	5.90	6.00			
е		0.50 BSC				
E		8.00 BSC				
E2	5.80	5.90	6.00			
L	0.30	0.40	0.50			
aaa		0.10				
bbb		0.10				
CCC	0.10					
ddd	0.10					
eee	0.08					

Table 13. Package Diagram Dimensions

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4. This drawing conforms to the JEDEC Solid State Outline MO-220.

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

- Correct the pin description.
- Remove 75 MHz description on pin description.
- Remove WOL function description.
- Correct OTP code to 01000.

SKYWORKS

ClockBuilder Pro

Customize Skyworks clock generators, jitter attenuators and network synchronizers with a single tool. With CBPro you can control evaluation boards, access documentation, request a custom part number, export for in-system programming and more!

www.skyworksinc.com/CBPro

Portfolio www.skyworksinc.com/ia/timing

SW/HW www.skyworksinc.com/CBPro

Quality www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5[®], SkyOne[®], SkyBlue[™], Skyworks Green[™], Clockbuilder[®], DSPLL[®], ISOmodem[®], ProSLIC[®], and SiPHY[®] are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

