CDP1821C/3 # High-Reliability CMOS 1024-Word x 1-Bit Static RAM March 1997 ### Features - Static CMOS Silicon-On-Sapphire Circuitry CD4000-Series Compatible - Compatible with CDP1800-Series Microprocessors at Maximum Speed - Fast Access Time.......... 100ns Typ. at V_{DD} = 5V - Single Voltage Supply - · No Precharge or External Clocks Required - · Low Quiescent and Operating Power - · Separate Data Inputs and Outputs - Memory Retention for Standby Battery Voltage Down to 2V at +25°C - · Latch-Up-Free Transient-Radiation Tolerance ## Ordering Information | PACKAGE | TEMP. RANGE | PART
NUMBER | PKG. NO. | |---------|-----------------|----------------|----------| | SBDIP | -55°C to +125°C | CDP1821CD3 | D16.3 | # Description The CDP1821C/3 is a 1024-word x 1-bit CMOS silicon-on-sapphire (SOS), fully static, random-access memory designed for use in CDP1800 microprocessor systems. This device has a recommended operating voltage range of 4V to 6.5V. The output state of the CDP1821C/3 is a function of the input address and chip-select states only. Valid data will appear at the output in one access time following the latest address change to a selected chip. After valid data appears, the address may be changed immediately. It is not necessary to clock the chip-select input or any other input terminal for fully static operation; therefore the chip-select input may be used as an additional address input. When the device is in an unselected state $(\overline{CS} = 1)$, the internal write circuitry and output sense amplifier are disabled. This feature allows the three-state data outputs from many arrays to be OR-tied to a common bus for easy memory expansion. ### **Pinout** CDP1821C/3 (SBDIP) TOP VIEW # Functional Block Diagram ### **OPERATIONAL MODES** | | INPUTS | | OUTPUT | |---------|-------------------|-------------------|----------------------------| | MODE | READ/WRITE
R/W | CHIP-SELECT
CS | DATA OUTPUT DO | | Standby | Х | 1 | High Impedance | | Write | 0 | 0 | High Impedance | | Read | 1 | 0 | Contents of Addressed Call | X = Don't Care Logic 1 = High Logic 0 = Low ### CDP1821C/3 ### **Absolute Maximum Ratings** ### DC Supply Voltage Range, (V_{DD}) (All Voltages Referenced to V_{SS} Terminal)....-0.5V to +7V Input Voltage Range, All Inputs-0.5V to V_{DD} +0.5V DC Input Current, Any One Input.....±10mA ### **Thermal Information** | Thermal Resistance (Typical) | | θ _{JC} (°C/W) | |---------------------------------------|---------------------|------------------------| | SBDIP Package | 75 | 20 | | Maximum Operating Temperature Range | | °C to +125°C | | Maximum Storage Temperature Range (T | STG)65 ^c | °C to +150°C | | Maximum Lead Temperature (During Solo | lering) | +265°C | | Maximum Junction Temperature | | +150°C | Recommended Operating Conditions T_A = Full Package-Temperature Range. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges: | | CDP18 | | | |----------------------------|-----------------|----------|-------| | PARAMETER | MIN | MAX | UNITS | | DC Operating Voltage Range | 4 | 6.5 | ٧ | | Input Voltage Range | V _{SS} | V_{DD} | ٧ | ### Static Electrical Specifications $V_{DD} = 5V \pm 5\%$ | | | | -55 ⁰ C, +25 ⁰ C | | +12 | 5 ⁰ C | | |---|------------------|----------------------------------|--|---------------------|----------------------|---------------------|-------| | PARAMETER | SYMBOL | CONDITIONS | MIN | MAX | MIN | MAX | UNITS | | Quiescent Device Current (Note 1) | I _{DD} | $V_{IN} = 0V \text{ or } V_{DD}$ | - | 260 | - | 1000 | μΑ | | Output Low Drive (Sink) Current (Note 1) | l _{OL} | V _{OUT} = 0.4V | 2.7 | - | 1.6 | - | mA | | Output High Drive (Source) Current (Note 1) | l _{ОН} | $V_{OUT} = V_{DD} - 0.4V$ | -1.3 | - | -0.8 | - | mA | | Output Voltage Low-Level | V _{OL} | - | - | 0.1 | - | 0.5 | ٧ | | Output Voltage High-Level | V _{OH} | - | V _{DD} -0.1 | - | V _{DD} -0.5 | - | ٧ | | Input Low Voltage | V _{IL} | - | - | 0.3 V _{DD} | - | 0.3 V _{DD} | ٧ | | Input High Voltage | V _{IH} | - | 0.7 V _{DD} | - | 0.7 V _{DD} | - | ٧ | | Input Current (Note 1) | I _{IN} | $V_{IN} = 0V \text{ or } V_{DD}$ | - | 2.6 | - | 10 | μΑ | | Three-State Output Leakage Current (Note 1) | lout | $V_{IN} = 0V \text{ or } V_{DD}$ | - | 2.6 | - | 10 | μΑ | | Operating Current (Note 2) | I _{DD1} | - | - | 5 | - | 10 | mA | | Input Capacitance | C _{IN} | - | - | 7.5 | - | 7.5 | pF | | Output Capacitance | C _{OUT} | - | | 15 | - | 15 | pF | ### NOTES: - 1. Limits designate 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing - 2. Measured with 1µs read-cycle time and outputs floating. Read Cycle Dynamic Electrical Specifications t_{R} , t_{F} = 10ns, C_{L} = 50pF | | | v _{DD} | -55 ⁰ C, | +25 ⁰ C | +12 | 5°C | | |---------------------------|------------------|-----------------|---------------------|--------------------|-----|-----|-------| | PARAMETER | SYMBOL | (V) | MIN | MAX | MIN | MAX | UNITS | | Data Access Time (Note 1) | t _{DA} | 5 | - | 190 | - | 255 | ns | | Read Cycle Time | t _{RC} | 5 | 190 | - | 255 | - | ns | | Output Enable Time | t _{EN} | 5 | 65 | - | 90 | - | ns | | Output Disable Time | t _{DIS} | 5 | - | 65 | - | 90 | ns | ### NOTE: 1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing. ### NOTES: - 1. Chip-Select (CS) permitted to change from high to low level or remain low on a selected device. - 2. Chip-Select (CS) permitted to change from low to high level or remain low. - 3. Read/Write (R/ \overline{W}) must be at a high level during all address transitions. - 4. Don't care. - 5. Data-Out (DO) is a high impedance within t_{DIS} ns after the falling edge of R/W or the rising edge of CS. FIGURE 1. READ CYCLE TIMING DIAGRAM Write Cycle Dynamic Electrical Specifications t_R , $t_F = 10$ ns, $C_L = 50$ pF | | | V | -55 ⁰ C, | +25°C | +12 | 5°C | | |-------------------------------------|-----------------|------------------------|---------------------|-------|-----|-----|-------| | PARAMETER | SYMBOL | V _{DD}
(V) | MIN | MAX | MIN | MAX | UNITS | | Write Cycle Time | twc | 5 | 300 | - | 420 | - | ns | | Address Setup Time (Note 1) | t _{AS} | 5 | 60 | - | 84 | - | ns | | Address Hold Time (Note1) | t _{AH} | 5 | 130 | - | 180 | - | ns | | Input Data Setup Time (Note 1) | t _{DS} | 5 | 90 | - | 125 | - | ns | | Input Data Hold Time (Note 1) | t _{DH} | 5 | 60 | - | 84 | - | ns | | Read/Write Pulse Width Low (Note 1) | t _{WL} | 5 | 110 | - | 155 | - | ns | ### NOTE: 1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing. ### NOTES: - 1. Chip-Select (\overline{CS}) permitted to change from high to low level or remain low on a selected device. - 2. Chip-Select (\overline{CS}) permitted to change from low to high level or remain low. - 3. Don't care. FIGURE 2. WRITE CYCLE TIMING DIAGRAM # **Data Retention Specifications** | | | TEST CONDITIONS | | -55 ⁰ C, +25 ⁰ C | | +125°C | | | |---|-----------------|------------------------|------------------------|--|-----|--------|-----|-------| | PARAMETER | SYMBOL | V _{DR}
(V) | V _{DD}
(V) | MIN | мах | MIN | мах | UNITS | | Minimum Data Retention Voltage (Note 1) | V _{DD} | - | - | - | 2 | - | 2.5 | ٧ | | Data Retention Quiescent Current (Note 1) | I _{DD} | 2 | - | -1 | 50 | - | 200 | μΑ | | Chip Deselect to Data Retention Time | tCDR | i | 5 | 450 | - | 650 | - | ns | | Recovery to Normal Operation Time | t _{RC} | - | 5 | 450 | - | 650 | - | ns | ### NOTE: 1. 100% testing. All other limits are designer's parameters under given test conditions and do not represent 100% testing FIGURE 3. LOW $\mathbf{V}_{\mathbf{DD}}$ DATA RETENTION WAVEFORMS AND TIMING DIAGRAM # **Burn-In Circuit** | PACKAGE | v_{DD} | TEMPERATURE | DURATION | |---------|------------|-------------|----------| | D | 7 V | +125°C | 160 Hrs. | FIGURE 4. DYNAMIC/OPERATING BURN-IN CIRCUIT AND TIMING DIAGRAM