DG1208/DG1209

Low-Leakage, Single 8-Channel and Dual 4-Channel, Analog Multiplexers

General Description

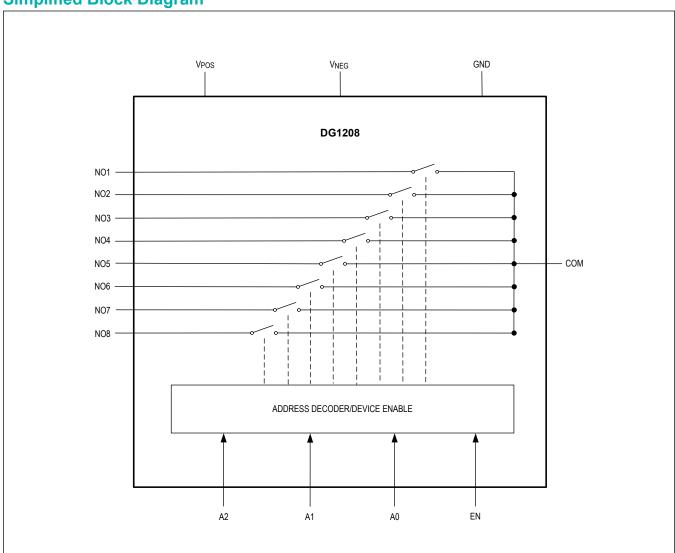
The DG1208 and DG1209 are low-leakage, low-charge-injection, single 8-channel or dual 4-channel multiplexing switch devices. The DG1208 uses three selection inputs A2, A1, and A0 to determine the switching logic; the DG1209 uses two selection inputs A1 and A0. On both devices, an enable (EN) input is used to enable or disable the device.

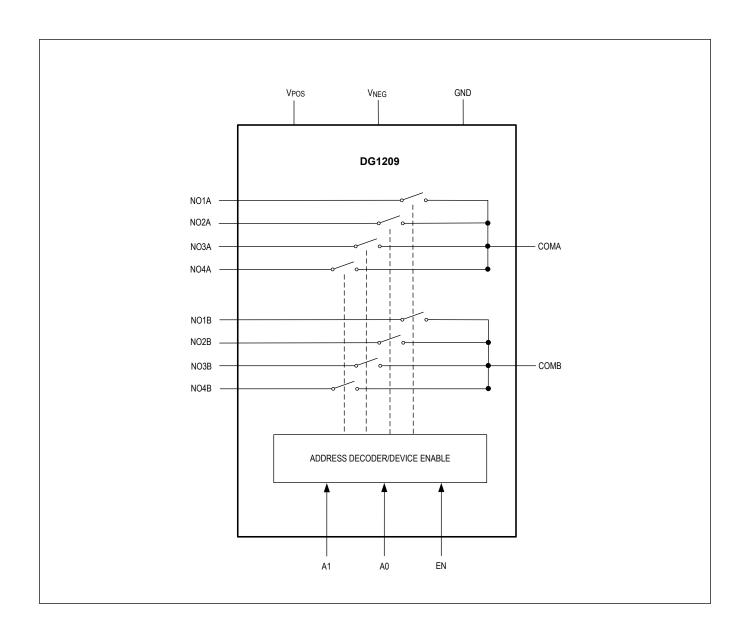
The low capacitance and low charge injection of the DG1208/DG1209 make them ideal for automatic test equipment systems, data acquisition systems and sample-and-hold systems where low glitch and fast settling time are required.

The DG1208/DG1209 are available in 4mm x 4mm 16-lead TQFN or 16-lead TSSOP packages. The devices are specified for operation over the -40°C to +85°C temperature range.

Applications

- Automatic Test Equipment Systems
- Data Acquisition Systems
- Sample-and-Hold Systems
- Communication Systems
- Audio and Video Routing


Benefits and Features


- Distortion-Free Measurement
 - 100Ω (typ) On Resistance
 - ≤ 1nA (max) On/Off-Leakage Current at +85°C
 - ≤ 0.5pC (typ) Charge Injection
- Wide Supply Range with Low Supply Current
 - 40µA (typ) Quiescent Current at Room Temperature
 - Fully Specified with ±15V Bipolar Supplies or +12V Single Supply
 - · Rail-to-Rail Operation
- Flexible Design Option
 - · GPIO-Compatible Control Inputs
 - EN Input to Enable/Disable Device
 - Available in both 16-TQFN and 16-TSSOP Packages
 - -40°C to +85°C Temperature Range

Ordering Information appears at end of data sheet.

