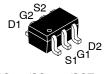
onsemi

Digital FET, Dual N & P Channel

FDG6321C

General Description

These dual N & P-Channel logic level enhancement mode field effect transistors are produced using **onsemi**'s proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially on low voltage replacement for bipolar digital transistors and small signal MOSFETS. Since bias resistors are not required, this dual digital FET can replace several different digital transistors, with different bias resistor values.


Features

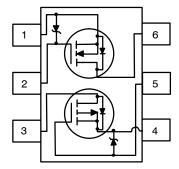
- N-Ch 0.50 A, 25 V
 - $R_{DS(ON)} = 0.45 \ \Omega @ V_{GS} = 4.5 \ V$
 - $R_{DS(ON)} = 0.60 \Omega @ V_{GS} = 2.7 V$
- P-Ch -0.41 A, -25 V
 - $R_{DS(ON)} = 1.1 \Omega @ V_{GS} = -4.5 V$
 - $R_{DS(ON)} = 1.5 \Omega @ V_{GS} = -2.7 V$
- Very Small Package Outline SC70–6
- Very Low Level Gate Drive Requirements Allowing Direct Operation in 3 V Circuits (V_{GS(th)} < 1.5 V)
- Gate–Source Zener for ESD Ruggedness (>6 kV Human Body Model)
- These Devices are Pb-Free and are RoHS Compliant

ADOOLOTE MAXIMUM TATINGO (1A - 23 0 dilless otherwise noted)								
Symbol	Param	neter	N-Channel	P-Channel	Units			
V _{DSS}	Drain-Source Voltage		25	-25	V			
V _{GSS}	Gate-Source Voltage		8	-8	V			
۱ _D	Drain Current Continuous		0.5	-0.41	А			
		Pulsed	1.5	-1.2				
P _D	Maximum Power Dissipation (Note 1)		0.3		W			
T _J , T _{STG}	Operating and Storage Temperature Range		–55 to 150		°C			
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100 pF / 1500 Ω)		6		kV			

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

SC-88/SC70-6/SOT-363 CASE 419B-02


21

Μ

= Specific Device Code

= Assembly Operation Month

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
FDG6321C	SC-88/SC70-6/ SOT-363 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	415	°C/W

 R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design. R_{θJA} = 415°C/W on minimum pad mounting on FR-4 board in still air.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS	•					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μ A	N-Ch	25	-	-	V
		V_{GS} = 0 V, I_D = –250 μ A	P-Ch	-25	-	-	
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature	I_D = 250 μ A, Referenced to 25°C	N-Ch	-	26	-	mV/°C
	Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C	P-Ch	-	-22	-	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	N-Ch	-	-	1	μA
		V_{DS} = 20 V, V_{GS} = 0 V, T_{J} = 55 $^{\circ}C$		-	-	10	
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = -20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	P-Ch	-	-	-1	μΑ
		V_{DS} = –20 V, V_{GS} = 0 V, T_{J} = 55 $^{\circ}C$		-	-	-10	
I _{GSS}	Gate-Body Leakage Current	V_{GS} = 8 V, V_{DS} = 0 V	N-Ch	-	-	100	nA
		$V_{GS} = -8 V, V_{DS} = 0 V$	P-Ch	-	-	-100	1

ON CHARACTERISTICS (Note 2)

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	N-Ch	0.65	0.8	1.5	V
		$V_{DS}=V_{GS},\ I_{D}=-250\ \mu A$	P-Ch	-0.65	-0.82	-1.5	
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage	I_D = 250 µA, Referenced to 25°C	N-Ch	-	-2.6	-	mV/°C
	Temperature Coefficient	$I_D = -250 \ \mu A$, Referenced to $25^{\circ}C$	P-Ch	-	2.1	-	
R _{DS(ON)}	Static Drain-Source	V_{GS} = 4.5 V, I _D = 0.5 A	N-Ch	-	0.34	0.45	Ω
	On-Resistance	V_{GS} = 4.5 V, I_D = 0.5 A, T_J = 125 $^\circ C$		-	0.55	0.72	-
		V_{GS} = 2.7 V, I _D = 0.2 A		-	0.44	0.6	
		V_{GS} = -4.5 V, I _D = -0.41 A	P-Ch	-	0.85	1.1	
		V_{GS} = -4.5 V, I _D = -0.41 A, T _J = 125°C		-	1.2	1.8	
		V_{GS} = -2.7 V, I _D = -0.05 A		_	1.15	1.5	
I _{D(ON)}	On-State Drain Current	V_{GS} = 4.5 V, V_{DS} = 5 V	N-Ch	0.5	-	-	А
		V_{GS} = -4.5 V, V_{DS} = -5 V	P-Ch	-0.41	-	-	
9fs	Forward Transconductance	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 0.5 \text{ A}$	N-Ch	-	1.45	-	S
		$V_{DS} = -5 \text{ V}, \text{ I}_{D} = -0.41 \text{ A}$	P-Ch	-	0.9	_	1

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	N–Channel V_{DS} = 10 V, V_{GS} = 0 V, f = 1.0 MHz	N-Ch	-	50	-	pF
			P-Ch	1	62	I	
C _{oss}	Output Capacitance	P–Channel V _{DS} = -10 V, V _{GS} = 0 V,	N-Ch	-	28	-	
		f = 1.0 MHz	P-Ch	-	34	-	
C _{rss}	Reverse Transfer Capacitance		N-Ch	-	9	-	
			P-Ch	-	10	-	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Unit
SWITCHING C	HARACTERISTICS (Note 2)						
t _{D(on)}	Turn-On Delay Time	N-Channel	N-Ch	-	3	6	ns
		V_{DD} = 5 V, I _D = 0.5 A, V _{GS} = 4.5 V, R _{GEN} = 50 Ω	P-Ch	-	7	15	
t _r	Turn-On Rise Time	P-Channel	N-Ch	-	8.5	18	ns
		$V_{DD} = -5 \text{ V}, \text{ I}_D = -0.5 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 50 \Omega$	P-Ch	-	8	16	-
t _{D(off)}	Turn-Off Delay Time	$V_{GS} = -4.5 \text{ V}, \text{h}_{GEN} = 50.52$	N-Ch	-	17	30	ns
			P-Ch	-	55	80	
t _f	Turn-Off Fall Time		N-Ch	-	13	25	ns
			P-Ch	-	35	60	-
Qg	Total Gate Charge	N-Channel	N-Ch	-	1.64	2.3	nC
		$V_{DS} = 5 V, I_D = 0.5 A, V_{GS} = 4.5 V$	P-Ch	-	1.1	1.5	
Q _{gs}	Gate-Source Charge	P-Channel	N-Ch	-	0.38	-	nC
		$V_{DS} = -5 \text{ V}, \text{ I}_D = -0.41 \text{ A},$ $V_{GS} = -4.5 \text{ V}$	P-Ch	-	0.31	-	
Q _{gd}	Gate-Drain Charge	VGS4.5 V	N-Ch	-	0.45	-	nC
			P-Ch	-	0.29	-	1

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

I _S	Maximum Continuous Drain-Source	Maximum Continuous Drain-Source Diode Forward Current		-	-	0.25	А
	Γ		P-Ch	-	-	-0.25	
V _{SD}	Drain-Source Diode Forward	V_{GS} = 0 V, I_S = 0.5 A (Note 2)	N-Ch	-	0.8	1.2	V
	Voltage	V_{GS} = 0 V, I_{S} = –0.5 A (Note 2)	P-Ch	-	-0.8	-1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

TYPICAL PERFORMANCE CHARACTERISTICS: N-CHANNEL

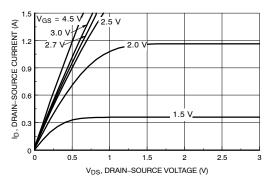


Figure 1. On–Region Characteristics

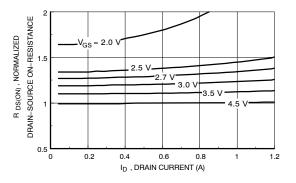


Figure 2. On–Resistance Variation with Drain Current and Gate Voltage

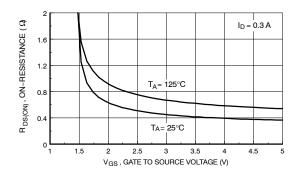


Figure 4. On-Resistance Variation with Gate-to-Source Voltage

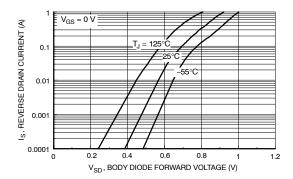


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

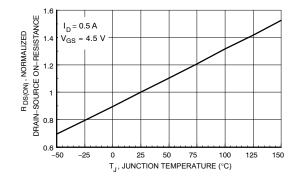


Figure 3. On–Resistance Variation with Temperature

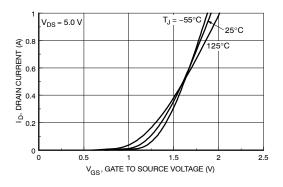


Figure 5. Transfer Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS: N-CHANNEL (CONTINUED)

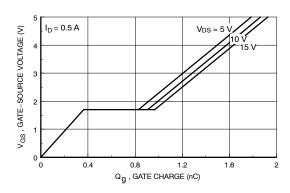


Figure 7. Gate Charge Characteristics

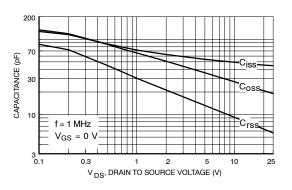


Figure 8. Capacitance Characteristics

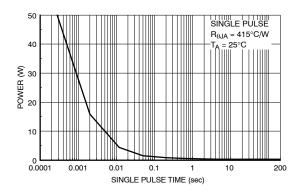


Figure 10. Single Pulse Maximum Power Dissipation

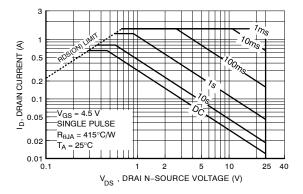


Figure 9. Maximum Safe Operating Area

TYPICAL PERFORMANCE CHARACTERISTICS: P-CHANNEL

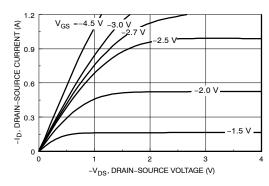


Figure 11. On-Region Characteristics

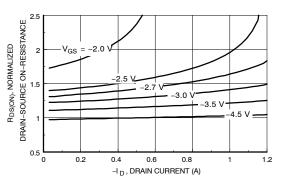


Figure 12. On–Resistance Variation with Drain Current and Gate Voltage

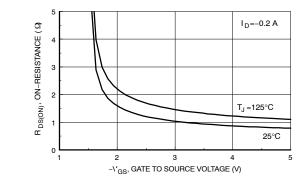


Figure 14. On–Resistance Variation with Gate–to–Source Voltage

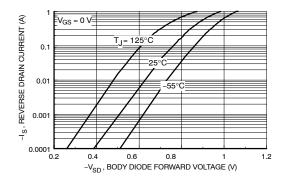


Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature

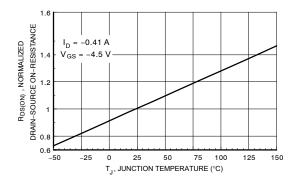


Figure 13. On–Resistance Variation with Temperature

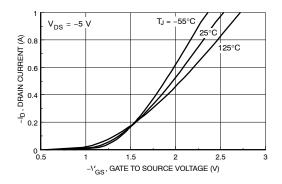


Figure 15. Transfer Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS: P-CHANNEL (CONTINUED)

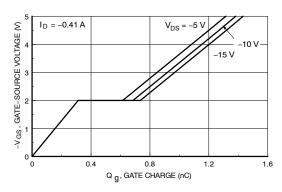


Figure 17. Gate Charge Characteristics

2

Figure 19. Maximum Safe Operating Area

– V_{DS} , DRAIN–SOURCE VOLTAGE (V)

1

ľs

25 40

5 10

3

0.01 **–** 0.1

-4.5 V V_{GS} = SINGLE PULSE

0.5

 $R_{\theta JA} = 415^{\circ}C/W$ T_A = 25°C

0.2

-1 <u>b</u>, DRAIN CURRENT (A) -1 <u>b</u>, DRAIN CURRENT (A)

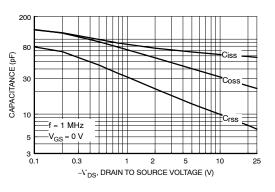


Figure 18. Capacitance Characteristics

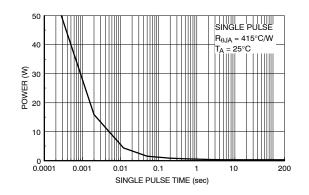


Figure 20. Single Pulse Maximum Power Dissipation

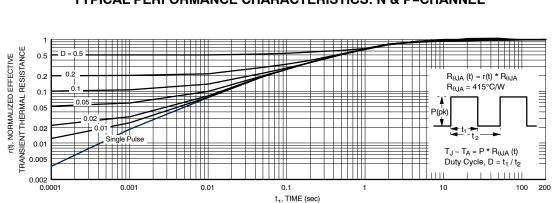
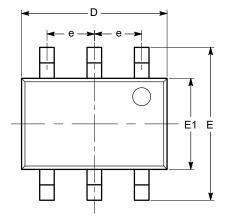
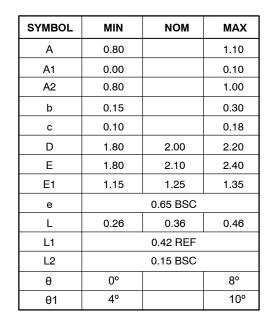
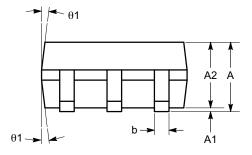


Figure 21. Transient Thermal Response Curve

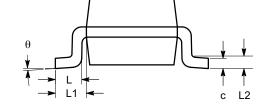

Thermal characterization performed using the conditions described in Note 1. Transient thermal response will change depending on the circuit board design.

TYPICAL PERFORMANCE CHARACTERISTICS: N & P-CHANNEL


SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD ISSUE A


DATE 07 JUL 2010

ONSEM



SIDE VIEW

Notes:

(1) All dimensions are in millimeters. Angles in degrees.

(2) Complies with JEDEC MO-203.

END VIEW

DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	I: SC-88 (SC-70 6 LEAD), 1.25X2 PAGE						
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.							

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales