Ultrasonic Parking Distance Measurement ASSP

General Description

The NCV75215 ASSP is intended to operate with a piezoelectric ultrasonic transducer to provide time-of-flight measurement of an obstacle distance during vehicle parking. The high-sensitivity, low-noise operation allows detection from 0.25 m up to 4.5 m for a standard 75 mm pole. Actual minimum distance is determined by the length of reverberations. Under ideal conditions, with perfectly tuned and matched external circuitry, a minimum distance of 0.2 m is achievable. Actual detection range depends on a piezoelectric ultrasonic transducer and external analog parts.

The device drives the ultrasonic transducer with a programmable frequency via a transformer. The received echo is amplified and converted to a digital signal, filtered, detected and the magnitude is compared to a time-dependent threshold which is stored in an internal RAM. Distance to the obstacle is determined by the time measured from a transmission burst to echo recognition.

A bidirectional I/O Line is used to communicate with a master (ECU). The master issues I/O Line commands to the NCV75215 and data are reported back via the same line.

Features

- Measurement Distance Range from 0.25 m to 4.5 m (depends on External Parts)
- Acoustic Noise Monitoring
- Transducer Resonant Period Measurement
- Diagnosis of Transducer Performance
- Junction Temperature Monitoring and Thermal Shutdown
- Transducer Center Frequency Range from 35 to 90 kHz
- Direct and Indirect Measurement Modes
- EEPROM Memory for Configuration Setting and User Data
- Rx Gain Adjustable in 0.5 dB Steps in the Range from 50 to 110 dB
- Time-dependent Threshold Values for the Sensitivity Control
- Dynamic (Time-dependent) Gain Control
- Tx Current Range Adjustable from 50 mA to 350 mA
- Programmable Ultrasonic Burst Length
- On-chip Bidirectional I/O Line
- Small TSSOP16 Package
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable*
- These are Pb-free Devices

Typical Applications

- Automotive Park Assist
- Ultrasonic Distance Measurements

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

In accordance with:

US: 7620021 Mark Specifications − for ceramic, plastic and tape−automated bond packages

Europe: 16020 Standard Marking Specification

PIN CONNECTIONS

ORDERING INFORMATION

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 1. Application Schematic Diagram

[1](#page-2-0). Some of RF1, RF2 and CF1 components may be omitted. Use them according to required EMC robustness.

Name	Description	Typical Value	Units	Rating	Tolerance	Comment					
C ₈	VBAT HF Filter	100	nF	50 V	10%						
C ₉	I/O Line Capacitor	330	pF	50 V	10%	Standard I/O Line slope $(60 \mu s)$ IO SLP FAST = 0					
C ₉	I/O Line Capacitor	100	pF	50 V	10%	Fast I/O Line slope $(20 \mu s)$ IO SLP FAST = 1					
Tr1	Push-pull Transformer	Transducer specific	mH	100V	5%						
PZ ₁	Ultrasonic Transducer	MA40MF14-1B MA55AF15-07NA MA48AF15-07N	kHz	100V	the lower the better	muRata series					
D ₁	Reverse Polarity Protection	BAS321		50 V							

Table [1.](#page-1-0) RECOMMENDED EXTERNAL COMPONENTS (continued)

1. Some of RF1, RF2 and CF1 components may be omitted. Use them according to required EMC robustness.

Table 2. PIN FUNCTION DESCRIPTION

2. Both receiver inputs are equal. Anyone of them can be used for signal input and the other for ground reference. But, using outer package pin for signal input may result in worse EMC robustness.

3. TSTEN pin has to be always grounded in customer application. There is no customer functionality.

Figure 2. I/O Line Driver Structure and External Network

Table 3. ABSOLUTE MAXIMUM RATINGS

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

4. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

5. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)

ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)

Latch-up Current Maximum Rating: per JEDEC standard JESD78

6. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

Table 4. THERMAL CHARACTERISTICS

7. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

8. Values based on copper area of 645 mm² (or 1 in²) of 1 oz. copper thickness and FR4 PCB substrate.

Table 5. RECOMMENDED OPERATING RANGES

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

9. VSUP minimum voltage level might decrease the transmit burst ultrasonic power, it is external circuitry dependent. Transducer equivalent serial resistance is transformed on DRVA,B,C ASSP inputs and might be too high to satisfy both minimum VSUP and maximum TX current. In such a case, transmit driving current proportionally declines.

Table 6. ELECTRICAL CHARACTERISTICS

(VSUP = 6 V to 18 V, TA = -40° C to 85 $^{\circ}$ C, external devices as in application circuit of Figure 1.)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DIGITAL FUNCTIONALITY DESCRIPTION

The digital circuitry consists of the following blocks:

- RST_GEN − based on POR (power-on reset) signals, generates internal reset of digital blocks
- CLK_GEN − generates CLK_IO_LINE and CLK_EEPROM from internal oscillator
- CFG_MEM − configuration parameters storage for the chip functionality (EEPROM shadow RAM)
- EEPROM_CTRL − EEPROM controller for accessing EEPROM memory
- I/O_LINE_CTRL − protocol and application layer for communication with I/O Line master (ECU) via I/O Line
- DSP_TOP − ultrasonic receiver and transmitter control, digital signal processing for ultrasonic receiver

Figure 3. Digital Block Diagram

RST_GEN (Reset Generator)

It generates internal reset signals according to VSUP and VDD levels. In case of thermal shutdown all major blocks, such as RX, TX, and IO_LINE, go to power-down mode. This means that the chip doesn't communicate via I/O Line and its functionality is blocked. Functionality is restored when temperature falls back to a safe level.

CLK_GEN (Clock Generator)

This block generates the timing and internal clock signals based on an on-chip clock oscillator nominally running at 10 MHz (100 ns period).

DSP_TOP (Digital Signal Processing)

This block contains the core of the digital functionality of the NCV75215. The signal from ultrasonic transducer is amplified, converted to digital and fed to DSP_TOP. Then, it is digitally processed and compared to a time-dependent threshold. The echo is reported on I/O Line when the signal

magnitude exceeds the threshold. Distance to the obstacle can be determined from the time of the echo arrival. This block also controls transmission and reception at the ultrasonic transducer frequency. A simplified internal diagram of DSP_TOP module is depicted in Figure 4.

Figure 4. Block Diagram of DST TOP Module (Simplified)

Figure 5. Understanding Internal Digital Magnitude, Thresholds and Debug Amplitude (the Processing is Fully Digital; Voltages Apply to PDM Debugging Outputs TST2 and TST3)

CFG_MEM (Configuration Memory)

Bit structure of configuration memory is described in Table 7. EEPROM Refresh is executed during reset and reset values of CFG_MEM cells are preloaded from EEPROM

Table 7. STRUCTURE OF CONFIGURATION MEMORY

when available. For CFG_MEM locations not associated to the EEPROM, default value is preloaded after reset.

Data is transferred over I/O Line LSBit first and lowest sub-index first (in case of data arrays).

Table [7](#page-8-0). STRUCTURE OF CONFIGURATION MEMORY (continued)

 $10.n.a. = not applicable$

11. Configuration memory start-up values:

12.MEASURED_REVERB_PER values:

ENCODING OF SENSOR_STATUS [7:0] REGISTER

SENSOR_STATUS [0] = Acoustic Noise Flag

Flag is set if an acoustic noise is above the noise threshold (NOISE_THR) in noise monitoring time window.

Flag is automatically cleared by any measurement.

SENSOR_STATUS [1] = VSUP Under-voltage or Over-voltage during TX

Flag is set if VSUP voltage is below under-voltage threshold or crosses the over-voltage threshold during TX. If the VSUP voltage is higher than over-voltage threshold before TX, then the flag is not set.

In any case when over-voltage was detected during TX, transmission is automatically stopped, but measurement normally continues.

Flag is automatically cleared by direct measurement only.

SENSOR_STATUS [2] = TX Period Update Required

Flag is set if MEASURED_REVERB_PER is outside the range set by REVERB_PER_VAR_LIMIT and CARRIER_PER. Flag is updated by direct measurement only. Flag is automatically cleared by direct measurement only.

Flag is set after POR.

SENSOR_STATUS [3] = TX Period Update Direction

Flag indicates if MEASURED_REVERB_PER is greater than CARRIER_PER.

Flag is updated by direct measurement only. Flag is automatically cleared by direct measurement only.

SENSOR_STATUS [4] = Unexpected Decay Time (decay time too short)

Flag is set if transducer decay time (reverberation) is shorter than REVERB_MON_DUR time.

Flag is updated by direct measurement only. Flag is automatically cleared by direct measurement only.

SENSOR_STATUS [5] = End of Reverberation Time-out

Flag is set if transducer decay time is longer than end-of-reverberation time-out (TX end END OF REVERB TOUT $* 51.2 \mu s$. Flag is updated by direct measurement only. Flag is automatically cleared by direct measurement only.

SENSOR_STATUS [6] = THS_ERROR Flag (Thermal Shutdown Error)

Flag is set if thermal shutdown is detected. Flag is automatically cleared by any measurement.

SENSOR_STATUS [7] = EEPROM Two-Bit Error or **EEPROM CRC Error** or **POR flag**

EEPROM Two-Bit Error Flag:

Flag is updated by refreshing Configuration RAM from EEPROM (at start-up or initialized by Refresh Configuration RAM from EEPROM command). Flag is set if two-bit error is detected at any EEPROM address (single-bit error is automatically corrected by ECC code).

EEPROM CRC Error Flag:

Flag is updated by refreshing Configuration RAM from EEPROM (at start-up or initialized by Refresh Configuration RAM from EEPROM command). EEPROM data (ECC bits not included) CRC code is automatically calculated and stored into EEPROM as a part of Program EEPROM process. CRC stored in EEPROM is compared with CRC calculated during Refresh Configuration RAM from EEPROM process. Flag is set if stored and calculated CRC don't match. CRC is also protected by ECC.

The CRC8–C2 polynomial is $x^8+x^5+x^3+x^2+x+1$. The initial value is "1111_1111" binary.

POR Flag:

The flag is set at POR and it is cleared-by-read.

NOTES: a.) If flags are updated in case of direct (transmit and receive) measurement only, they are kept unchanged in case of indirect (receive only) measurement.

> b.) Clear-by-read flags are cleared by reading of Configuration RAM index 1.

CONFIGURATION MEMORY DETAILED DATA STRUCTURES

Data Frame Byte Data Frame Bit Threshold Table Bit 0 0 0 0 TEMPERATURE_CODE [0] … … 7 TEMPERATURE_CODE [7]

Table 8. INDEX 0 DATA STRUCTURE (Data are transferred LSBit first.)

Table 9. INDEX 1 DATA STRUCTURE (Data are transferred LSBit first.)

Table 10. INDEX 2A DATA STRUCTURE (Data are transferred LSBit first.)

Table 11. INDEX 2B DATA STRUCTURE (Data are transferred LSBit first.)

Table 12. INDEX 7 DATA STRUCTURE (Data are transferred LSBit first.)

Table [12](#page-17-0). INDEX 7 DATA STRUCTURE (Data are transferred LSBit first.) (continued)

Table 13. INDEX 10 DATA STRUCTURE (Data are transferred LSBit first.)

Table [13](#page-18-0). INDEX 10 DATA STRUCTURE (Data are transferred LSBit first.) (continued)

Table 14. INDEX 12 DATA STRUCTURE (Data are transferred LSBit first.)

NOTES:

- The content of registers MEAS_DATA0..59 is undefined and lost if I/O Line short to VBAT/GND is detected during reading from configuration memory index 12.
- The registers are updated during measurement. They can be read as many times as required, but their content is lost when any index data write transfer is issued on I/O Line.

Figure 7. An EXAMPLE of TX Driver Current Characteristics

Figure 7 depicts an EXAMPLE of TX driver current characteristic. The characteristic doesn't depend on NCV75215 but it depends on utilized transformer and the piezo impedance transformed to primary winding.

Table 15. INDEX 13 DATA STRUCTURE (Data are transferred LSBit first.)

Data Frame Byte	Data Frame Bit	Threshold Table Bit								
0	0	SENSOR_STATUS [0]								
	\cdots	\cdots								
		SENSOR_STATUS [7]								
	8	MEAS_RES_SHR_TOF1 [0]								
	\cdots	\cdots								
	15	MEAS_RES_SHR_TOF1 [7]								
っ	16	MEAS_RES_SHR_TOF1 [8]								
	17	MEAS_RES_SHR_TOF1 [9]								

TEMPERATURE MEASUREMENT

It is possible to monitor junction temperature by reading configuration memory index 0.

Temperature Code (−)

Figure 8. Junction Temperature Transfer Function

THRESHOLDS

DSP Filter Threshold (signal magnitude threshold) is controlled by values in 1 of 2 threshold Look-Up Tables (THR1 or THR2). The last threshold interval ends at 60ms (measured from the beginning of TX Ultrasonic transmission). Each threshold table consists of 12 data pairs. Each pair contains threshold level (6 bit) and delta time code (4 bit), which defines a time for linear interpolation to the particular threshold level. Threshold levels are interpreted using linear scale.

Table 19. THRESHOLD TABLE SELECTION

Table 20. THRESHOLD LEVELS THRx_LVLy[5:0] (Note 13)

Table 21. THRESHOLD DELTA TIME THRx_DTy[3:0] (Note 13)

13.x stands for index 1 or 2

y stands for index from 0 to 11

Figure 9. Threshold Curve Example

Threshold levels are piecewise approximated inside the thresholds intervals.

THR1_LVL11[5:0] resp. THR2_LVL11[5:0] threshold is applied until end of measurement if last delta time expires prior end of measurement.

NOISE_THR[5:0] is used during noise monitoring (the same threshold for both direct and indirect measurement).

Table 22. THRESHOLD TABLE DATA IN CONFIGURATION MEMORY (INDEX 5 AND 6)

(Data are transferred LSBit first)

DYNAMIC GAIN

Dynamic gain curve principle is depicted in Figure 10. It is similar to threshold interpolation algorithm.

See Table [1](#page-1-0) index 8 for dynamic gain parameters. Other details are depicted in Figure 10.

Block Diagram:

Figure 10. Dynamic Gain Principle

14.z stands for index from 0 to 4

Dynamic gain curve is smoothed in low-pass filter which runs at 2.5 MHz. The filter formula is:

$$
y_{n+1} = \left(1 - \frac{1}{2^s}\right) \times y_n + \frac{1}{2^s} \times x_n
$$

where:

- $y =$ output dynamic gain curve
- $x = input$ signal from dynamic gain interpolator
- \bullet s = shift coefficient which defines filter bandwidth

Table 24. DYNAMIC GAIN FILTER COEFFICIENT DYN_GAIN_BW[1:0] CODE LUT (LOOK-UP TABLE):

Dynamic Gain Start Delay

Dynamic gain curve starts at begin of measurement cycle but it is delayed by the time:

The range is from $0 \mu s$ to 3072 μs . Equivalent approximate distance is from 0 cm to 52.2 cm.

"Dyn. Gain Start Time" = DYN_GAIN_START[3:0] *

204.8 µs

15.DELTA_GAINx_SIGN = 0 … positive DELTA_GAINx

SUPER READ, SUPER WRITE

Super read data transfer is very useful at ultrasonic system startup. It enables to read all configuration memory items in one transaction which are initialized from EEPROM memory at power-on reset.

Then, the communication master (ECU) can use super write data transfer to initialize most of configuration memory items.

Index 11 write data structure. Data are transferred LSBit first.

It is a sequential write to the following indexes in the following order: 2a, 3, 4, 7 and 10.

COMMAND BYTE

The chip is commanded to requested action by writing the particular *Command Code* to the command byte item in configuration memory at index 15. The Command Byte cannot be read back, it is write only access. Commands are protected by 8-bits coding, Hamming distance, checksum and number of message bits. Unwanted execution is practically impossible.

Table 27. COMAND BYTE

17.Reading from Conf. RAM indexes <5…12> is enabled after POR.

Store Data to EEPROM:

1 st command *Unlock EEPROM* 2 nd command *Program EEPROM* Refresh Data from EEPROM: 1 st command *Unlock EEPROM* 2 nd command *Refresh Configuration RAM*

CHIP ID

The chip ID can be read from index 15. It is read only access.

Table 28. INDEX 15 DATA READ STRUCTURE (Data are transferred LSBit first.)

18.IC_ID_FM: Full mask silicon version. Completely modified silicon version.

19.IC_ID_MT: Metal tune silicon subversion. Small bugs can be fixed by different active components interconnection. Metal layers are modified but active silicon components remain the same.

20.The first silicon version is: IC_ID_FM = 1, IC_ID_MT = 1

21.The second silicon version is: IC_ID_FM = 2, IC_ID_MT = 1

CUSTOMER TEST OUTPUTS, TP_ENA

Custom diagnostic test (debugging) output/input (TST1...4) signals are selected by TP_ENA bits. TP_ENA bits are set via appropriate Command byte. DSP internal

"analog" signals are PDM modulated. External low-pass filters are required. See table below for valid test signal combinations.

Table 29. CUSTOMER TEST OUTPUTS, TP_ENA

22. Hi–Z / 4 kΩ = IO is not driven but pull down active

23.VGA_Gain = (analog(PDM2) / 20 mV) * (30 / 63) dB

24.Initial/POR value shall be 0 decimal ("0000" binary) – test outputs are disabled

25.GAIN[7:0] is effectively using half of the full-scale of PDM output

26.Threshold[9:0] is effectively using half of the full-scale of PDM output

Recommended External Low-pass Filter

Figure 11. Recommended PDM External Low-pass Filter

EEPROM PROGRAMMING SEQUENCE

EEPROM programming operation is performed in 12 successive steps:

- 1. Power-on the device.
- 2. Read Configuration RAM index 1 to clear SENSOR_STATUS (SENSOR_STATUS[7] = HW ERROR).
- 3. Write data into Configuration RAM (EEPROM shadow registers).
- 4. Verify EEPRPOM shadow registers content by reading back Configuration RAM index 11 (super read) and index 9. If mismatch detected, go-to step 2.
- 5. Unlock EEPROM Write Command Code 0x29hex into Configuration RAM index 15.
- 6. Program EEPROM − Write Command Code 0xD6hex into Configuration RAM index 15.
- 7. Wait 25 ms. It is needed to complete programming of the EEPROM memory.
- 8. Unlock EEPROM Write Command Code 0x29hex into Configuration RAM index 15.
- 9. Refresh Configuration RAM Write Command Code 0x73hex into Configuration RAM index 15.
- 10. Read Configuration RAM index 1 to get SENSOR_STATUS. SENSOR_STATUS[7] (EEPROM ERROR or HW_ERROR) should be 0. If SENSOR_STATUS[7] is 1, EEPROM failure occurred, then, go-to step 3.
- 11. Verify EEPRPOM shadow registers content by reading back Configuration RAM index 11 (super read) and index 9. If mismatch detected, go-to step 3.
- 12. Power-off the device.

EEPROM ERROR CORRECTION BLOCK

The error correction block utilizes SECDED coding for one bit error correction and 2 bits error detection. As data are split in words 16 bits long each, 5 extra bits are required for encoding ECC (Hamming code) and one extra bit for parity check (two bits error detection). The encoding bits are spread into the bit matrix accordingly to the Tab.[2.](#page-2-0)

Bit		2	3	4	5	6	7	8	9.	10	11	12	13	14	15	16	17	18	19	20	21
Data	PO	P ₁	D ₀	P ₂	D ₁	D ₂	D ₃	P ₃	D ₄	D ₅	D ₆	D7	D ₈	D ₉	D ₁₀	P4	D ₁₁	D ₁₂	D ₁₃	D ₁₄	D ₁₅
P ₀	x		x		x		\cdot л		$\overline{}$ $\ddot{}$		$\overline{}$ х		\cdot $\ddot{}$		v ^		x		\cdot ж		́
P ₁		v ⋏	x			v ∼	v л			$\overline{}$ л	x			x	v л			$\overline{}$ ́	x		
P ₂				$\tilde{}$ л	x	v ^	$\overline{}$ ж					v л	^	x	v л					x	
P ₃								x	x	v л	x	x	v л	x	x						
P ₄																x	x	x	x	x	

Figure 12. 16-bits Word SECDED Encoding

Error correction is based on the calculation of the parity bits. The parity bits are spread in such a way, that if the parity fails, the position of the error bit is defined directly by the position of the failing bits.

Example 1:

If the failure appears on bit 9 (D4), the parity of P0 and P3 will be wrong (column for bit 9, X's are for P0 and P3). Putting one on the wrong positions of the parity when writing parity word would be:

P4, P3, P2, P1, P0 = 01001 binary = 9 decimal.

Example 2:

Error is on parity bit $P4$ – the word is $10000 = \text{bit } 16$ decimal (that is directly the parity bit P4).

If two bits error is detected, invalid data of the impacted address in the shadow registers will not be updated.

IO_LINE_CTRL (COMMAND PULSE, MEASUREMENT CONTROL, DATA COMMUNICATION)

I/O Line is a master-slave point-to-point communication link. If more than one chip is connected to master (ECU) unit, it creates **star topology**.

Every I/O Line communication starts with particular command pulse. Its length and meaning is in table below:

Table 30. IO_LINE COMMAND PULSE

*I/O Line command pulse, which is generated by ECU master, has to be always in range from minimal pulse length to maximal pulse length under any applicable condition (especially EMC disturbance, which may shift I/O Line edges by tens of microseconds). It is strongly recommended to generate command pulses as close as possible to typical pulse length to keep maximal command recognition margin.

Figure 13. I/O Line Command Pulses

IO LINE SHORT TO VBAT/GND DETECTION

If the chip detects that I/O Line logical value (dominant or recessive level) differs from the value driven by the chip for time \geq 350 µs then I/O Line short circuit condition is detected. In this case, the chip immediately stops driving the I/O Line.

On-going measurement respective I/O Line data communication is immediately interrupted. I/O Line has to be in recessive level for at least T_{DEB} time to accept the next I/O Line command.

MEASUREMENT CONTROL

The measurement can be started by T_{SND1} , T_{REC2} , T_{REC1} or T_{SND2} command pulse. Measured ultrasonic echoes can be reported on I/O Line in 3 different modes. Modes are selected in Configuration Memory. The figure below depicts these modes.

Figure 14. I/O Line Measurement Modes Comparison

TSND1/TSND2 Command (Direct Measurement); ADV_IO_ENA = 0

ECHO_DET signal is identifying that echo magnitude is above threshold (signal is debounced with Tve time)

Figure 15. Send Command Sequence with Threshold Table 1 (TSND1) and Threshold Table 2 (TSND2) Noise Free and Defect Free Case

Figure 16. Send Command Sequence with Threshold Table 1 (T_{SND1}) and Threshold Table 2 (T_{SND2}) **Noise Free and Defect Free Case**

TREC1/TREC2 Command (Indirect Measurement); ADV_IO_ENA = 0

Figure 17. Receive Command Sequence Noise Free and Defect Free Case

TREC1/TREC2 Command (Indirect Measurement); ADV_IO_ENA = 1

Figure 18. Receive Command Sequence Noise Free and Defect Free Case

Note: All NCV75215 generated timing has accuracy of 3%.

DATA COMMUNICATION

Every I/O Line data communication starts by T_{DATA} command pulse. The chip supports index data read and write transfers.

Figure 20. Read and Write Index Data

*When reception of data separator is finished (identified by I/O Line falling edge of R/nW bit) temperature measurement is executed. Typical duration of temperature measurement is 10 μ s.

Total data write command time in $[\mu s]$:

 $T_{DATA}(DATA_WRITE) = 5670 + 300$ * <number of data payload bits>

Every data bit is modulated as I/O Line PWM pulse according to the Figure [21](#page-39-0).

The ECU should drive I/O Line low for t_{typ} [μs] $(T_{BIT_LOW} = 1/3 * T_{BIT}$, $T_{BIT_HIGH} = 2/3 * T_{BIT}$, where $T_{BIT} = 300 \,\mu s$.

Data rate is accepted from 2.7 kbit/s to 4.4 kbit/s (typically 3.3 kbit/s).

Figure 21. BIT0/BIT1 Coding

Meaning of R/nW + Address bits and overview of Configuration Memory indexes is in table below:

CHECKSUM

Validity of data transferred over I/O Line is ensured by Enhanced 8-bit Checksum. The checksum calculation is explained in example below.

Example: $R/nW = 1$ (read operation) $Index = 2 = 0010 bin$ $CARRIER_PER [10:0] = 3EA hex$ 11 data payload bits => 2 bytes for checksum calculation

1. 8-bit Checksum Initial Value

2. Data

27.Incomplete byte is padded by 0 s. 28."CP" stands for CARRIER_PER.

3. Checksum Calculation

Algorithm:

unsigned int check_sum =

 $(RnW << 7)$ | (index $<< 3$); for $(i=0; i < b$ yte count; $i++)$ { check sum = check sum + data byte[i]; if (check_sum > 255) check sum = check sum - 255; } check sum = check sum ^ 0xFF;

Example:

 $check_sum = 0x90$ (initial value in this example) byte #0: check_sum = $0x90 + 0xEA = 0x17A$ check_sum = $0x17A - 0xFF = 0x7B$ byte #1: check_sum = $0x7B + 0x03 = 0x7E$

4. Checksum Inversion

check $sum = 0x7E$ xor $0xFF = 0x81$

Checksum to transmit is inversion of final checksum accumulator (not $0x7E \implies 0x81$ to transmit/check as checksum).

ACKNOWLEDGE BIT

Meaning of Acknowledge bit is explained in Figure 22.

Figure 22. I/O Data Communication − Meaning of Acknowledge Bit

The chip transmits acknowledge bit after reception of the last checksum bit. Acknowledge bit is transmitted after data write transfer only.

PACKAGE DIMENSIONS

TSSOP−16 CASE 948F ISSUE B

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD
	- 3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
	- 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
	- 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL
	- CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR
	- REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W−.

SOLDERING FOOTPRINT

ON Semiconductor and ⊍Nare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns me rights to a number of patent ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its pro regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA **Phone**: 303−675−2175 or 800−344−3860 Toll Free USA/Canada **Fax**: 303−675−2176 or 800−344−3867 Toll Free USA/Canada **Email**: orderlit@onsemi.com

N. American Technical Support: 800−282−9855 Toll Free USA/Canada **Europe, Middle East and Africa Technical Support:** Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81−3−5817−1050

ON Semiconductor Website: **www.onsemi.com**

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative