Panasonic

NN32251A

http://www.semicon.panasonic.co.jp/en/

INTEGRATED WIRELESS POWER SUPPLY TRANSMITTER, Qi (WIRELESS POWER CONSORTIUM) COMPLIANT

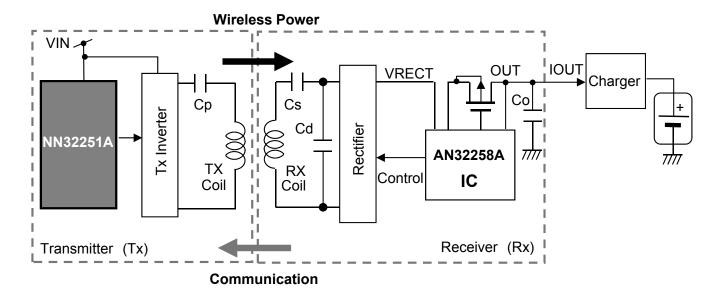
FEATURES

- Integrated wireless power transmitter controller
- WPC Ver. 1.1 ready
- MCU embedded
- Half-bridge gate driver: 4ch

 (full bridge gate driver: 2ch al
 - (full-bridge gate driver : 2ch also configurable)
- Single-coil (Type A11) supported
- Expanded free positioning using multi-coils up to 4 coils (Type A6)
- Highly accurate voltage and current monitor for inverters
- Output controlled by frequency or duty, defined in Qi.
- ASK demodulation for both current and voltage signals (Qi compliant)
- Input voltage range: VADP, VINV: 4.6 to 19.5V
- Supports Under Voltage Lockout , Thermal Shutdown, Over Current Detection
- Short-circuit protection at inverter output
- Temperature Detecting Circuit : 3ch
- LED indicator : 2chpackage : 64 pins HQFP (size : 12mm × 12mm)

DESCRIPTION

NN32251A is a wireless power system controller IC which is compliant with Qi version 1.1 of the System Description Wireless Power Transfer, Volume 1 for Low Power, defined by Wireless Power Consortium.


NN32251A is a controller IC of a power transmitter (Tx) which can supply power to any Qi-compliant wireless chargers.

Power transmission of over 5W is also available with the combination of AN32258A used for a receiver (Rx).

APPLICATIONS

WPC-compliant wireless charger

Wireless Power System

Established: 2014-01-27 Revised: 2014-03-10 Page 1 of 30

Panasonic

NN32251A

DELIVERY INFORMATION

Order Number	Package	Output Supply	Minimum Quantity
NN32251A-VT	64 pin HQFP (12 × 12 mm)	Tray	500pcs

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Notes
Supply voltage	V_{VADP}	21	V	*1
Supply voltage	V _{VINV}	21	V	ı
Output current	I _{VADP}	_	Α	*1
Operating ambient temperature	T _{opr}	– 30 to + 85	°C	*2
Operating junction temperature	T _j	-40 to +125	°C	*2
Storage temperature	T_{stg}	- 55 to + 125	°C	*2
	$V_{\text{SCDET1}}, V_{\text{SCDET2}}, V_{\text{SCDET3}}, \\ V_{\text{SCDET4}}, V_{\text{CFB1}}, V_{\text{CFB2}}, V_{\text{VFB}}$	– 0.3 to 21	V	*1
Input voltage range	$\begin{aligned} & V_{\text{TEST3}}, V_{\text{SELLED1}}, V_{\text{TYP1}}, V_{\text{SELLED2}}, \\ & V_{\text{NCO1}}, V_{\text{NCO2}}, V_{\text{PWR}}, V_{\text{SELFOD1}}, \\ & V_{\text{SELFOD2}}, \\ & V_{\text{TEST4}}, V_{\text{FWMD}}, V_{\text{TH1}}, V_{\text{TH2}}, V_{\text{TH3}}, \end{aligned}$	– 0.3 to 7	V	*1
	$\begin{matrix} V_{\text{TEST2}}, V_{\text{ENB}}, V_{\text{VMODIN}}, V_{\text{CMODIN}}, \\ V_{\text{CSIN1}}, V_{\text{CSIN2}}, V_{\text{TEST}}, V_{\text{SMBC}}, \\ V_{\text{SMBD}}, \end{matrix}$	- 0.3 to 4.6	V	*1
ESD	HBM (Human Body Model)	2	kV	_
EOD	CDM (Charged Device Model)	1	kV	_

Note) This product may sustain permanent damage if the actual condition is higher than the absolute maximum rating stated above. This rating is the maximum stress, and device will not be guaranteed to operate in case it is higher than our stated range. When exposed to the absolute maximum rating for a long time, the reliability of the product may be affected.

No voltage or current input is allowed for the pins not listed above. All voltage ratings are relative to the ground level, which is referred to as GNDMC, GNDMOD, GNDA1, GNDA3, GNDP1, and GNDP2.

^{*1:}The values are under the condition not exceeding the above absolute maximum ratings and the power dissipation.

 $^{^*2}$:Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for Ta = 25 °C.

NN32251A

POWER DISSIPATION RATING

PACKAGE	θ_{j-a}	θ_{j-C}	PD (Ta = 25 °C)	PD (Ta = 85 °C)	Notes
HQFP64	25.5 °C / W	1.05 °C /W	4.90 W	2.55 W	*1

Note). For the actual usage, please refer to the PD-Ta characteristics diagram in the package specification, and follow the power supply voltage, load and ambient temperature conditions to ensure that there is enough margin and the thermal design does not exceed the allowable value.

^{*1 :} glass epoxy board (4 layers) $[50 \times 50 \times 0.8 \text{ t (mm)}]$

CAUTION

Although this device has limited built-in ESD protection circuit, permanent damage may occur on it. Therefore, proper ESD precautions are recommended to avoid electrostatic damage to the MOS gates

RECOMMENDED OPERATING CONDITIONS

Parameter	Pin Name	Min.	Тур.	Max.	Unit	Notes
Supply voltage range	V_{VADP}, V_{VINV}	4.6	12	19.5	V	*2

Note) *2 :The values are under the condition not exceeding the above absolute maximum ratings and the power dissipation.

ELECRTRICAL CHARACTERISTICS

 V_{VADP} = 12 V, V_{VINV} = 12 V, T_a = 25 °C \pm 2 °C unless otherwise noted.

Parameter	Symbol	Condition		Limits		Unit	Note
Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Current Consumption							
Quiescent current	I _{STBY}	ENB=L	6.48	8.10	9.72	mA	
Operating current	I _{OPR}	ENB=H	18.0	22.6	27.0	mA	
Half-Bridge Gate Driver							
Minimum switching frequency	F _{SWMIN}		108	110	112	kHz	
Maximum switching frequency	F _{SWMAX}		200	205	210	kHz	
Accuracy of switching frequency	F _{SWCA}		_	_	0.4	kHz	
Minimum duty	DR _{MIN}			_	10	%	
Maximum duty	DR _{MAX}		50	_	_	%	
High-side Output – H level	V _{HSH}	I _{source} =1mA	V _{VINV} -0.3	_	_	V	
High-side Output – L level	V _{HSL}	I _{sink} =1mA	_	_	V _{VINV} -4.7	V	
Low-side Output – H level	V _{LSH}	I _{source} =1mA	3.8	_	_	V	
Low-side Output – L level	V_{LSL}	I _{sink} =1mA	_	_	0.2	V	
LDO4.1V							
Output voltage	V _{OUT41}	I _{out} =20mA	4.0	4.1	4.2	V	
LDO3.3V (for internal circuit)	1	1		1		1	1
Output voltage	V _{OUT33}	I _{out} =1mA	3.2	3.3	3.4	V	
LDO1.8V (for internal circuit)	1	1		1		1	1
Output voltage	V _{OUT18}	I _{out} =1mA	1.7	1.8	1.9	V	

Panasonic

NN32251A

ELECRTRICAL CHARACTERISTICS (Continued)

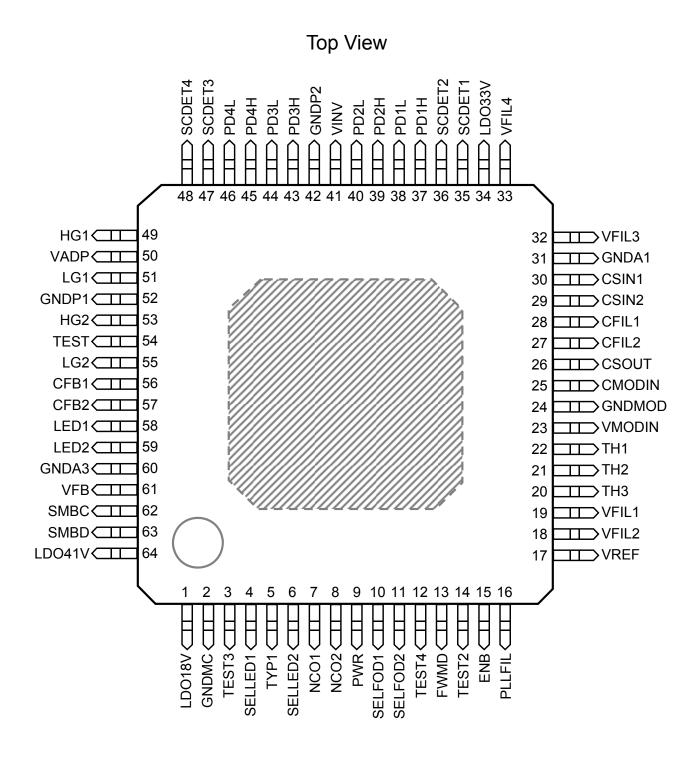
 $\rm V_{VADP}$ = 12 V, $\rm V_{VINV}$ = 12 V, $\rm T_a$ = 25 °C \pm 2 °C unless otherwise noted.

	Parameter		Condition	Limits			Unit	Note
	Farameter	Symbol	Condition	Min	Тур	Max	Ullit	Note
Und	ler-Voltage Lock-Out (UVLO)							
	Under-voltage lock-out	V _{UVLOR}		3.85	4.00	4.15	V	
	Hysteresis on UVLO	V _{UVLOHYS}	Hysteresis of UVLO detection and release	0.70	0.75	0.80	٧	
LEC	LED Driver							
	Saturation voltage	V _{LEDSAT}	I _{out} =10mA	_	_	0.3	V	
ENE	3 Input Voltage							
	"H" input threshold	V _{IHENB}		2.6	_	_	V	
	"L" input threshold	V _{ILENB}		_	_	0.6	V	
TYP	1, SELLED2, NCO1, NCO2, PWR, S	ELFOD1, SI	ELFOD2, SELLED1 Input V	oltage	11	1		
	"H" input threshold	V _{IHTYP1}		3.3	_	_	V	
	"L" input threshold	V _{ILTYP1}		_	_	0.8	V	

ELECRTRICAL CHARACTERISTICS (Continued)

 V_{VADP} = 12 V, V_{VINV} = 12 V, T_a = 25 °C \pm 2 °C unless otherwise noted.

Parameter		Symbol Condition			Limits		I I m ! 4	Note	
				Min	Тур	Max	Unit	Note	
AS	K demodulation								
	Current demodulation input threshold	I _{THMOD}		_	5	_	mA	*1	
	Voltage demodulation input threshold	V_{THMOD}		_	50	_	mV	*1	
Inv	erter Short-Circuit Protection (SCP)							•	
	Detection time	V _{OCPR}	Time till oscillation stops	_	100	_	us		
The	ermal Shutdown (TSD)	1					1		
	Detection threshold	T _{SDR}	65 °C, with the recommended parts	_	0.648	_	٧	*1	
	Release threshold	T _{SDF}	65 °C, with the recommended parts	_	0.727	_	٧	*1	
Ove	er-Current Protection (OCP)	1					1		
	Detected Current 1-1	I _{OCp11}	Type A11, R4=25mohm V _{ADP} =5V, V _{VINV} =5V Before power transfer *2	_	0.8	_	А	*1	
	Detected Current 1-2	I _{OCp12}	Type A11, R4=25mohm V _{ADP} =5V, V _{VINV} =5V At power transfer *3	_	3.0	_	Α	*1	
	Detected Current 2-1	I _{OCp21}	Type A6, R4=50mohm Before power transfer *2	_	0.4	_	Α	*1	
	Detected Current 2-2	I _{OCp22}	Type A6, R4=50mohm At power transfer *3	_	1.5	_	Α	*1	
	Detected Current 3-1	I _{OCp31}	Type A6, High power PWR pin (No.9): LDO41V R4=50mohm Before power transfer *2	_	0.4	_	А	*1	
	Detected Current 3-2	I _{OCp32}	Type A6, High power PWR pin (No.9): LDO41V R4=50mohm At power transfer *3	_	1.9	_	A	*1	


Note)

^{*1 :} Designed typical values

^{*2:} Conditions at Selection, Ping, and ID & Configuration phases. Refer to Power Transfer Phases section for more details.

^{*3:} Conditions at Power Transfer phase. Refer to Power Transfer Phases section for more details.

Pin Layout

PIN FUNCTIONS

Pin	Name	I/O	Function	Description
1	LDO18V	Output	1.8V regulator output for MCU	Used for the internal MCU. Connect a capacitor of 1uF.
2	GNDMC	GND	Ground for MCU	
3	TEST3	Input	Test pin 3	Connect to GND. Panasonic uses this pin for test purposes only.
4	SELLED1	Input	Select LED pattern 1	Refer to "LED Indicator" in Functions section.
5	TYP1	Input	Select transmitter type 1	Refer to the Pin Settings in FUNCTIONS section.
6	SELLED2	Input	Select LED pattern 2	Refer to "LED Indicator" in Functions section.
7	NCO1	Input	Select the number of coils 1	Refer to the Pin Settings in FUNCTIONS section.
8	NCO2	Input	Select the number of coils 2	Refer to the Pin Settings in FUNCTIONS section.
9	PWR	Input	Select power to transmit	Connect to GND for regular power transmission of 5W, and connect to LDO41V for the high power mode.
10	SELFOD1	Input	Select threshold value of FOD 1	Refer to the Pin Settings in FUNCTIONS section.
11	SELFOD2	Input	Select threshold value of FOD 2	Refer to the Pin Settings in FUNCTIONS section.
12	TEST4	Input	Test pin 4	Connect to GND. Panasonic uses this pin for test purposes only.
13	FWMD	Input	Test mode	Connect to GND. Panasonic uses this pin for test purposes only.
14	TEST2	Input	Test pin 2	Connect to GND. Panasonic uses this pin for test purposes only.
15	ENB	Input	System enable	Input a GND pulse for over 1ms to reset NN32251A. Normally, connect this pin to LDO33V for continuous operations. Refer to "Enable / Reset" in Functions section.
16	PLLFIL	Output	PLL loop filter	Connect a capacitor of 3900pF.
17	VREF	Output	Reference Voltage	Connect a capacitor of 4.7uF.

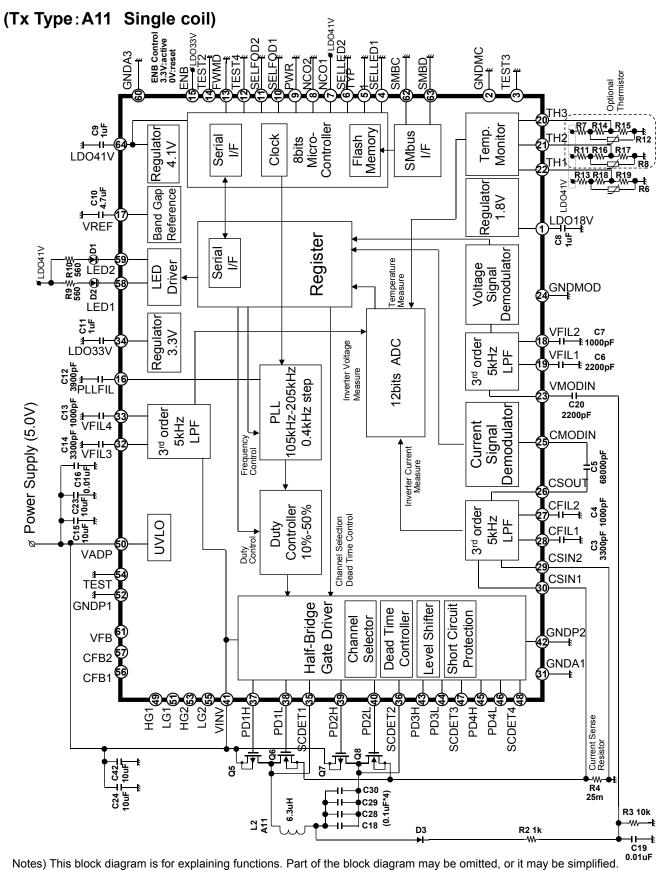
PIN FUNCTIONS (Continued)

Pin	Name	I/O	Function	Description
18	VFIL2	Output	Voltage detection active filter 2	Connect a capacitor of 1000pF.
19	VFIL1	Output	Voltage detection active filter 1	Connect a capacitor 2200pF.
20	TH3	Input	Thermistor voltage 3	Connect a thermistor, and place it where temperature is measured. Connect to LDO33V if a thermistor is not connected.
21	TH2	Input	Thermistor voltage 2	Connect a thermistor, and place it where temperature is measured. Connect to LDO33V if a thermistor is not connected.
22	TH1	Input	Thermistor voltage 1	Connect a thermistor, and place it where temperature is measured. Connect to LDO33V if a thermistor is not connected.
23	VMODIN	Input	ASK voltage demodulation	Input ASK voltage from Rx.
24	GNDMOD	GND	GND for demodulator	
25	CMODIN	Input	ASK current demodulation	Input ASK current from Rx
26	CSOUT	Output	Current sensor output for inverter	Connect a capacitor of 68000pF between CMODIN and this pin.
27	CFIL2	Output	Current detection active filter 2	Connect a capacitor of 1000pF.
28	CFIL1	Output	Current detection active filter 1	Connect a capacitor of 3300pF.
29	CSIN2	Input	Current detection for inverter 2	Connect a resistor of 25m ohm or 50m
30	CSIN1	Input	Current detection for inverter 1	ohm, between CSIN1 and CSIN2.
31	GNDA1	GND	GND for analog circuit 1	
32	VFIL3	Output	Voltage detection active filter 3	Connect a capacitor of 3300pF.
33	VFIL4	Output	Voltage detection active filter 4	Connect a capacitor of 1000pF.
34	LDO33V	Output	3.3V regulator output	Connect a capacitor of 1uF.
35	SCDET1	Input	Inverter short-circuit detection 1	Connect to the drain of first inverter driven from PD1H and PD1L pins.
36	SCDET2	Input	Inverter short-circuit detection 2	Connect to the drain of second inverter driven from PD2H and PD2L pins.
37	PD1H	Output	High-side gate driver of inverter 1	Connect to the gate of first inverter PMOS
38	PD1L	Output	Low-side gate driver of inverter 1	Connect to the gate of first inverter NMOS
39	PD2H	Output	High-side gate driver of inverter 2	Connect to the gate of second inverter PMOS
40	PD2L	Output	Low-side gate driver of inverter 2	Connect to the gate of second inverter NMOS

NN32251A

PIN FUNCTIONS (Continued)

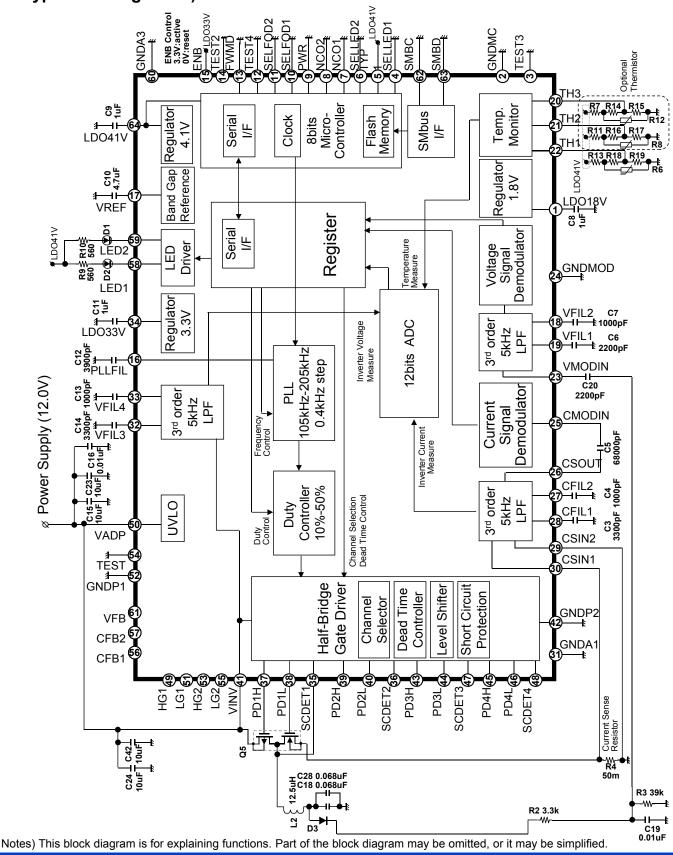
Pin	Name	I/O	Function	Description
41	VINV	Power Supply	Power for inverters	Connect to the source of PMOS of each inverter.
42	GNDP2	GND	GND for power 2	
43	PD3H	Output	High-side gate driver of inverter 3	Connect to the gate of third inverter PMOS
44	PD3L	Output	Low-side gate driver of inverter 3	Connect to the gate of third inverter NMOS
45	PD4H	Output	High-side gate driver of inverter 4	Connect to the gate of fourth inverter PMOS
46	PD4L	Output	Low-side gate driver of inverter 4	Connect to the gate of fourth inverter NMOS
47	SCDET3	Input	Short-circuit detection 3	Connect to the drain of third inverter driven from PD3H and PD3L pins.
48	SCDET4	Input	Short-circuit detection 4	Connect to the drain of fourth inverter driven from PD4H and PD4L pins.
49	HG1	Output	(Not used)	Leave this pin open
50	VADP	Power Supply	AC adapter	Input an external voltage supply of 4.6V to 19.5V.
51	LG1	Output	(Not used)	Leave this pin open
52	GNDP1	GND	GND for power 1	
53	HG2	Output	(Not used)	Leave this pin open
54	TEST	Input	Test pin	Connect to GND. Panasonic uses this pin for test purposes only.
55	LG2	Output	(Not used)	Leave this pin open
56	CFB1	Input	(Not used)	Leave this pin open
57	CFB2	Input	(Not used)	Leave this pin open
58	LED1	Output	LED driver 1	This pin is internally connected to the drain of NMOS to turn on an LED. Refer to "LED Indicator" in FUNCTIONS section for more details.
59	LED2	Output	LED driver 2	This pin is internally connected to the drain of NMOS to turn on an LED. Refer to "LED Indicator" in FUNCTIONS section for more details.


Panasonic

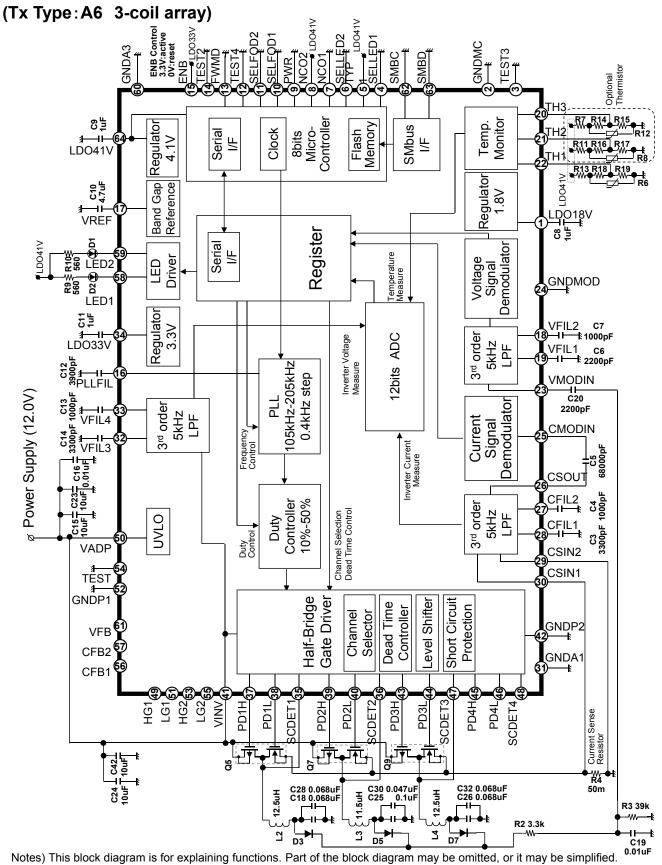
NN32251A

PIN FUNCTIONS (Continued)

Pin	Name	I/O	Function	Description
60	GNDA3	GND	GND for analog circuit 3	
61	VFB	Input	(Not used)	Leave this pin open
62	SMBC	Input/ Output	Clock for test mode	Connect to GND. Panasonic uses this pin for test purposes only.
63	SMBD	Input/ Output	Data for test mode	Connect to GND. Panasonic uses this pin for test purposes only.
64	LDO41V	Output	4.1V regulator output	Connect a capacitor of 1uF. LED's can be connected to this pin.


CIRCUIT DIAGRAM

Page 12 of 30


CIRCUIT DIAGRAM (Continued)

(Tx Type: A6 Single coil)

Page 13 of 30

CIRCUIT DIAGRAM (Continued)

Functions

NN32251A has the following functions.

No.	Function
1	Power Startup Condition
2	Power Transfer Phases
3	Enable / Reset
4	Power Stop and Resume Controls
5	Pin Settings
6	Transmitter Types
7	LED Indicator
8	Over Current Detection
9	Over Temperature Detection
10	High Power Mode

1. Power Startup Condition

The pins VADP (No.50) and VINV (No.41) must be shorted out, because inputting VINV before VADP may result in breakage of NN32251A.

Follow the rise time of VADP and VINV as defined below.

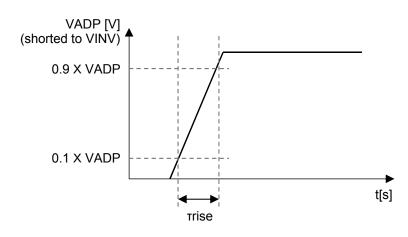


Figure A-1. Rise time characteristics of VADP

	Symbol	(not tes	unit		
		min	typ	max	
Rise time	тrise	50	1	1	us

This condition is based on the circuits described in Evaluation Results followed by this chapter. Thorough evaluation will be required if the circuit is different.

Panasonic

NN32251A

Functions (Continued)

2. Power Transfer Phases

NN32251A is compliant with Qi version 1.1 of the System Description Wireless Power Transfer, Volume 1 for Low Power, defined by Wireless Power Consortium.

[At selection phase]

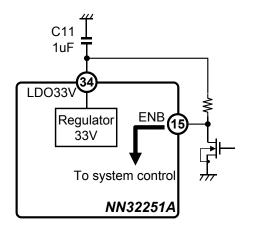
VADP (Pin 50): Input 4.6 to 19.5VENB (Pin 15): Connect LDO33V (Pin 34)

^{*1:} The phase does not change when 0x07 is received at Selection.

Figure A-2. State machine of power transfer phases

^{*2:} Errors are detected by over-current protection foreign object detection, and short-circuit protection.

Panasonic


NN32251A

Functions (Continued)

3. Enable / Reset

Controlling the ENB (Pin 15) can enable, stop, or reset NN32251A. Enable will start NN32251A from the Select phase. Stop will shut down the entire system on NN32251A. Reset will enable NN32251A after sopping it.

The following figure describes the input requirements.

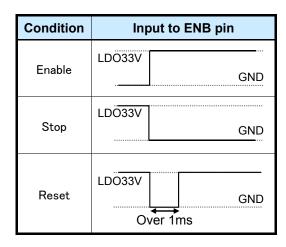


Figure A-3. External circuit to function ENB pin.

4. Power Stop and Resume Controls

NN32251A stops power transmission due to its own protections or control from Rx. The condition to resume depends on what has stopped the power transmission.

	Power-Stop Condition	phase Transition
Ву	Rx	
1	Full-charge detection (End Power Transfer Code =0x01)	The phase goes to Full Charge and moves to Selection by either removing the Rx or laying the Rx for over 15 minutes.
2	End Power Transfer packet of other conditions than full-charge detection	The phase goes to Error and moves to Selection by removing the Rx.
Ву	Tx	
3	Temperature detection (Over 65°C)	The phase goes to Temperature Error and moves to Selection when temperature becomes lower than 60°C.
4	Over current protection	The phase goes to Error and moves to Selection by
5	Short-circuit protection	removing the Rx.

NN32251A

Functions (Continued)

5. Pin Settings

5-1. Transmitter Type

The pin TYP1 selects transmitter types defined by Wireless Power Consortium. A6 and A11 are selectable. Connect the pins as the following table shows. The pins NCO1 and NCO2 set the number of coils to use when the transmitter type of A6 is selected. The inverters must include a pair of H and L, such as PD1H and PD1L.

f	TYP1	NCO2	NCO1	Number	Inventore to ver	Note	
number	5	8	7	of Coils	Inverters to use	Note	
Type A11	(with full b	ridge)					
	GND	GND	GND			FDS8958B (Dual Pch&Nch MOSFET)	
	GND	GND	LDO41V	1	PD1H, PD1L	SIA445EDJ (Pch-MOSFET), SIA400EDJ (Nch-MOSFET)	
	GND	LDO41V	GND			Panasonic uses these settings	
	GND	LDO41V	LDO41V			for test purposes only	
Type A6 (with half br	idge)					
	LDO41V	GND	GND	1	PD1H, PD1L		
	LDO41V	GND	LDO41V	2	PD1H, PD1L, PD2H, PD2L		
	LDO41V	LDO41V	GND	3	PD1H, PD1L, PD2H, PD2L PD3H, PD3L,	FDS8958B (Dual Pch&Nch MOSFET)	
	LDO41V	LDO41V	LDO41V	4	PD1H, PD1L, PD2H, PD2L PD3H, PD3L, PD4H, PD4L		

For the transmitter type A11, MOSFETs to use for the inverters determine FOD characteristics of NN32251A. Therefore, pin settings depend on the device as depicted above.

5-2. High Power

Over 5W high power transfer is achievable using Panasonic Rx IC AN32258A. Connect the pin PWR to LDO41V to activate this feature. Refer also to the High Power Mode section for more details.

Pin name	PWR	High Power
number	9	
	GND	Inactive
	LDO41V	Active

Panasonic

NN32251A

Functions (Continued)

5. Pin Settings (Continued)

5-3. FOD Threshold

Threshold level of the foreign object protection, defined in WPC Ver.1.1, can be adjusted by pins SELFOD1(No.10) and SELFOD2(No.11) as the next table depicts.

Pin Name	SELFOD2	SELFOD1	FOD Threshold
Pin Number	11	10	FOD Inresnoid
	GND	GND	Default value
	GND	LDO41V	Offset by -100mW from default value
	LDO41V	GND	Offset by +100mW from default value
	LDO41V	LDO41V	Offset by +200mW from default value

The FOD value will likely depend the coil and its drivers to be used. Consult with Panasonic support for more details.

Functions (Continued)

6. Transmitter Types

NN32251A supports the transmitter types of A6 and A11defined in Qi version 1.1 of the System Description Wireless Power Transfer, Volume 1 for Low Power. The following table shows the detailed specification.

Tx Type	A6				A11	
Number of coils	One or more			Single		
Alignment aid	free			A marked Interface SurfaceA visual feedback displayAn audible or haptic feedback		
Modulation Method	F	requency or du	ty	F	requency or du	ry
Operating	Min	initial	max	Min	initial	max
Frequency (fop)	115kHz	175kHz	205kHz	110kHz	175kHz	205kHz
resolution	0.01 × fop - 0.7kHz (115175kHz) 0.015 × fop - 1.58kHz (175205kHz)			0.01 × fop - 0.7kHz (115175kHz) 0.015 × fop - 1.58kHz (175205kHz)		
Duty cycle	10%	50%	50%	10%	50%	50%
resolution		0.1%		0.1%		
Inverter Voltage	12 ^{±5%} V			5 ^{±5} %V		
	Half-bridge				Full-bridge	
Configuration	VADP/VINV A Control NN32251A **NN32251A has 4 inverters to drive up to 4 coils.			VADE Contro		A11 Coil

Find more detailed description from WPC homepage.

URL: http://www.wirelesspowerconsortium.com/

Functions (Continued)

7. LED Indicator

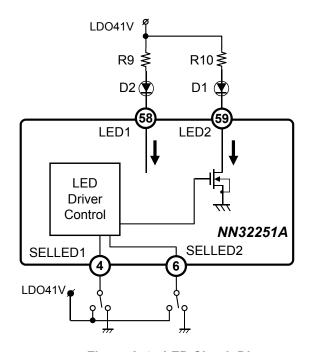
NN32251A controls two LED's, and the following colors are recommended to be used.

Pin Name	LED1	LED2
Number	No.58	No.59
LED Color	Red	Green

Combination of LED display can be adjusted by pins SELLED1(No.4) and SELLED2(No.6) as the next table shows.

			System Status			
Pin N (Nun		LED Pin	Selection	Ping ID & Configuration Power Transfer	Full Charge	Error Temperature Error
SELLED2	SELLED1		Charge			
(No.6)	(No.4)		Standby	Charge	Full Charge	Error
GND	GND	LED1	OFF	ON	OFF	Blink*1
GND	GND	LED2	OFF	OFF	ON	OFF
CND	LDO41V	LED1	OFF	OFF	OFF	ON
GND	LDO41V	LED2	OFF	Blink*1	ON	OFF
1.0044)/	CND	LED1	ON	OFF	OFF	ON
LDO41V	GND	LED2	ON	Blink*1	ON	OFF
LDO41V	LDO41V	LED1	OFF	OFF	OFF	ON
LDO41V	LDO41V	LED2	OFF	ON	OFF	OFF

^{*1} Blinking frequency = 0.625Hz


The LED display pattern when the power is provided from AC adapter is shown below.

Po	Power On form AC adaptor				
Pin	LED display				
LED1 (RED)	0.5 sec 0.5 sec ON OFF ON				
LED2 (Green)	0.5 sec OFF ON ON				

When the supply voltage decreases, by such reasons as not-enough current from an AC adaptor, the LED pattern in charge status starts and goes back to the above power-on sequence, and then it repeats.

Functions (Continued)

7. LED Indicator (Continued)

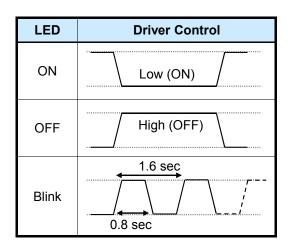


Figure A-4. LED Circuit Diagram

8. Over Current Detection

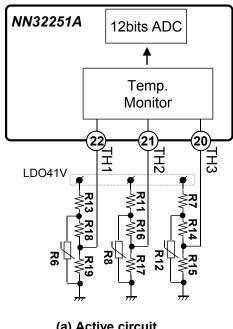
Current is monitored at inverters to detect over-current. A sense resistor must be connected between pins CSIN1and CSIN2. The resistance value is $25m\Omega$ for the transmitter type of A6 or $50m\Omega$ for the transmitter type of A11.

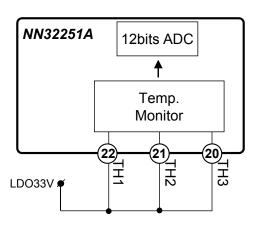
The current limit is defined depending on the power transfer phase as well as the transmitter type as shown in the next table. The exact value may vary due to variance of the external resistor.

	Over Current Value				
Туре	Selection / Ping / ID & Configuration Phase	Power Transfer Phase			
A6	0.40	1.5A (Normal)			
Ao	0.4A	1.9A (High power)			
A11	0.8A	3.0A			

^{*} LDO41V must be used for the LED power source for proper operation.

Functions (Continued)


9. Over Temperature Protection


NN32251A has three pins (TH1, TH2, and TH3) to connect thermistors.

A thermistor (NXRT15XH103FA3A016 recommended) is inserted into R6, R8, or R12, and the detecting temperatures are adjusted by the values of remaining resistors. Power transfer stops when a temperature becomes over a specified value.

For example, when NXRT15XH103FA3A016 is used for the pin TH1, and power transfer needs to be stopped over 65 °C and restarted under 60 °C (with ±2°C accuracy), the following resistor values may be used; R13: 10kohm±1%, R18: 10kohm±1%, and R19: 38.3kohm±1%.

The detecting voltages, then, will be 0.641V for stopping power transfer and 0.719V for restarting it. In order to inactivate this function, connect the pins TH1, TH2, and TH3 to LDO33V.

(a) Active circuit

(b) The function is inactivated

図A-5. Over-Temperature Detection

Established: 2014-01-27 : 2014-03-10 Revised

Panasonic

NN32251A

Functions (Continued)

10. High Power Mode

NN32251A is able to transmit power over 5W (high power) by using AN32258A as Rx.

Conditions:

- Transmitter Type: A6
- PWR (Pin 9): Connected to LDO41V

Refer to the following figure showing the phase "ID & Configuration" in high power system.

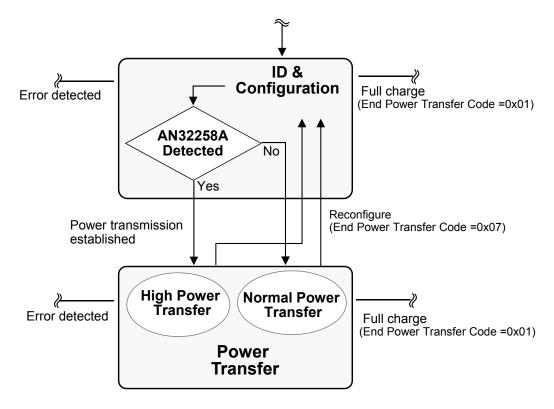
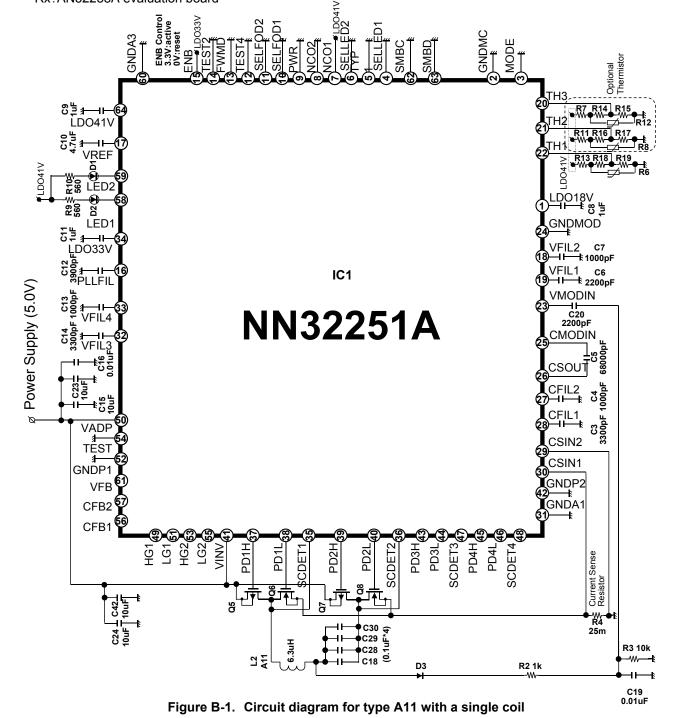


Figure A-6. Phase transition of high-power transfer (extracted from Figure A-2)

Page 24 of 30


EVALUATION RESULTS

Evaluation Circuit Diagram 1

Conditions:

Tx Type: A11, Single coil ADP (Pin 50): 5V input

ENB (Pin 15): Connected to LDO33V TYP1(Pin 5): Connected to GND PWR (Pin 9): Connected to GND Rx:AN32258A evaluation board

Page 25 of 30

Panasonic

NN32251A

TYPICAL CHARACTERISTICS

1. Power Efficiency [Type A11]

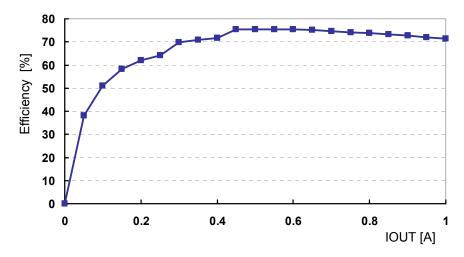
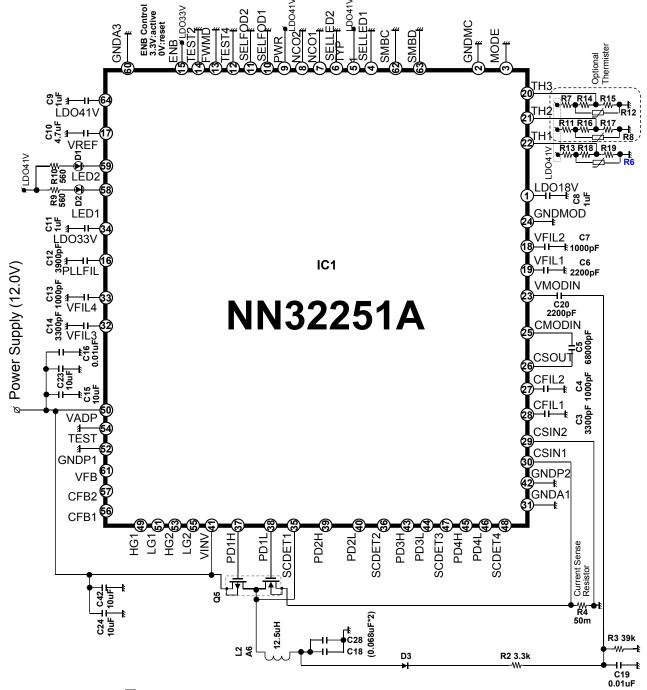


Figure B-2. Power Efficiency with Transmitter Type A11

Page 26 of 30

EVALUATION RESULTS


Evaluation Circuit Diagram 2

Conditions:

Tx Type: A6, Single coil ADP (Pin 50): 12V input

ENB (Pin 15): Connected to LDO33V TYP1(Pin 5): Connected to LDO41V PWR (Pin 9): Connected to LDO41V

Rx: AN32258A evaluation board with high-power mode activated

図B-3. Circuit diagram for high power (type A6 with a single coil

Page 27 of 30

Panasonic

NN32251A

TYPICAL CHARACTERISTICS

2. Power Efficiency [High Power, Type A6]

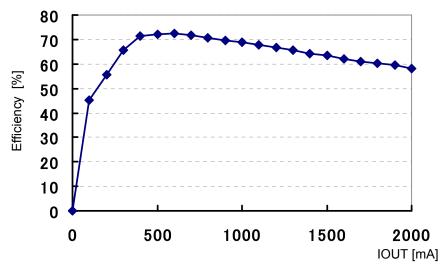
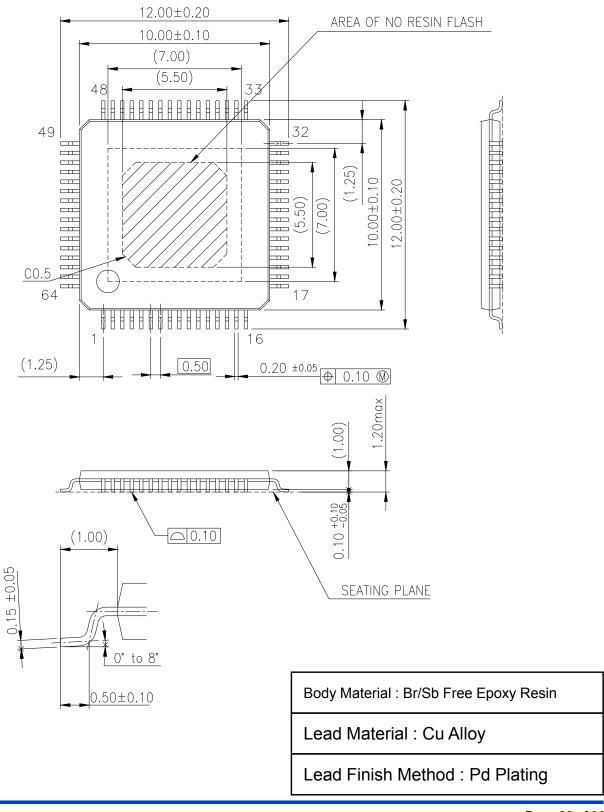



Figure B-4. Power Efficiency with AN32258A, High Power, and Transmitter Type A6

PACKAGE INFORMATION

Package Code: HQFP064-P-1010C

Unit:mm

Page 29 of 30

Panasonic

NN32251A

IMPORTANT NOTICE

- 1. When using the IC for new models, verify the safety including the long-term reliability for each product.
- 2. When the application system is designed by using this IC, please confirm the notes in this book. Please read the notes to descriptions and the usage notes in the book.
- 3. This IC is intended to be used for general electronic equipment.

 Consult our sales staff in advance for information on the following applications: Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this IC may directly jeopardize life or harm the human body. Any applications other than the standard applications intended.
 - (1) Space appliance (such as artificial satellite, and rocket)
 - (2) Traffic control equipment (such as for automotive, airplane, train, and ship)
 - (3) Medical equipment for life support
 - (4) Submarine transponder
 - (5) Control equipment for power plant
 - (6) Disaster prevention and security device
 - (7) Weapon
 - (8) Others: Applications of which reliability equivalent to (1) to (7) is required

Our company shall not be held responsible for any damage incurred as a result of or in connection with the IC being used for any special application, unless our company agrees to the use of such special application.

However, for the IC which we designate as products for automotive use, it is possible to be used for automotive.

- 4. This IC is neither designed nor intended for use in automotive applications or environments unless the IC is designated by our company to be used in automotive applications.
 - Our company shall not be held responsible for any damage incurred by customers or any third party as a result of or in connection with the IC being used in automotive application, unless our company agrees to such application in this book.
- 5. Please use this IC in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Our company shall not be held responsible for any damage incurred as a result of our IC being used by our customers, not complying with the applicable laws and regulations.
- 6. Pay attention to the direction of the IC. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might be damaged.
- 7. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration.
- 8. Perform visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as solder-bridge between the pins of the IC. Also, perform full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the IC during transportation.
- 9. Take notice in the use of this IC that it might be damaged when an abnormal state occurs such as output pin-VCC short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short). Safety measures such as installation of fuses are recommended because the extent of the above-mentioned damage will depend on the current capability of the power supply.
- 10. The protection circuit is for maintaining safety against abnormal operation. Therefore, the protection circuit should not work during normal operation.
 - Especially for the thermal protection circuit, if the area of safe operation or the absolute maximum rating is momentarily exceeded due to output pin to VCC short (Power supply fault), or output pin to GND short (Ground fault), the IC might be damaged before the thermal protection circuit could operate.
- 11. Unless specified in the product specifications, make sure that negative voltage or excessive voltage are not applied to the pins because the IC might be damaged, which could happen due to negative voltage or excessive voltage generated during the ON and OFF timing when the inductive load of a motor coil or actuator coils of optical pick-up is being driven.
- 12. Verify the risks which might be caused by the malfunctions of external components.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.
 - Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.