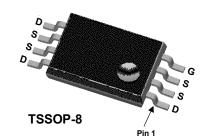
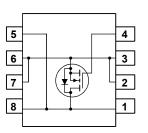
FAIRCHILD SEMICONDUCTOR

20V N-Channel PowerTrench[®] MOSFET

General Description


This N-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gate drive voltage ratings (2.5V to 12V).


Applications

- Battery protection
- DC/DC conversion
- Power management
- Load switch

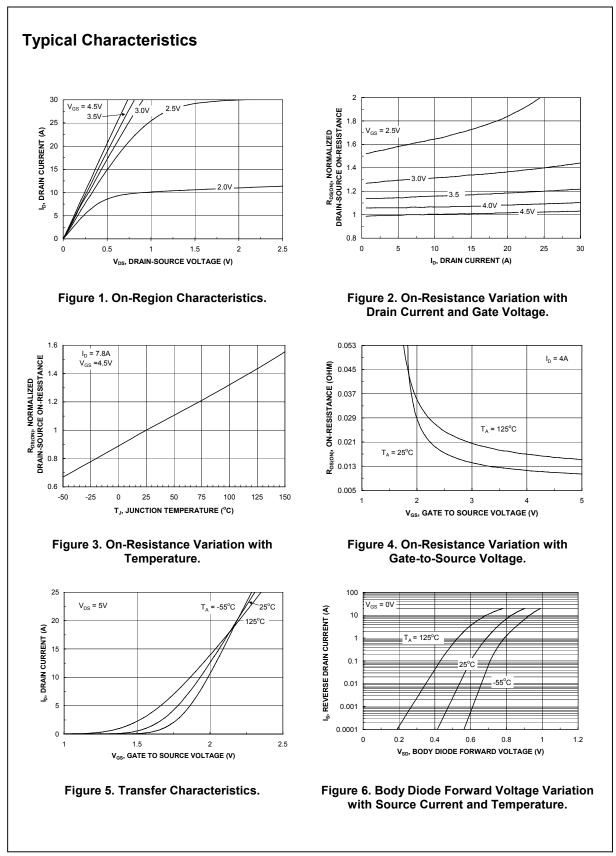
Features

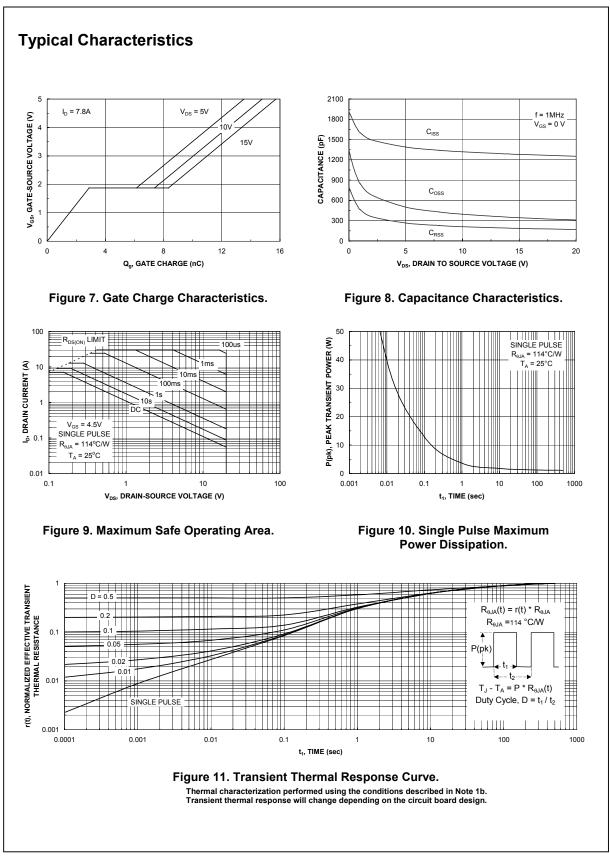
- 7.8 A, 20 V $R_{DS(ON)} = 15 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 22 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$
- Extended V_{GSS} range (±12V) for battery applications
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low profile TSSOP-8 package

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage	ource Voltage		V
V _{GSS}	Gate-Source Voltage	± 12	V	
ID	Drain Current – Continuous	(Note 1)	7.8	А
	– Pulsed		30	
PD	Power Dissipation	(Note 1a)	1.4	W
		(Note 1b)	1.1	
T _J , T _{STG}	Operating and Storage Junction Temper	ature Range	-55 to +150	°C
Therma	I Characteristics			
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)		~ -	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambier	t (Note 1a)	87	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambier	t (Note 1a) (Note 1b)	87 114	°C/W
	e Marking and Ordering Inf	(Note 1b)		°C/W
Packag	e Marking and Ordering Int	(Note 1b)		Quantity

©2001 Fairchild Semiconductor Corporation


	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics			1	1	1
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	20			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		14		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 20 V, V_{GS} = 0 V			1	μΑ
		V_{DS} = 20 V, V_{GS} = 0 V, T_J =55°C			25	
I _{GSSF}	Gate–Body Leakage, Forward	$V_{GS} = 12 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
	Gate–Body Leakage, Reverse	$V_{GS} = -12 V$, $V_{DS} = 0 V$			-100	nA
On Chai	racteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.6	1.0	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-3.5		mV/°C
$R_{\text{DS(on)}}$	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = 4.5 \ V, & I_{D} = 7.8 \ A \\ V_{GS} = 2.5 \ V, & I_{D} = 6.3 \ A \end{array} $		12 19	15 22	mΩ
I _{D(on)}	On–State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	20			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10 V$, $I_D = 7.8 A$		33		S
Dvnami	c Characteristics					
Ciss	Input Capacitance	$V_{DS} = 10 V$, $V_{GS} = 0 V$,		1320		pF
Coss	Output Capacitance	f = 1.0 MHz		396		pF
C _{rss}	Reverse Transfer Capacitance	-		211		pF
Switchir	ng Characteristics (Note 2)			•		
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 10 V$, $I_D = 1 A$,		7	14	ns
tr	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		12	22	ns
t _{d(off)}	Turn–Off Delay Time	-		30	48	ns
	Turn–Off Fall Time			11	20	ns
t _f	Reverse Recovery Time	V_{GS} = 0 V, I _F = 1.5 A,		23	80	ns
	Reverse Recovery Time	$dI_{\rm F}/dt = 100A/\mu s$				-
t _f	Total Gate Charge	$dI_F/dt = 100A/\mu s$ $V_{DS} = 10 V, I_D = 7.8 A,$		14	20	nC
t _f t _{rr}				14 3	20	nC nC
t _f t _{rr} Q _g	Total Gate Charge	$V_{DS} = 10 V$, $I_D = 7.8 A$,			20	
t _f t _{rr} Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate–Source Charge Gate–Drain Charge	$V_{DS} = 10 \text{ V}, \qquad I_D = 7.8 \text{ A}, V_{GS} = 4.5 \text{ V}$		3	20	nC
t _f t _{rr} Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate–Source Charge	$V_{DS} = 10 V$, $I_D = 7.8 A$, $V_{GS} = 4.5 V$ and Maximum Ratings		3	20	nC


c) Scale 1 : 1 on letter size paper

00000

2.Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

00000

Si6466DQ Rev C(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ *CROSSVOLT*™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ OS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production

Rev. H4

Product Folder - Fairchild P/N	SI6466DQ - 20V N-Channel PowerTrench MOSFET		
Fairchild Semiconductor		sSEARCH <u>Paramet</u>	ric <u>Cross Reference</u> 3C t Folders and D Applica
find productsProducts groupsAnalog and MixedSignalDiscreteInterfaceLogicMicrocontrollersNon-VolatileMemoryOptoelectronicsMarkets andapplicationsNew productsProduct selection andparametric searchCross-referencesearch	Home >> Find products >> SI6466DQ 20V N-Channel PowerTrench MOSFET Contents General description Features Applications Product status/pricing/packaging General description This N-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gate drive voltage ratings (2.5V to 12V).	Datasheet Download this datasheet PDF e-mail this datasheet [E- This pagePrint version	Related Links Request samples Dotted line How to order products Dotted line Product Change Notices (PCNs) Dotted line Support Dotted line Distributor and field sales representatives Dotted line Quality and reliability Dotted line Design tools
technical information buy products technical support my Fairchild company	back to top Features • 7.8A, 20V $R_{DS(ON)} = 15m\Omega@V_{GS} = 4.5V$ $R_{DS(ON)} = 22m\Omega@V_{GS} = 2.5V$ • Extended V_{GSS} range (±12V) for battery applications • High performance trench technology for extremely low $R_{DS(ON)}$ • Low profile TSSOP-8 package	_	

back to top

Applications

- Battery protectionDC/DC conversion
- Power management
- Load switch

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Package marking	Packing method
SI6466DQ	Full Production	\$0.81	TSSOP	8	\$Y&3 6466	TAPE REEL

* 1,000 piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor