

CDP1821C/3

High-Reliability CMOS 1024-Word x 1-Bit Static RAM

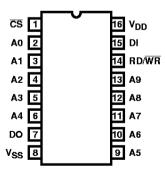
March 1997

Features

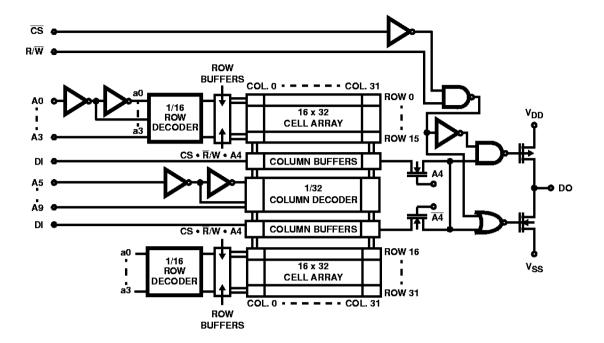
- Static CMOS Silicon-On-Sapphire Circuitry CD4000-Series Compatible
- Compatible with CDP1800-Series Microprocessors at Maximum Speed
- Fast Access Time.......... 100ns Typ. at V_{DD} = 5V
- Single Voltage Supply
- · No Precharge or External Clocks Required
- · Low Quiescent and Operating Power
- · Separate Data Inputs and Outputs
- Memory Retention for Standby Battery Voltage Down to 2V at +25°C
- · Latch-Up-Free Transient-Radiation Tolerance

Ordering Information

PACKAGE	TEMP. RANGE	PART NUMBER	PKG. NO.
SBDIP	-55°C to +125°C	CDP1821CD3	D16.3


Description

The CDP1821C/3 is a 1024-word x 1-bit CMOS silicon-on-sapphire (SOS), fully static, random-access memory designed for use in CDP1800 microprocessor systems. This device has a recommended operating voltage range of 4V to 6.5V.


The output state of the CDP1821C/3 is a function of the input address and chip-select states only. Valid data will appear at the output in one access time following the latest address change to a selected chip. After valid data appears, the address may be changed immediately. It is not necessary to clock the chip-select input or any other input terminal for fully static operation; therefore the chip-select input may be used as an additional address input. When the device is in an unselected state $(\overline{CS} = 1)$, the internal write circuitry and output sense amplifier are disabled. This feature allows the three-state data outputs from many arrays to be OR-tied to a common bus for easy memory expansion.

Pinout

CDP1821C/3 (SBDIP) TOP VIEW

Functional Block Diagram

OPERATIONAL MODES

	INPUTS		OUTPUT
MODE	READ/WRITE R/W	CHIP-SELECT CS	DATA OUTPUT DO
Standby	Х	1	High Impedance
Write	0	0	High Impedance
Read	1	0	Contents of Addressed Call

X = Don't Care Logic 1 = High Logic 0 = Low

CDP1821C/3

Absolute Maximum Ratings

DC Supply Voltage Range, (V_{DD}) (All Voltages Referenced to V_{SS} Terminal)....-0.5V to +7V Input Voltage Range, All Inputs-0.5V to V_{DD} +0.5V DC Input Current, Any One Input.....±10mA

Thermal Information

Thermal Resistance (Typical)		θ _{JC} (°C/W)
SBDIP Package	75	20
Maximum Operating Temperature Range		°C to +125°C
Maximum Storage Temperature Range (T	STG)65 ^c	°C to +150°C
Maximum Lead Temperature (During Solo	lering)	+265°C
Maximum Junction Temperature		+150°C

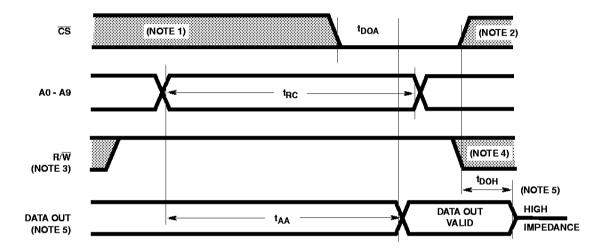
Recommended Operating Conditions T_A = Full Package-Temperature Range. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	CDP18		
PARAMETER	MIN	MAX	UNITS
DC Operating Voltage Range	4	6.5	٧
Input Voltage Range	V _{SS}	V_{DD}	٧

Static Electrical Specifications $V_{DD} = 5V \pm 5\%$

			-55 ⁰ C, +25 ⁰ C		+12	5 ⁰ C	
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
Quiescent Device Current (Note 1)	I _{DD}	$V_{IN} = 0V \text{ or } V_{DD}$	-	260	-	1000	μΑ
Output Low Drive (Sink) Current (Note 1)	l _{OL}	V _{OUT} = 0.4V	2.7	-	1.6	-	mA
Output High Drive (Source) Current (Note 1)	l _{ОН}	$V_{OUT} = V_{DD} - 0.4V$	-1.3	-	-0.8	-	mA
Output Voltage Low-Level	V _{OL}	-	-	0.1	-	0.5	٧
Output Voltage High-Level	V _{OH}	-	V _{DD} -0.1	-	V _{DD} -0.5	-	٧
Input Low Voltage	V _{IL}	-	-	0.3 V _{DD}	-	0.3 V _{DD}	٧
Input High Voltage	V _{IH}	-	0.7 V _{DD}	-	0.7 V _{DD}	-	٧
Input Current (Note 1)	I _{IN}	$V_{IN} = 0V \text{ or } V_{DD}$	-	2.6	-	10	μΑ
Three-State Output Leakage Current (Note 1)	lout	$V_{IN} = 0V \text{ or } V_{DD}$	-	2.6	-	10	μΑ
Operating Current (Note 2)	I _{DD1}	-	-	5	-	10	mA
Input Capacitance	C _{IN}	-	-	7.5	-	7.5	pF
Output Capacitance	C _{OUT}	-		15	-	15	pF

NOTES:


- 1. Limits designate 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing
- 2. Measured with 1µs read-cycle time and outputs floating.

Read Cycle Dynamic Electrical Specifications t_{R} , t_{F} = 10ns, C_{L} = 50pF

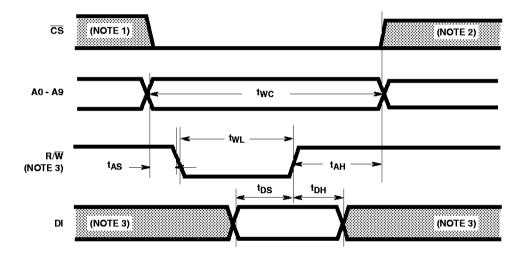
		v _{DD}	-55 ⁰ C,	+25 ⁰ C	+12	5°C	
PARAMETER	SYMBOL	(V)	MIN	MAX	MIN	MAX	UNITS
Data Access Time (Note 1)	t _{DA}	5	-	190	-	255	ns
Read Cycle Time	t _{RC}	5	190	-	255	-	ns
Output Enable Time	t _{EN}	5	65	-	90	-	ns
Output Disable Time	t _{DIS}	5	-	65	-	90	ns

NOTE:

1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing.

NOTES:

- 1. Chip-Select (CS) permitted to change from high to low level or remain low on a selected device.
- 2. Chip-Select (CS) permitted to change from low to high level or remain low.
- 3. Read/Write (R/ \overline{W}) must be at a high level during all address transitions.
- 4. Don't care.
- 5. Data-Out (DO) is a high impedance within t_{DIS} ns after the falling edge of R/W or the rising edge of CS.


FIGURE 1. READ CYCLE TIMING DIAGRAM

Write Cycle Dynamic Electrical Specifications t_R , $t_F = 10$ ns, $C_L = 50$ pF

		V	-55 ⁰ C,	+25°C	+12	5°C	
PARAMETER	SYMBOL	V _{DD} (V)	MIN	MAX	MIN	MAX	UNITS
Write Cycle Time	twc	5	300	-	420	-	ns
Address Setup Time (Note 1)	t _{AS}	5	60	-	84	-	ns
Address Hold Time (Note1)	t _{AH}	5	130	-	180	-	ns
Input Data Setup Time (Note 1)	t _{DS}	5	90	-	125	-	ns
Input Data Hold Time (Note 1)	t _{DH}	5	60	-	84	-	ns
Read/Write Pulse Width Low (Note 1)	t _{WL}	5	110	-	155	-	ns

NOTE:

1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing.

NOTES:

- 1. Chip-Select (\overline{CS}) permitted to change from high to low level or remain low on a selected device.
- 2. Chip-Select (\overline{CS}) permitted to change from low to high level or remain low.
- 3. Don't care.

FIGURE 2. WRITE CYCLE TIMING DIAGRAM

Data Retention Specifications

		TEST CONDITIONS		-55 ⁰ C, +25 ⁰ C		+125°C		
PARAMETER	SYMBOL	V _{DR} (V)	V _{DD} (V)	MIN	мах	MIN	мах	UNITS
Minimum Data Retention Voltage (Note 1)	V _{DD}	-	-	-	2	-	2.5	٧
Data Retention Quiescent Current (Note 1)	I _{DD}	2	-	-1	50	-	200	μΑ
Chip Deselect to Data Retention Time	tCDR	i	5	450	-	650	-	ns
Recovery to Normal Operation Time	t _{RC}	-	5	450	-	650	-	ns

NOTE:

1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing

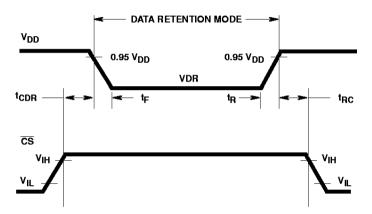
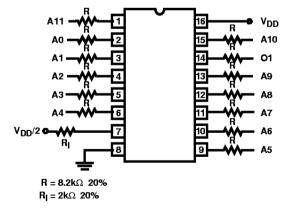
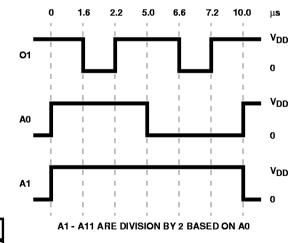




FIGURE 3. LOW $\mathbf{V}_{\mathbf{DD}}$ DATA RETENTION WAVEFORMS AND TIMING DIAGRAM

Burn-In Circuit

PACKAGE	v_{DD}	TEMPERATURE	DURATION
D	7 V	+125°C	160 Hrs.

FIGURE 4. DYNAMIC/OPERATING BURN-IN CIRCUIT AND TIMING DIAGRAM