BD135G, BD137G, BD139G

Plastic Medium-Power Silicon NPN Transistors

This series of plastic, medium-power silicon NPN transistors are designed for use as audio amplifiers and drivers utilizing complementary or quasi complementary circuits.

Features

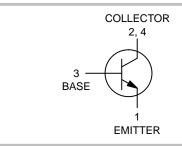
- High DC Current Gain
- BD 135, 137, 139 are complementary with BD 136, 138, 140
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS

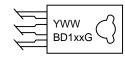
Rating	Symbol	Value	Unit
Collector–Emitter Voltage BD135G BD137G BD139G	V _{CEO}	45 60 80	Vdc
Collector-Base Voltage BD135G BD137G BD139G	V _{CBO}	45 60 100	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	I _C	1.5	Adc
Base Current	Ι _Β	0.5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.25 10	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	12.5 100	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	10	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	100	°C/W

ON Semiconductor®


http://onsemi.com

1.5 A POWER TRANSISTORS NPN SILICON 45, 60, 80 V, 12.5 W

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
BD135G	TO-225 (Pb-Free)	500 Units / Box
BD135TG	TO-225 (Pb-Free)	50 Units / Rail
BD137G	TO-225 (Pb-Free)	500 Units / Box
BD139G	TO-225 (Pb-Free)	500 Units / Box

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BD135G, BD137G, BD139G

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector–Emitter Sustaining Voltage* (I _C = 0.03 Adc, I _B = 0) BD135G BD137G BD139G	BV _{CEO} *	45 60 80	- - -	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0, T_C = 125^{\circ}\text{C})$	I _{CBO}	- -	0.1 10	μAdc
Emitter Cutoff Current $(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	I _{EBO}	-	10	μAdc
DC Current Gain ($I_C = 0.005 \text{ A}, V_{CE} = 2 \text{ V}$) ($I_C = 0.15 \text{ A}, V_{CE} = 2 \text{ V}$) ($I_C = 0.5 \text{ A}, V_{CE} = 2 \text{ V}$)	h _{FE} *	25 40 25	_ 250 _	-
Collector–Emitter Saturation Voltage* ($I_C = 0.5 \text{ Adc}$, $I_B = 0.05 \text{ Adc}$)	V _{CE(sat)} *	-	0.5	Vdc
Base–Emitter On Voltage* ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$)	V _{BE(on)} *	-	1	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS



Figure 1. DC Current Gain

Figure 2. Collector-Emitter Saturation Voltage

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

BD135G, BD137G, BD139G

TYPICAL CHARACTERISTICS

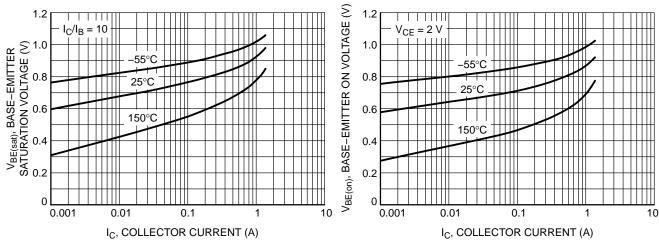


Figure 3. Base-Emitter Saturation Voltage

Figure 4. Base-Emitter On Voltage

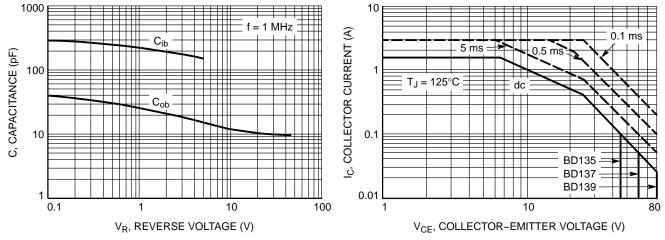


Figure 5. Capacitance

Figure 6. Active-Region Safe Operating Area

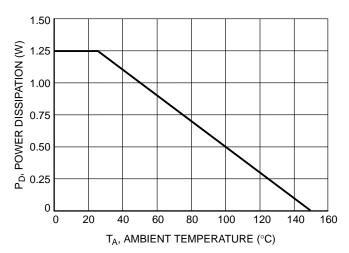
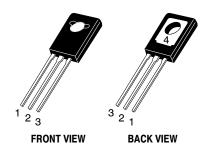
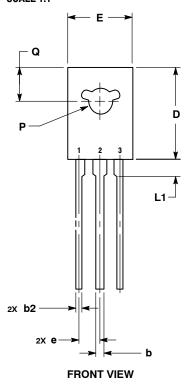
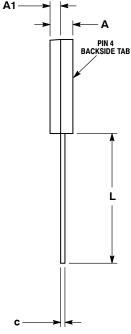



Figure 7. Power Derating

MECHANICAL CASE OUTLINE

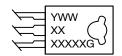




TO-225 CASE 77-09 **ISSUE AD**

DATE 25 MAR 2015

SCALE 1:1



SIDE VIEW

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

		MILLIMETERS		
	MIC	MIN	MAX	
	Α	2.40	3.00	
L	A1	1.00	1.50	
	b	0.60	0.90	
	b2	0.51	0.88	
	C	0.39	0.63	
	D	10.60	11.10	
	Е	7.40	7.80	
	е	2.04	2.54	
	L	14.50	16.63	
	L1	1.27	2.54	
	Р	2.90	3.30	
	Q	3.80	4.20	

GENERIC MARKING DIAGRAM*

Υ = Year ww

may or may not be present.

= Work Week XXXXX = Device Code = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■",

STYLE 1: STYLE 3: STYLF 4 STYLE 5: STYLE 2: EMITTER PIN 1. CATHODE PIN 1. BASE PIN 1. ANODE 1 PIN 1. MT 1 2., 4. COLLECTOR 2., 4. COLLECTOR 2., 4. ANODE 3. GATE 2., 4. ANODE 2 2., 4. MT 2 EMITTER BASE 3. GATE 3. GATE 3. 3.

STYLE 10: PIN 1. SOURCE 2., 4. DRAIN 3. GATE STYLE 6: STYLE 7: STYLE 8: STYLE 9: PIN 1. CATHODE PIN 1. SOURCE PIN 1. MT 1 PIN 1. GATE 2., 4. GATE 3. ANODE 2., 4. GATE 3. DRAIN 2., 4. GATE 3. MT 2 2., 4. DRAIN 3. SOURC ANODE DRAIN SOURCE

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-225	•	PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales