N-channel TrenchMOS intermediate level FET

Rev. 3 — 1 October 2010

Product data sheet

1. Product profile

1.1 General description

Intermediate level gate drive N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using advanced TrenchMOS technology. This product has been designed and qualified to the appropriate AEC Q101 standard for use in high performance automotive applications.

1.2 Features and benefits

- AEC Q101 compliant
- Suitable for standard and logic level gate drive sources

1.3 Applications

- 12 V Automotive systems
- Electric and electro-hydraulic power steering
- Motors, lamps and solenoid control

1.4 Quick reference data

Table 1. Quick reference data

- Suitable for thermally demanding environments due to 175 °C rating
- Start-Stop micro-hybrid applications
- Transmission control
- Ultra high performance power switching

	Guick reference	uata					
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	40	V
I _D	drain current	V _{GS} = 10 V; T _{mb} = 25 °C; see <u>Figure 1</u>	<u>[1]</u>	-	-	90	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	128	W
Static cha	aracteristics						
R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I_D = 15 A; T_j = 25 °C; see <u>Figure 11</u>		-	5.2	6.2	mΩ

NXP Semiconductors

N-channel TrenchMOS intermediate level FET

Table 1.	Quick reference da	tacontinued				
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Avalanch	e ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$ \begin{split} I_D &= 90 \text{ A}; V_{sup} \leq 40 \text{V}; \\ R_{GS} &= 50 \Omega; V_{GS} = 10 \text{V}; \\ T_{j(init)} &= 25 ^\circ\text{C}; \text{unclamped} \end{split} $	-	-	113	mJ
Dynamic	characteristics					
Q _{GD}	gate-drain charge	$\label{eq:lds} \begin{array}{l} I_D = 25 \text{ A}; \ V_{DS} = 32 \text{ V}; \\ V_{GS} = 10 \text{ V}; \text{ see } \underline{Figure \ 13}; \\ \text{see } \underline{Figure \ 14} \end{array}$	-	20	-	nC

[1] Continuous current is limited by package.

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbbo76 S
			SOT428 (DPAK)	

3. Ordering information

Table 3.	Ordering	information
	Cracing	mornation

Type number	Package		
	Name	Description	Version
BUK6208-40C	DPAK	plastic single-ended surface-mounted package (DPAK); 3 leads (one lead cropped)	SOT428

N-channel TrenchMOS intermediate level FET

4. Limiting values

Table 4. Limiting values

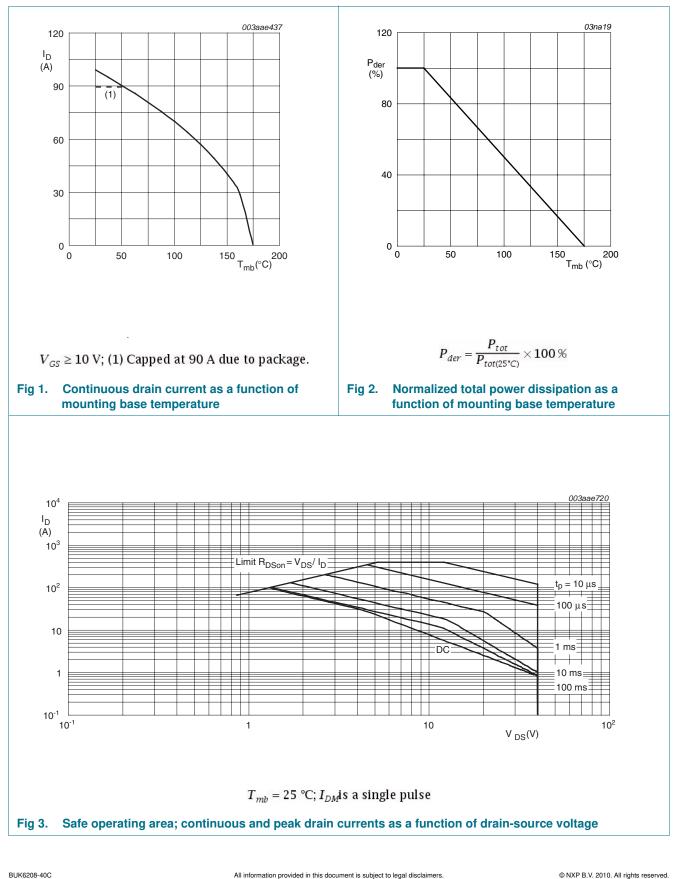
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	40	V
V _{GS}	gate-source voltage	DC	<u>[1]</u>	-16	16	V
		Pulsed	[2]	-20	20	V
I _D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see Figure 1	<u>[3]</u>	-	90	А
		T_{mb} = 100 °C; V_{GS} = 10 V; see Figure 1		-	70	А
I _{DM}	peak drain current	$T_{mb} = 25 \text{ °C}; t_p \le 10 \mu\text{s}; \text{ pulsed};$ see Figure 3		-	397	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	128	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
Source-drai	n diode					
ls	source current	T _{mb} = 25 °C	[3]	-	90	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	397	А
Avalanche r	ruggedness					
$E_{DS(AL)S}$	non-repetitive drain-source avalanche energy	$ I_D = 90 \text{ A}; V_{sup} \leq 40 \text{ V}; \text{R}_{GS} = 50 \Omega; \\ V_{GS} = 10 \text{ V}; \text{T}_{j(init)} = 25 ^\circ\text{C}; \text{ unclamped} $		-	113	mJ
E _{DS(AL)R}	repetitive drain-source avalanche energy		<u>[4][5][6]</u>	-	-	J

[1] -16V accumulated duration not to exceed 168 hrs

[2] Accumulated pulse duration not to exceed 5mins.

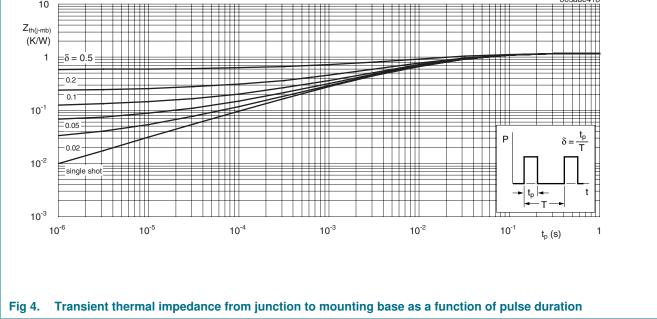
[3] Continuous current is limited by package.


[4] Single-pulse avalanche rating limited by maximum junction temperature of 175 °C.

[5] Repetitive avalanche rating limited by an average junction temperature of 170 °C.

[6] Refer to application note AN10273 for further information.

BUK6208-40C


N-channel TrenchMOS intermediate level FET

N-channel TrenchMOS intermediate level FET

5. Thermal characteristics

Table 5.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see <u>Figure 4</u>	-	-	1.17	K/W
10					003aae418	

N-channel TrenchMOS intermediate level FET

6. Characteristics

Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS}	drain-source	$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ\text{C}$	40	-	-	V
breakdown voltage		$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^\circ\text{C}$	36	-	-	V
V _{GS(th)} gate-source thresho voltage	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see <u>Figure 9</u> ; see <u>Figure 10</u>	1.8	2.3	2.8	V
		I _D = 1 mA; V _{DS} = V _{GS} ; T _j = -55 °C; see <u>Figure 9</u>	-	-	3.3	V
		I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 175 °C; see <u>Figure 9</u>	0.8	-	-	V
IDSS	drain leakage current	V _{DS} = 40 V; V _{GS} = 0 V; T _j = 175 °C	-	-	500	μA
		$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.02	1	μA
I _{GSS} gate leakage current	gate leakage current	$V_{DS} = 0 \text{ V}; \text{ V}_{GS} = 20 \text{ V}; \text{ T}_{j} = 25 \text{ °C}$	-	2	100	nA
	V _{DS} = 0 V; V _{GS} = -20 V; T _j = 25 °C	-	2	100	nA	
R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 11</u>	-	5.2	6.2	mΩ
		V _{GS} = 5 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 11</u>	-	7	8.8	mΩ
		V _{GS} = 4.5 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 11</u>	-	8	10.7	mΩ
		V_{GS} = 10 V; I _D = 15 A; T _j = 175 °C; see <u>Figure 12</u> ; see <u>Figure 11</u>	-	-	13	mΩ
Dynamic of	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 13; see Figure 14	-	67	-	nC
		$I_D = 25 A$; $V_{DS} = 32 V$; $V_{GS} = 5 V$; see <u>Figure 13</u> ; see <u>Figure 14</u>	-	39	-	nC
Q _{GS}	gate-source charge	$I_D = 25 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 10 \text{ V};$	-	11	-	nC
Q _{GD}	gate-drain charge	see Figure 13; see Figure 14	-	20	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;$	-	2790	3720	pF
C _{oss}	output capacitance	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 15}{\text{Figure } 15}$	-	380	456	pF
C _{rss}	reverse transfer capacitance		-	275	377	pF
d(on)	turn-on delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$	-	16.7	-	ns
r	rise time	$R_{G(ext)} = 10 \ \Omega$	-	48.6	-	ns
d(off)	turn-off delay time		-	124	-	ns
-(,	fall time		-	17	-	ns
LD	internal drain inductance	from upper edge of drain mounting base to centre of die; T _j = 25 °C	-	3.5	-	nH
L _S	internal source inductance	from source lead to source bond pad; $T_i = 25 \text{ °C}$	-	7.5	-	nH

Symbol

BUK6208-40C

Max

Unit

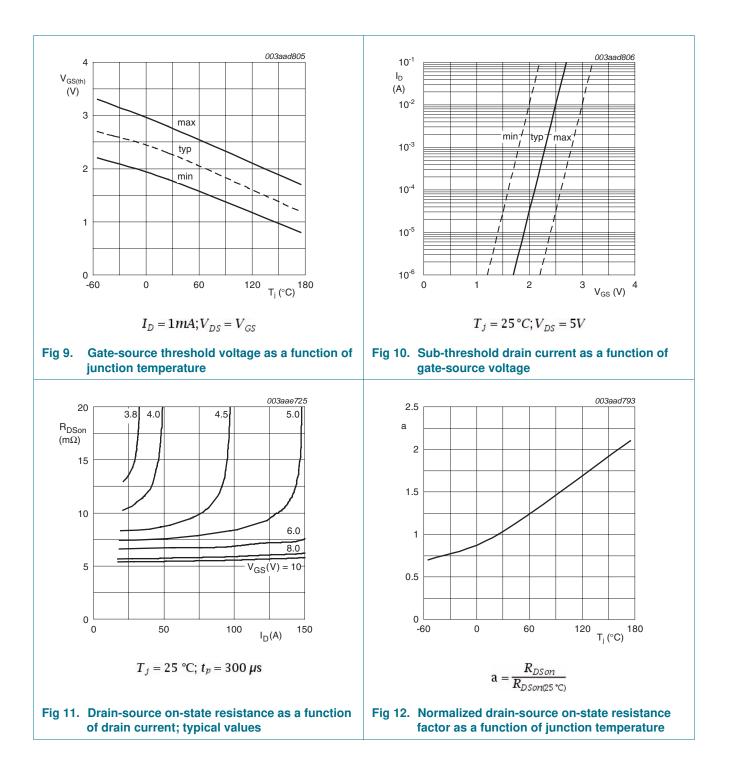
N-channel TrenchMOS intermediate level FET

Тур

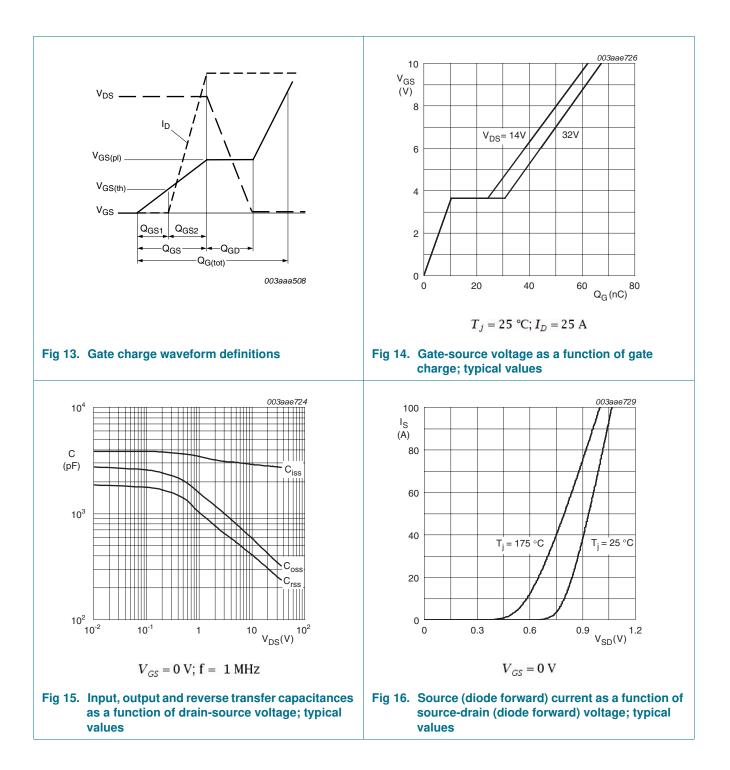
Min

ırce-draiı							
I	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; T _j = 25 °C; see <u>Figure 16</u>		-	0.8	1.2	V
	reverse recovery time	$I_{S} = 20 \text{ A}; dI_{S}/dt = -100 \text{ A}/\mu s; V_{GS} = 0$	V;	-	43	-	ns
	recovered charge	V _{DS} = 25 V		-	56	-	nC
100		003aae721				003aae723	
	$V_{GS}(V) = 10$ 6.0 5	5.0 100 9 fs					
(A) 80		(S) 80					
60		4.0					
40		3.8 40					
		3.6					
20		3.4					
。 		3.2					
0	0.05 0.5 0					100)
0	0.25 0.5 0	0.75 V _{DS} (V) ¹ 0	20 4	6	50 8L	⁰ I _D (A) ¹⁰⁰	
0	$T_j = 25$ °C; $t_p = 300$			60 6 5°C; V _{DS}		⁷ I _D (A) ¹⁰⁰	
	$T_j = 25$ °C; $t_p = 300$	μs	$T_{j} = 25$	5℃; V _{DS}	₅ = 15 V		
g 5. Out		μs n current as a Fig 6. Forwa	$T_{j} = 25$	5°C; V _{DS} onducta	; = 15 V ince as a		
g 5. Ou fun	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs n current as a tage; typical values Fig 6. Forwa drain o	$T_j = 25$	5°C; V _{DS} onducta	s = 15 V Ince as a alues		
25 R _{DSon}	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs h current as a tage; typical values	$T_j = 25$	5°C; V _{DS} onducta	s = 15 V Ince as a alues	a functio	
g 5. Ou fun	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs h current as a tage; typical values	$T_j = 25$	5°C; V _{DS} onducta	s = 15 V Ince as a alues	a functio	
25 Fundamental Stress	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs h current as a tage; typical values	$T_j = 25$	5°C; V _{DS} onducta	s = 15 V Ince as a alues	a functio	
25	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs h current as a tage; typical values	$T_j = 25$	5°C; V _{DS} onducta	s = 15 V ance as a alues	a functio	
25 Fundamental Stress	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs h current as a tage; typical values	$T_j = 25$	5°C; V _{DS} onducta vpical va	s = 15 V ance as a alues	003aae722	
g 5. Out fun 25 R _{DSon} (mΩ) 20 15	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs n current as a tage; typical values	$T_j = 25$	5°C; V _{DS} onducta vpical va	s = 15 V ance as a alues	003aae722	
g 5. Out fun 25 R _{DSon} (mΩ) 20 15	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs h current as a tage; typical values	$T_j = 25$	5°C; V _{DS} onducta vpical va	s = 15 V ance as a alues	003aae722	
g 5. Out fun 25 R _{DSon} (mΩ) 20 15 10 5	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μ_{S} Fig 6. Forward drain of the second	$T_j = 25$	5°C; V _{DS} onducta vpical va	s = 15 V ance as a alues	003aae722	
y 5. Out fun 25 R _{DSon} (mΩ) 20 15 10	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain	μs n current as a tage; typical values	T _j = 25	5 °C; V_{DS} onducta pical va	s = 15 V alues	003aae722	
g 5. Out fun 25 R _{DSon} (mΩ) 20 15 10 5 0	$T_j = 25$ °C; $t_p = 300$ tput characteristics: drain ction of drain-source volt	μ_{S} Fig 6. Forward drain of the second	<i>T_j</i> = 25	5 °C; V_{DS} onducta pical va	$r_{s} = 15 \text{ V}$	a functio	

Table 6. Characteristics ...continued

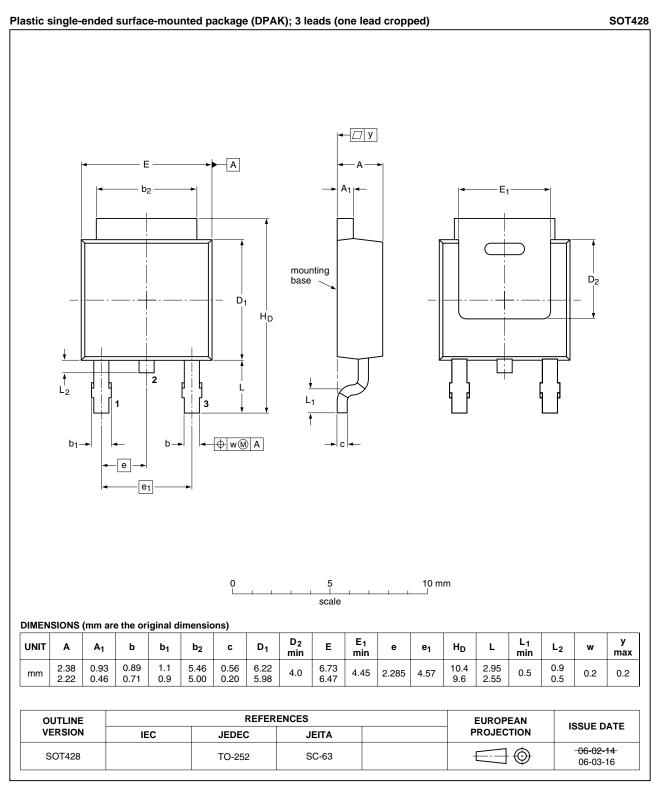

Parameter

Conditions


BUK6208-40C Product data sheet

BUK6208-40C

N-channel TrenchMOS intermediate level FET


N-channel TrenchMOS intermediate level FET

BUK6208-40C

N-channel TrenchMOS intermediate level FET

7. Package outline

Fig 17. Package outline SOT428 (DPAK)

BUK6208-40C Product data sheet

Supersedes

N-channel TrenchMOS intermediate level FET

8. Revision history

Table 7.	Revision I	history		
Docume	ent ID	Release date	Data sheet status	Change notice
BUK620	8-40C v.3	20101001	Product data sheet	-

BUK6208-40C v.3	20101001	Product data sheet	-	BUK6208-40C v.2
Modifications:	 Status chan 	ged from objective to product.		
BUK6208-40C v.2	20100621	Objective data sheet	-	BUK6208-40C v.1

N-channel TrenchMOS intermediate level FET

Legal information 9.

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions'

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product [3] status information is available on the Internet at URL http://www.nxp.com.

9.2 **Definitions**

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 **Disclaimers**

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual

All information provided in this document is subject to legal disclaimers.

BUK6208-40C

N-channel TrenchMOS intermediate level FET

agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

10. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

N-channel TrenchMOS intermediate level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks
10	Contact information

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 1 October 2010 Document identifier: BUK6208-40C