Simplified Block Diagram

Absolute Maximum Ratings

Vess to GND	0.3\/ to ±20.5\/
V _{POS} to GND	
V _{NEG} to GND	20.5V to +0.3V
V _{POS} to V _{NEG}	0.3V to +41V
A_, EN to GND	$0.3V \text{ to } (V_{POS} + 0.3V)$
NO_, COM_ to GND(V _{NEG} - 0	$.3V)$ to $(V_{POS} + 0.3V)$
Continuous Current Into Any Pin	±30mA
Continuous Power Dissipation (16 TQFN)	
Single-Layer Board (T _A = +70°C, derate	e 16.90mW/°C above
+70°C)	1349.10mW
Multilayer Board (T _A = +70°C, dera	ate 25mW/°C above
+70°C)	2000mW

Continuous Power Dissipation (16 TSSOP)	
Single-Layer Board ($T_A = +70^{\circ}$ C, derate 9.40mW/	°C above
+70°C)	'54.70mW
Multilayer Board (T _A = +70°C, derate 11.10mW/	°C above
+70°C)	88.90mW
Operating Temperature Range40°	C to 85°C
Junction Temperature	+150°C
Storage Temperature Range40°C	
Soldering Temperature (reflow)	+260°C
• , , ,	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

16 TQFN

T1644+4
<u>21-0139</u>
90-0070
59.30°C/W
6°C/W
40°C/W
6°C/W

16 TSSOP

Package Code	U16+1				
Outline Number	21-0066				
Land Pattern Number	90-0117				
THERMAL RESISTANCE, SINGLE-LAYER BOARD					
Junction to Ambient (θ _{JA})	106°C/W				
Junction to Case (θ _{JC})	27°C/W				
THERMAL RESISTANCE, FOUR-LAYER BOARD					
Junction to Ambient (θ _{JA})	90°C/W				
Junction to Case (θ _{JC})	27°C/W				

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics - ±15V Bipolar Supplies

 $(V_{POS} = +15V, V_{NEG} = -15V, GND = 0V, T_A = -40^{\circ}C \text{ to } 85^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Positive Power-Supply Voltage	V _{POS}		+5		+20	V
Negative Power-Supply Voltage	V _{NEG}		-20		-5	V
Positive Power-Supply		EN = A_ = 0V		40	70	
Current IPOS		EN = A_ = 2.4V		40	80	μA
Negative Power-Supply		EN = A_ = 0V	-1		+1	
Current	INEG	EN = A_ = 2.4V	-1		+1	μA
ANALOG SWITCH						
Analog-Signal Voltage Range	V _{NO} _, V _{COM} _		V _{NEG}		V _{POS}	V
On-Resistance	R _{ON}	V _{COM} = 0V, ±5V, ±10V, I _{COM} = 1mA (<u>Note 2</u>)		100	160	Ω
On-Resistance Match Between Channels	ΔR _{ON}	V _{COM} = 0V, ±5V, ±10V, I _{COM} = 1mA (<u>Note 2</u>)		10	30	Ω
On-Resistance Flatness	R _{FLAT}	V _{COM_} = -5V, 0V, +5V, I _{COM_} = 1mA (<u>Note 3</u>)		17	25	Ω
NO_ Off Capacitance	C _{NO_OFF}	V _{NO} = 0.5V _{P-P} , f _{SW} = 1MHz		4		pF
COM_ Off Capacitance	C _{COM OFF}	$V_{COM} = 0.5V_{P-P}, f_{SW} = 1MHz$		15		pF
COM_ On Capacitance	C _{COM_ON}	$V_{COM} = 0.5V_{P-P}, f_{SW} = 1MHz$		10		pF
NO_ Off-Leakage Current	I _{NO_OFF}	$V_{NO} = \pm 10V, V_{COM} = \mp 10V (Note 4)$ -1		+1	nA	
COM_ Off-Leakage		DG1208, V _{NO} _ = +1/+10V, V _{COM} _ = +10/+1V (<u>Note 5</u>)	-1		+1	4
Current	ICOM_OFF	DG1209, V _{NO} _ = +1/+10V, V _{COM} _ = +10/+1V (<u>Note 5</u>)	-1		+1	nA
COM_ On-Leakage	1	DG1208, V _{NO} _ = V _{COM} _ = ±10V	-1		+1	^
Current	ICOM_ON	DG1209, V _{NO} _ = V _{COM} _ = ±10V	-1		+1	nA
DYNAMIC CHARACTER	ISTICS					
Turn-On Time	t _{ON}	<u>Figure 1</u> , V _S = 10V		200	400	ns
Turn-Off Time	t _{OFF}	<u>Figure 1</u> , V _S = 10V		300	400	ns
Break-Before-Make Time	t _{BBM}	<u>Figure 2</u> , V _S = 10V 50			ns	
Total Transition Time	t _{TT}	Figure 3, V _S = 10V			400	ns
OdD Danduddu		DG1208, <u>Figure 4</u> , R _S = R _L = 50Ω		200		N 41 1
-3dB Bandwidth	f _{BW}	DG1209, <u>Figure 4</u> , $R_S = R_L = 50\Omega$	250		MHz	
Total Harmonic Distortion Plus Noise	THD+N	Figure 5, R _S = 50Ω, R _L = 10kΩ, V _S = $5V_{RMS}$, f _{SW} = 20Hz to 20kHz 0.1			%	
Off-Isolation		Figure 6, $R_S = R_L = 50\Omega$, $V_{NO} = 0.5V_{P-}$ p, $f_{SW} = 1MHz$		-80		dB
Crosstalk		$Figure 7$, R _S = R _L = 50Ω, V _{NO} _= 0.5V _P _P, f _{SW} = 1MHz		-80		dB

Electrical Characteristics - ±15V Bipolar Supplies (continued)

 $(V_{POS} = +15V, V_{NEG} = -15V, GND = 0V, T_A = -40^{\circ}C$ to 85°C, unless otherwise noted.) (*Note 1*)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Charge Injection	C _{INJ}	Figure 8, $R_S = 0\Omega$, $V_S = 0V$		0.5		рC
DIGITAL INPUTS (A_, EN	l)					
Input Logic High Voltage	V_{IH}		2.4			V
Input Logic Low Voltage	V _{IL}				0.8	V
Input-Leakage Current	I _{IN}		-5		+40	μA

Electrical Characteristics - +12V Single Supply

(V_{POS} = +12V, V_{NEG} = GND = 0V, T_A = -40°C to 85°C, unless otherwise noted.) (*Note 1*)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY						•	
Positive Power-Supply Voltage	V _{POS}		10	12	20	V	
Positive Power-Supply	l	EN = A_ = 0V			70	μА	
Current	I _{POS}	EN = A_ = 2.4V			90		
ANALOG SWITCH							
Analog-Signal Voltage Range	V _{NO} _, V _{COM} _		0		V_{POS}	V	
On-Resistance	R _{ON}	V _{COM} _ = 3V, 6V, 9V, I _{COM} _ = 1mA (<u>Note</u> <u>6</u>)		165	250	Ω	
On-Resistance Match Between Channels	ΔR _{ON}	V _{COM} _ = 3V, 6V, 9V, I _{COM} _ = 1mA (<u>Note</u> <u>6</u>)		18	50	Ω	
On-Resistance Flatness	R _{FLAT}	V _{COM} _ = 3V, 6V, 9V, I _{COM} _ = 1mA (<u>Note</u> <u>6</u>)		15	50	Ω	
NO_ Off Capacitance	C _{NO_OFF}	$V_{NO} = 0.5V_{P-P}, f_{SW} = 1MHz$		4		pF	
COM_ Off Capacitance	C _{COM_OFF}	V_{COM} = 0.5 V_{P-P} , f_{SW} = 1MHz		15		pF	
COM_ On Capacitance	C _{COM_ON}	V _{COM} _ = 0.5V _{P-P} , f _{SW} = 1MHz		10		pF	
NO_ Off-Leakage Current	I _{NO_OFF}	V _{NO_} = +1/+10V, V _{COM_} = +10/+1V (<u>Note 7</u>)	-1		+1	nA	
COM_ Off-Leakage	ICOM_OFF	DG1208, V _{NO} _ = +1/+10V, V _{COM} _ = +10/+1V (<u>Note 7</u>)	-1		+1	n^	
Current		DG1209, V _{NO} _= +1/+10V, V _{COM} _= +10/+1V (<u>Note 7</u>)	-1		+1	nA	
COM_ On-Leakage	1	DG1208, V _{NO} _ = V _{COM} _ = +1V or +10V	-1		+1	nΛ	
Current	ICOM_ON	DG1209, V _{NO} _ = V _{COM} _ = +1V or +10V	-1		+1	nA	
DYNAMIC CHARACTER	ISTICS						
Turn-On Time	ton	Figure 1, V _S = 10V		400	600	ns	
Turn-Off Time	tOFF	<u>Figure 1</u> , V _S = 10V		250	500	ns	
Break-Before-Make Time	t _{BBM}	<u>Figure 2</u> , V _S = 10V	50			ns	
Total Transition Time	t _{TT}	Figure 3, V _S = 10V			700	ns	
-3dB Bandwidth	f	DG1208, <u>Figure 4</u> , $R_S = R_L = 50\Omega$		200		MU-	
-Jud danuwiuin	f _{BW}	DG1209, <u>Figure 4</u> , $R_S = R_L = 50\Omega$		250		MHz	

Electrical Characteristics - +12V Single Supply (continued)

 $(V_{POS} = +12V, V_{NEG} = GND = 0V, T_A = -40^{\circ}C$ to 85°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS MIN TYP MAX				UNITS
Total Harmonic Distortion Plus Noise	THD+N	Figure 5, R _S = 50Ω, R _L = 10kΩ, V _S = $5V_{RMS}$, f_{SW} = 20Hz to 20kHz,	0.1		%	
Off-Isolation		$\frac{Figure 6}{P}$, R _S = R _L = 50Ω, V _{NO} _= 0.5V _P P, f _{SW} = 1MHz		-80		dB
Crosstalk		Figure 7, $R_S = R_L = 50\Omega$, $V_{NO} = 0.5V_{P-}$ P, $f_{SW} = 1MHz$		-80		dB
Charge Injection	C _{INJ}	Figure 8, V_S = 6V, R_S = 0Ω		0.5		рС
DIGITAL INPUTS (A_, EN	l)					
Input Logic High Voltage	V _{IH}		2.4			V
Input Logic Low Voltage	V_{IL}	0.8		V		
Input-Leakage Current	I _{IN}		-5 +30		μA	

- Note 1: Limits are 100% tested at T_A = +85°C. Limits over the operating temperature range and relevant supply-voltage range are guaranteed by design and characterization.
- Note 2: On Resistance (R_{ON}) and On-Resistance Match Between Channels (ΔR_{ON}) are measured when the output channel is turned on. The output (COM_) is sourced with 1mA current while biased at one of these levels: 0V, ±5V, or ±10V.
- Note 3: On-Resistance Flatness (R_{FLAT}) is measured when the output channel is turned on. The output (COM_) is sourced with 1mA current while biased at one of these levels: -5V, 0V, or +5V.
- Note 4: NO_ Off-Leakage Current (I_{NO_OFF}) is measured when the output channel is switched off while the input (NO_) is biased at +10V and output (COM_) at -10V, or while the input is biased at -10V and output at +10V.
- Note 5: COM_ Off-Leakage Current (I_{COM_OFF}) is measured when the output channel is switched off while the input (NO_) is biased at +1V and output (COM_) at +10V, or while the input is biased at +10V and output at +1V.
- Note 6: On Resistance (R_{ON}), On-Resistance Match Between Channels (ΔR_{ON}), and On-Resistance Flatness (R_{FLAT}) are measured when the output channel is turned on. The output (COM_) is sourced with 1mA current while biased at one of these levels: 3V, 6V. or 9V.
- Note 7: NO_Off-Leakage Current (INO_OFF) and COM_Off-Leakage Current (ICOM_OFF) are measured when the output channel is switched off while the input (NO_) is biased at +1V and output (COM_) at +10V, or while the input is biased at +10V and output at +1V.

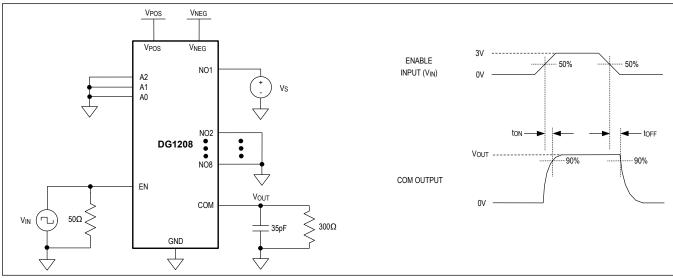


Figure 1. Turn-On Time and Turn-Off Time (Similar Connection for DG1209)

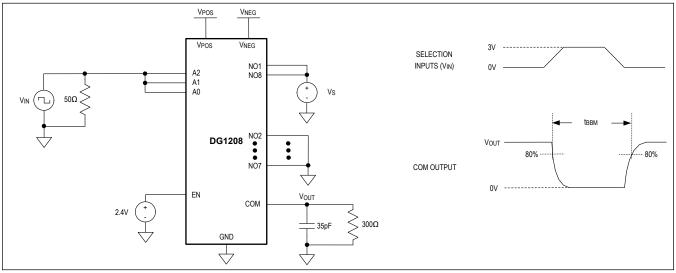


Figure 2. Break-Before-Make Time (Similar Connection for DG1209)

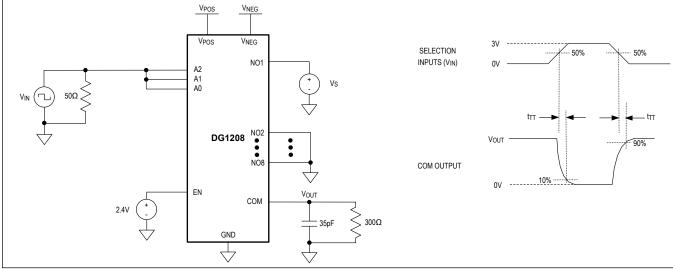


Figure 3. Total Transition Time (Similar Connection for DG1209)

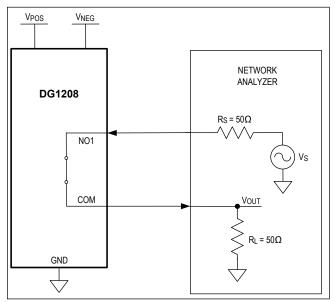


Figure 4. -3dB Bandwidth (Similar Connection for DG1209)

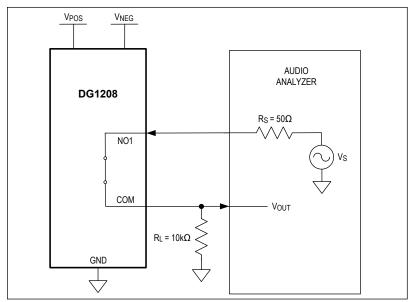


Figure 5. Total Harmonic Distortion Plus Noise (Similar Connection for DG1209)

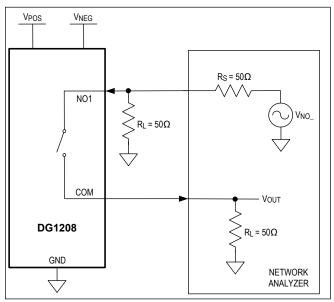


Figure 6. Off Isolation (Similar Connection for DG1209)

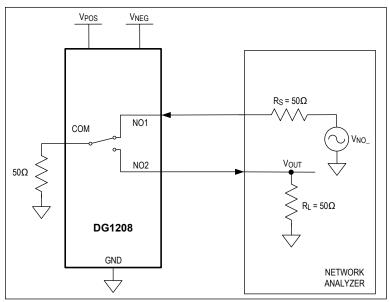


Figure 7. Crosstalk (Similar Connection for DG1209)

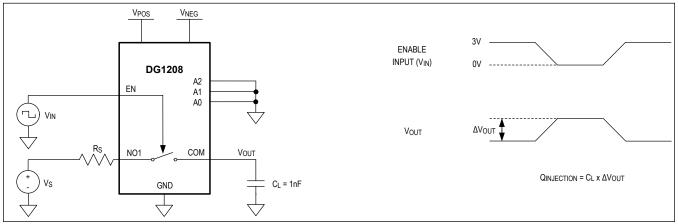
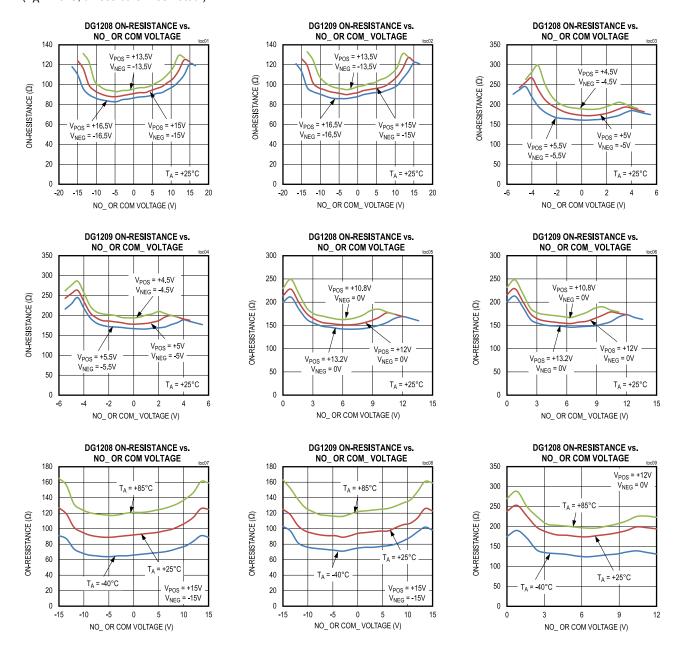
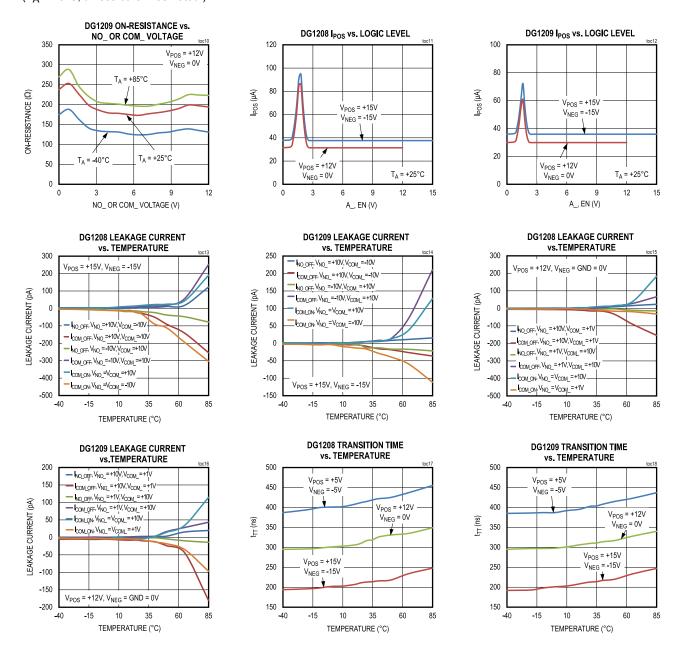
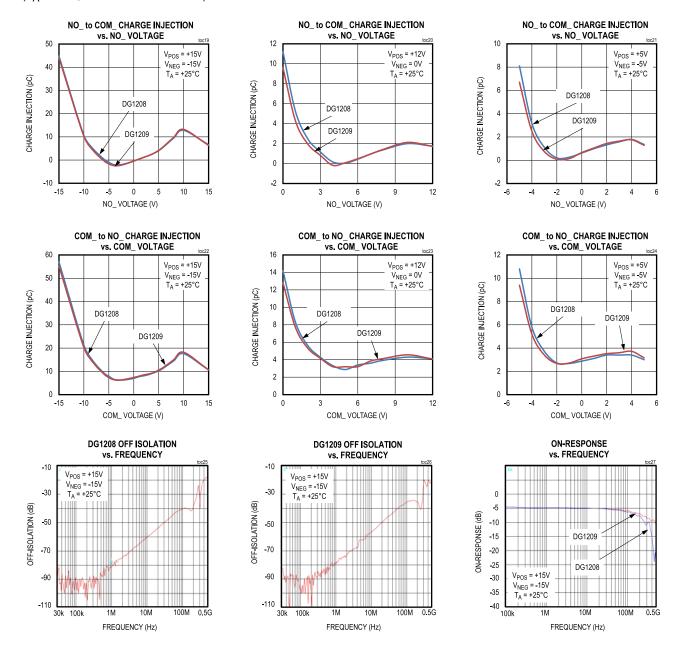



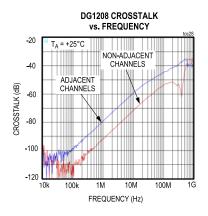
Figure 8. Charge Injection (Similar Connection for DG1209)


Typical Operating Characteristics

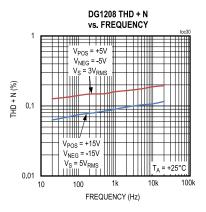
(T_A = 25°C, unless otherwise noted.)

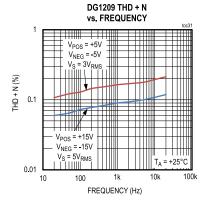

Typical Operating Characteristics (continued)

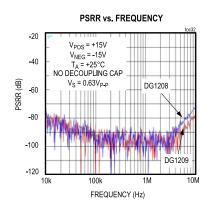
(T_A = 25°C, unless otherwise noted.)

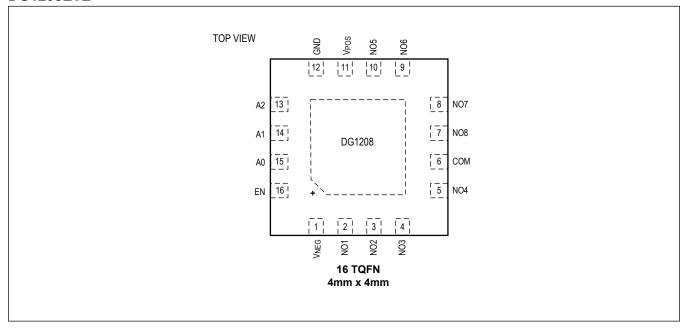

Typical Operating Characteristics (continued)

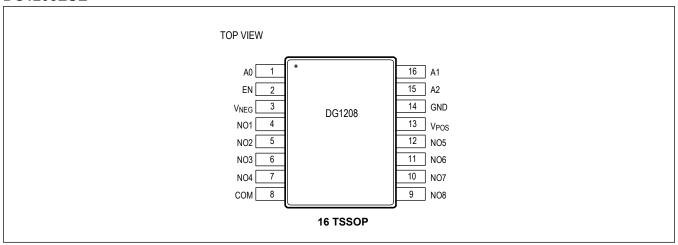
(T_A = 25°C, unless otherwise noted.)




Typical Operating Characteristics (continued)


(T_A = 25°C, unless otherwise noted.)

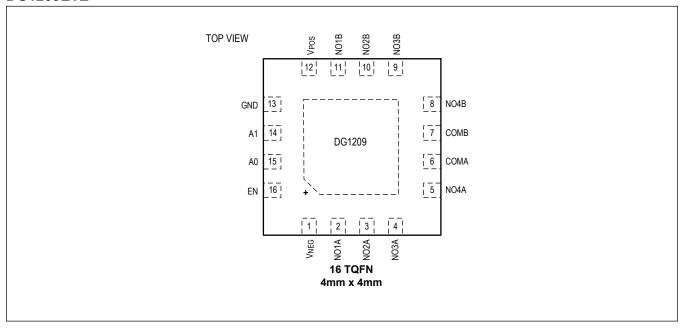




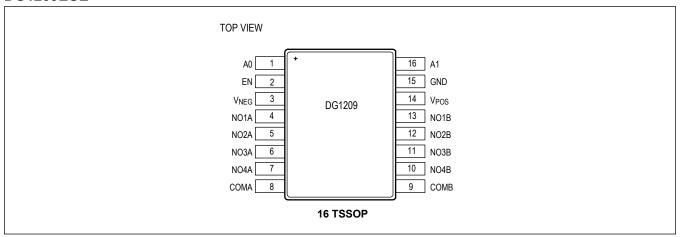
Pin Configurations

DG1208ETE+

DG1208EUE+



Pin Description


PIN				
DG1208ETE +	DG1208EUE +	NAME	FUNCTION	
POWER SUPP	PLY			
11	13	V _{POS}	Positive Power Supply. Bypass V _{POS} to GND with a minimum 0.1µF ceramic capacitor as close to the pin as possible.	
1	3	V _{NEG}	Negative Power Supply. Bypass V_{NEG} to GND with a minimum 0.1 μ F ceramic capacitor as close to the pin as possible. In single-supply applications, connect V_{NEG} to GND.	
12	14	GND	Logic Ground Reference	
EP	-	EP	Exposed Pad. Leave unconnected.	
DIGITAL INPU	TS			
13	15	A2	Logic Address Input. See the <i>Control Logic</i> section for more information.	
14	16	A1	Logic Address Input. See the <i>Control Logic</i> section for more information.	
15	1	A0	Logic Address Input. See the <i>Control Logic</i> section for more information.	
16	2	EN	Enable Input. Drive EN high to enable the multiplexer. Drive EN low to disable all switches. Do not leave EN unconnected.	
ANALOG SWI	тсн			
6	8	COM	Common Bidirectional Analog Signal Terminal. It can be either an input or output.	
7	9	NO8	Normally-Open Bidirectional Analog Signal Terminal 8. It can be either an input or output.	
8	10	NO7	Normally-Open Bidirectional Analog Signal Terminal 7. It can be either an input or output.	
9	11	NO6	Normally-Open Bidirectional Analog Signal Terminal 6. It can be either an input or output.	
10	12	NO5	Normally-Open Bidirectional Analog Signal Terminal 5. It can be either an input or output.	
5	7	NO4	Normally-Open Bidirectional Analog Signal Terminal 4. It can be either an input or output.	
4	6	NO3	Normally-Open Bidirectional Analog Signal Terminal 3. It can be either an input or output.	
3	5	NO2	Normally-Open Bidirectional Analog Signal Terminal 2. It can be either an input or output.	
2	4	NO1	Normally-Open Bidirectional Analog Signal Terminal 1. It can be either an input or output.	

Pin Configurations

DG1209ETE+

DG1209EUE+

Pin Description

PIN			
DG1209ETE +	DG1209EUE +	NAME	FUNCTION
POWER SUPP	PLY		
12	14	V _{POS}	Positive Power Supply. Bypass V _{POS} to GND with a minimum 0.1µF ceramic capacitor as close to the pin as possible.
1	3	V _{NEG}	Negative Power Supply. Bypass V_{NEG} to GND with a minimum $0.1\mu F$ ceramic capacitor as close to the pin as possible. In single supply applications, connect V_{NEG} to GND.
13	15	GND	Logic Ground Reference
EP	-	EP	Exposed Pad. Leave unconnected.
DIGITAL INPU	TS		
14	16	A1	Logic Address Input. See the <i>Control Logic</i> section for more information.
15	1	A0	Logic Address Input. See the <i>Control Logic</i> section for more information.
16	2	EN	Enable Input. Drive EN high to enable the multiplexer. Drive EN low to disable all switches. Do not leave EN unconnected.
ANALOG SWI	тсн		
7	9	COMB	B-Side Common Bidirectional Analog Signal Terminal. It can be either an input or output.
6	8	COMA	A-Side Common Bidirectional Analog Signal Terminal. It can be either an input or output.
8	10	NO4B	B-Side Normally-Open Bidirectional Analog Signal Terminal 4. It can be either an input or output.
9	11	NO3B	B-Side Normally-Open Bidirectional Analog Signal Terminal 3. It can be either an input or output.
10	12	NO2B	B-Side Normally-Open Bidirectional Analog Signal Terminal 2. It can be either an input or output.
11	13	NO1B	B-Side Normally-Open Bidirectional Analog Signal Terminal 1. It can be either an input or output.
5	7	NO4A	A-Side Normally-Open Bidirectional Analog Signal Terminal 4. It can be either an input or output.
4	6	NO3A	A-Side Normally-Open Bidirectional Analog Signal Terminal 3. It can be either an input or output.
3	5	NO2A	A-Side Normally-Open Bidirectional Analog Signal Terminal 2. It can be either an input or output.
2	4	NO1A	A-Side Normally-Open Bidirectional Analog Signal Terminal 1. It can be either an input or output.

Detailed Description

The DG1208/DG1209 are single 8-channel or dual 4-channel multiplexing switch devices with low leakage and low charge injection. The low capacitance and low charge injection of the DG1208/DG1209 make them ideal for automatic test equipment systems, data acquisition systems, sample-and-hold systems, and communication systems where low glitch and fast settling time are required.

The DG1208 is a single 8-channel multiplexer. It switches one of the 8 NO_ inputs to a common output COM, as determined by the three selection inputs A2, A1, and A0. The DG1209 is a dual 4-channel multiplexer. It switches a pair of differential NO_ inputs to differential outputs COMA and COMB, as determined by the two selection inputs A1 and A0. See the <u>Control Logic</u> section for more information.

The DG1208/DG1209 operate rail-to-rail and are fully specified for ±15V bipolar supplies or +12V single supply. The EN input on the DG1208/DG1209 is used to enable or disable the device. When EN is low, all channels are switched off. When EN is high, each channel conducts bidirectionally according to the selection inputs.

Control Logic

The DG1208 uses three selection inputs A2, A1, and A0 to determine the switching logic.

Table 1. DG1208 Control Logic

A2	A1	Α0	EN	SWITCH ON
X	X	X	0	Switch Off
0	0	0	1	NO1
0	0	1	1	NO2
0	1	0	1	NO3
0	1	1	1	NO4
1	0	0	1	NO5
1	0	1	1	NO6
1	1	0	1	NO7
1	1	1	1	NO8

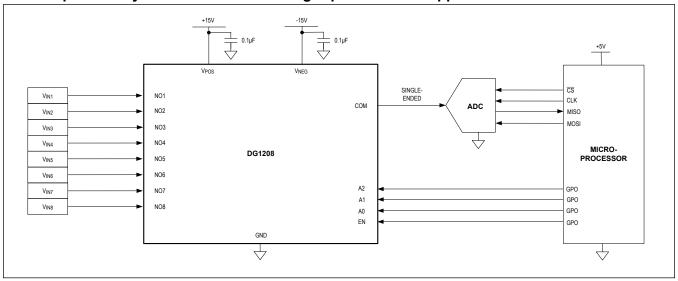
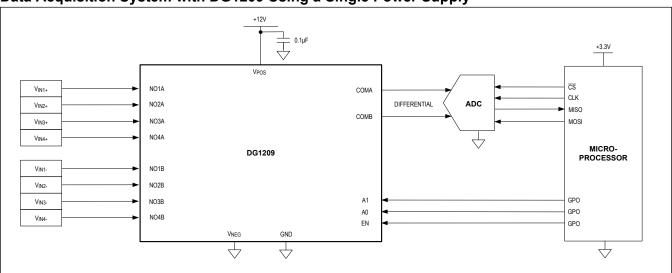

The DG1209 uses two selection inputs A1, and A0 to determine the switching logic.

Table 2. DG1209 Control Logic


A1	Α0	EN	SWITCH ON
Х	X	0	Switch Off
0	0	1	NO1A, NO1B
0	1	1	NO2A, NO2B
1	0	1	NO3A, NO3B
1	1	1	NO4A, NO4B

Typical Application Circuits

Data Acquisition System with DG1208 Using Bipolar Power Supplies

Data Acquisition System with DG1209 Using a Single Power Supply

Ordering Information

PART NUMBER	PIN-PACKAGE	TEMPERATURE	
DG1208ETE+	16 TQFN	-40°C to +85°C	
DG1208ETE+T	16 TQFN	-40°C to +85°C	
DG1208EUE+	16 TSSOP	-40°C to +85°C	
DG1208EUE+T	16 TSSOP	-40°C to +85°C	
DG1209ETE+	16 TQFN	-40°C to +85°C	
DG1209ETE+T	16 TQFN	-40°C to +85°C	
DG1209EUE+	16 TSSOP	-40°C to +85°C	
DG1209EUE+T	16 TSSOP	-40°C to +85°C	

⁺ Denotes a lead(Pb)-free/RoHS-compliant package.

DG1208/DG1209

Low-Leakage, Single 8-Channel and Dual 4-Channel, Analog Multiplexers

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/20	Release for Market Intro	_
1	8/21	Removed future product asterisks from Ordering Information table	22

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.