

1:10 PLL Clock Driver for 2.5V DDR-SDRAM Memory

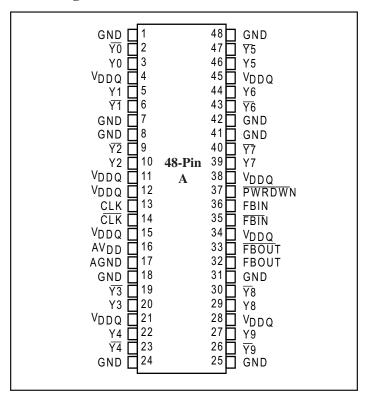
Product Features

- Operating Frequency up to 220 MHz for PC3200 Registered DIMM applications
- Distributes one differential clock input pair to ten differential clock output pairs
- Inputs (CLK, CLK) and (FBIN, FBIN)
- Input PWRDWN: LVCMOS
- Outputs (Yx, \overline{Yx}) , $(FBOUT, \overline{FBOUT})$
- External feedback pins (FBIN, FBIN) are used to synchronize the outputs to the clock input
- Operates at 2.5V for PC1600, PC2100, PC2700, and 2.6V for PC3200
- Packaging (Pb-free & Green available):
 -48-pin TSSOP

Block Diagram

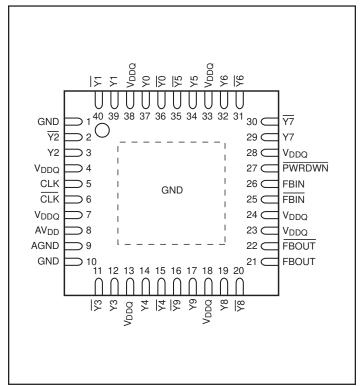
Product Description

PI6CVF857 PLL clock device is developed for registered DDR DIMM applications. The device is a zero-delay buffer that distributes a differential clock input pair (CLK, $\overline{\text{CLK}}$) to ten differential pairs of clock outputs (Y[0:9], $\overline{\text{Y}[0:9]}$), and one differential pair feedback clock outputs (FBOUT, $\overline{\text{FBOUT}}$). The clock outputs are controlled by the input clocks (CLK, $\overline{\text{CLK}}$), the feedback clocks (FBIN, $\overline{\text{FBIN}}$), the 2.5V LVCMOS input (PWRDWN), and the Analog Power input (AVDD). When input PWRDWN is low while power is applied, the input receivers are disabled, the PLL is turned off, and the differential clock outputs are 3-stated. When the AVDD is strapped low, the PLL is turned off and bypassed for test purposes.


When the input frequency falls below a suggested detection frequency that is below the operating frequency of the PLL, the device will enter a low power mode. An input frequency detection circuit will detect the low frequency condition and perform the same low power features as when the PWRDWN input is low.

 $\frac{\text{The PLL in the PI6CVF857 clock driver uses the input clocks (CLK, CLK) and the feedback clocks (FBIN,FBIN) to provide high-performance, low-skew, low-jitter output differential clocks (Y[0:9], Y[0:9]). The PI6CVF857 is also able to track Spread Spectrum Clocking for reduced EMI.$

08-0298 1 PS8683D 11/12/08



Pin Configuration TSSOP(A)

Pin Configuration TQFN(ZD)

......

Pinout Table

Pin Name	Description
CLK CLK	Reference Clock input
Yx	Clock outputs.
Yx	Complement Clock outputs.
FBOUT FBOUT	Feedback output, and Complement Feedback Output
FBIN FBIN	Feedback Input, and Complement Feedback Input
PWRDWN	Power down and output disable for all Yx and $\overline{\text{Yx}}$ outputs. When $\overline{\text{PWRDWN}} = 0$, the part is powered down and the differential clock outputs are disabled to a - state. When $\overline{\text{PWRDWN}} = 1$, all differential clock outputs are enabled and run at the same frequency as CLK.
V_{DDQ}	Power Supply for I/O.
AV _{DD}	Analog /core power supply. AV_{DD} can be used to bypass the PLL for testing purposes. When AV_{DD} is strapped to ground, PLL is bypassed and CLK is buffered directly to the device outputs.
AGND	Analog/core ground. Provides the ground reference for the analog/core circuitry
GND	Ground

Function Table

Inputs				Outputs				PLL
AV _{DD}	PWRDWN	CLK	CLK	Y	$\overline{\overline{Y}}$	FBOUT	FBOUT	
GND	Н	L	Н	L	Н	L	Н	Bypassed/off
GND	Н	Н	L	Н	L	Н	L	Bypassed/off
X	L	L	Н	Z	Z	Z	Z	off
X	L	Н	L	Z	Z	Z	Z	off
Nominal ⁽²⁾	Н	L	Н	L	Н	L	Н	on
Nominal ⁽²⁾	Н	Н	L	Н	L	Н	L	on
Nominal ⁽²⁾	X	< 20 N	ИНz ⁽¹⁾	Z	Z	Z	Z	off

Notes

08-0298 3 PS8683D 10/06/08

^{1.} For testing and power saving purposes, PI6CVF857 will power down if the frequency of the reference inputs CLK, CLK is well below the operating <u>frequency</u> range. The maximum power down clock frequency is below 20 MHz. For example, PI6CVF857 will be powered down when the CLK, CLK stop running.

^{2.} AV_{DD} Nominal is 2.5V for PC1600, PC2100, and PC2700. AV_{DD} Nominal is 2.6V for PC3200.

Z = High impedance

X = Don't care

Absolute Maximum Ratings (Over operating free-air temperature range)

Symbol	Parameter		Max.	Units
V _{DDQ} , AV _{DD}	I/O supply voltage range and analog/core supply voltage range	- 0.5	3.6	
$V_{\rm I}$	Input voltage range	- 0.5	V 10.5	V
V _O	Output voltage range	- 0.5	V _{DDQ} +0.5	
I _{IK}	Input Clamp Current	- 50	50	
I_{OK}	Output Clamp Current	- 50	50	A
I _O	Continuous output Current		50	mA
I _{O(PWR)}	Continuous current through each AV _{DD} , V _{DDQ} , or GND	- 100	100	
Tstg	Tstg Storage temperature		150	°C
$\varnothing_{\mathrm{JA}}$	Junction to ambient thermal (package A)		104	°C/w
$\varnothing_{ m JC}$	Junction to case thermal (package A)		38	°C/w

Note: Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

DC Specifications

Recommended Operating Conditions

Symbol	Parameter	Min.	Nom.	Max.	Units	
AV _{DD}	Analog/core supply voltage		V _{DDQ} - 0.12	V _{DDQ}	2.7	
17	Outrot grant problems	PC1600 - PC2700	2.3	2.5	2.7	
V _{DDQ}	Output supply voltage	PC3200	2.5	2.6	2.7	V
V _{IL}	Low-level input voltage for PWRDWN pin		-0.3		0.7	
V _{IH}	High-level input voltage for PWRDWN pin	1.7		V _{DDQ} +0.3		
I _{OH}	High-level output current	_		12	A	
I_{OL}	Low-level output current		_		-12	mA
V _{IX}	Input differential-pair crossing voltage		(V _{DDQ} /2) -0.2		(V _{DDQ} /2) +0.2	
V _{IN}	Input voltage level	-0.3		V _{DDQ} +0.3	V	
V	Input differential voltage between CLK and	DC	0.36		V _{DDQ} +0.6	
$V_{ m ID}$	CLK	AC	0.7		V _{DDQ} +0.6	
TA	Operating free air temperature		-40		85	°C

Timing Requirements for PC1600 ~ PC2700 (Over recommended operating free-air temperature)

Symbol	Description	AV _{DD} , V _{DDQ}	Units	
Symbol		Min.	Max.	Ullits
r	Operating clock frequency ^(1,2)	60	170	MII.
f_{CK}	Application clock frequency ⁽³⁾	95	170	MHz
t_{DC}	Input clock duty cycle	40	60	%
t _{STAB}	PLL stabilization time after powerup		100	μs

Notes:

- 1. The PLL is able to handle spread spectrum induced skew.
- 2. Operating clock frequency indicates a range over which the PLL is able to lock, but in which the clock is not required to meet the other timing parameters. (Used for low-speed debug).
- 3. Application clock frequency indicates a range over which the PLL meets all of the timing parameters.

Electrical Characteristics for PC1600 ~ PC2700 (Over recommended operating free-air temperature)

	Parameter	Test Conditions	A _{VDD} , V _{DDQ}	Min.	Тур.	Max.	Units
V _{IK}	All inputs	$I_{\rm I} = -18 \text{mA}$	2.3V			-1.2	
3.7	I I ish autout wake as	$I_{\mathrm{OH}} = -100 \mu A$	2.3 to 2.7V	V _{DDQ} - 0.1			
V _{OH}	High output voltage	$I_{OH} = -12 \text{mA}$	2.3V	1.7			V
W	I am autout vallaga	$I_{OL} = 100 \mu A$	2.3 to 2.7V			0.1	
V _{OL}	Low output voltage	$I_{OL} = 12$ mA	2.3V			0.6	
т.	CLK, FBIN	$V_I = V_{DDQ}$ or GND	2.7V		±10		
I_{I}	PWRDWN	$V_I = V_{DDQ}$ or GND	2.7V				μΑ
I _{DDPD}	Static supply current I _{DDQ} + I _{ADD}	$\frac{\text{CLK \& }\overline{\text{CLK}}}{\text{PWRDWN}} = \text{Dow}$				200	pu I
I _{DDQ}	Dynamic supply current of V _{DDQ}	CLK & CLK = 170 MHz All outputs are open	2.7V			300	mA
I _{ADD}	Dynamic supply current of AV _{DD}	$CLK \& \overline{CLK} = 170 \text{ MHz}$	2.7V			12	mA
	CLK and CLK	W - W - CND	2.51/	2.0		2.5	
C_{I}	FBIN and FBIN	$V_{\rm I} = V_{\rm DDQ}$ or GND	2.5V	2.0		3.5	F
C	CLK and $\overline{\text{CLK}}^{(5)}$	V – V		0.25		0.25	pF
$C_{I(\Delta)}$	FBIN and FBIN ⁽⁵⁾	$V_{\rm I} = V_{ m DDQ}$ or GND	2.5V	-0.25			

Note:

- 4. The maximum power-down clock frequency is below 20 MHz.
- 5. Guaranteed by design, but not production tested.

08-0298 5 PS8683D 10/06/08

Timing Requirements for PC3200 (Over recommended operating free-air temperature)

Symbol	Description	AV_{DD}, V_{DDQ}	Units	
		Min.	Max.	Ullits
c.	Operating clock frequency ^(1,2)	60	220	MII-
f_{CK}	Application clock frequency ⁽³⁾	95	220	MHz
t _{DC}	Input clock duty cycle	40	60	%
t _{STAB}	PLL stabilization time after powerup		100	μs

Notes:

- 1. The PLL is able to handle spread spectrum induced skew.
- 2. Operating clock frequency indicates a range over which the PLL is able to lock, but in which the clock is not required to meet the other timing parameters. (Used for low-speed debug).
- 3. Application clock frequency indicates a range over which the PLL meets all of the timing parameters.

Electrical Characteristics for PC3200 (Over recommended operating free-air temperature)

Parameter		Test Conditions	A _{VDD} , V _{DDQ}	Min.	Тур.	Max.	Units
V _{IK}	All inputs	$I_{\rm I} = -18 \text{mA}$	2.5V			-1.2	
V	Llich output voltage	$I_{OH} = -100 \mu A$	2.5 to 2.7V	V _{DDQ} - 0.1			
V _{OH}	High output voltage	$I_{OH} = -12mA$	2.5V	1.7			V
17	I arr autout valtage	$I_{OL} = 100 \mu A$	2.5 to 2.7V			0.1	
V _{OL}	Low output voltage	$I_{OL} = 12mA$	2.5V			0.6	
T	CLK, FBIN	$V_{I} = V_{DDQ}$ or GND	2.7V			-10	
I_{I}	PWRDWN	$V_{I} = V_{DDQ}$ or GND	2.7V			±10 μΑ	
I _{DDPD}	Static supply current I _{DDQ} + I _{ADD}	$\frac{\text{CLK \& \overline{CLK}}}{\text{PWRDWN}} = \text{Low}$				200	, ,
I _{DDQ}	Dynamic supply current of V _{DDQ}	CLK & CLK = 200 MHz All outputs are open	2.7V			300	mA
I _{ADD}	Dynamic supply current of AV _{DD}	$CLK \& \overline{CLK} = 200 \text{ MHz}$	2.7V			12	mA
C	CLK and CLK	V – V	2.64	2.0		2.5	
$C_{\rm I}$	FBIN and FBIN	$V_{\rm I} = V_{\rm DDQ}$ or GND	2.6V	2.0		3.5	nE
C	CLK and $\overline{\text{CLK}}^{(5)}$	W = W an CND	2.64	0.25		0.05	pF
$C_{I(\Delta)}$	FBIN and FBIN ⁽⁵⁾	$V_{I} = V_{DDQ}$ or GND	2.6V	-0.25		0.25	

Note:

- 4. The maximum power-down clock frequency is below 20 MHz.
- 5. Guaranteed by design, but not production tested.

AC Specifications for PC1600 ~ PC2700

Switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (See Figure 1 & 2)

D4	Dogovintion	D'	AV _{DD}	T InstAc		
Parameter	Description	Diagram	Min.	Nom.	Max	Units
tjit(cc)	Cycle-to-cycle jitter	Figure 4	-50		50	
t(0)	Static phase offset ⁽¹⁾	Figure 5	-50	0	50	
tsk(o)	Output clock skew	Figure 6			75	ps
tjit(per)	Period jitter	Figure 7	-75		75	
tjit(hper)	Half-period jitter	Figure 8	-100		100	
tsl(i)	Input clock slew rate	Figure 9	1.0		4.0	3 7/
tsl(o)	Output clock slew rate ⁽²⁾	Figure 9	1.0		2.0	V/ns
V _{OX}	Output differential-pair cross-voltage		(V _{DDQ} /2) -0.1		(V _{DDQ} /2) +0.1	V
The PLL is cap	pable of meeting all the above parameter	s while supporting	g SSC synthesizers	with the follo	wing parameters	
	SSC modulation frequency		30.00		50.00	kHz
	SSC clock input frequency deviation		0.00		-0.50	%
	PLL loop bandwidth ⁽⁴⁾		2			MHz
	Phase angle				-0.031	degrees

Notes:

- 1. Static Phase offset does not include Jitter.
- 2. The Output Skew Rate is calculated by using the load shown in Figure 3.
- 3. V_{OX} specified at the DRAM clock input or the test load in Figure 2.
- 4. The SSC requirements meet the Intel PC100 SDRAM Registered DIMM specification.

AC Specifications for PC3200

Switching characteristics over recommended operating free-air temperature range (unless otherwise noted)(See Figure 1 & 2)

D4	Description	D:	AV _{DD}	T Turita		
Parameter	Description	Diagram	Min.	Nom.	Max	Units
tjit(cc)	Cycle-to-cycle jitter	Figure 4	-50		50	
t(0)	Static phase offset ⁽¹⁾	Figure 5	-50	0	50	
tsk(o)	Output clock skew	Figure 6			75	ps
tjit(per)	Period jitter	Figure 7	-50		50	
tjit(hper)	Half-period jitter	Figure 8	-75		75	
tsl(i)	Input clock slew rate	Figure 9	1.0		4.0	3 1/
tsl(o)	Output clock slew rate ⁽²⁾	Figure 9	1.0		2.0	- V/ns
V_{OX}	Output differential-pair cross-voltage		(V _{DDQ} /2) -0.1		$(V_{DDQ}/2) +0.1$	V
The PLL is cap	pable of meeting all the above parameter	s while supporting	g SSC synthesizers	with the follow	wing parameters	
	SSC modulation frequency	30.00		50.00	kHz	
	SSC clock input frequency deviation		0.00		-0.50	%
	PLL loop bandwidth ⁽⁴⁾		2			MHz
	Phase angle				-0.031	degrees

Notes:

- 1. Static Phase offset does not include Jitter.
- 2. The Output Skew Rate is calculated by using the load shown in Figure 3.
- 3. V_{OX} specified at the DRAM clock input or the test load in Figure 2.
- 4. The SSC requirements meet the Intel PC100 SDRAM Registered DIMM specification.

..........

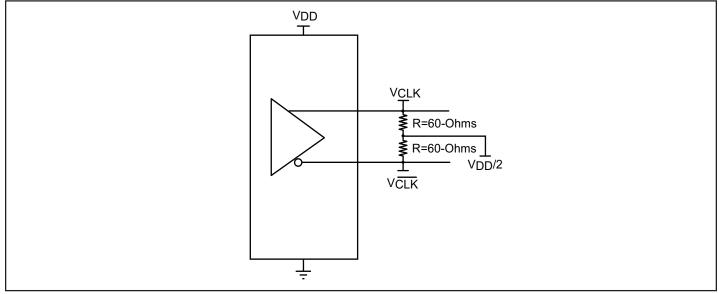


Figure 1. IBIS Model Output Load

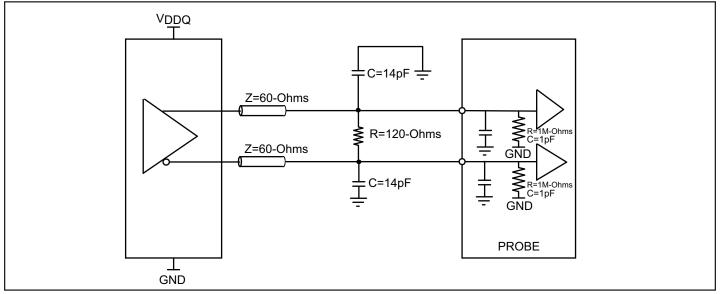


Figure 2. Output Load Test Circuit 1

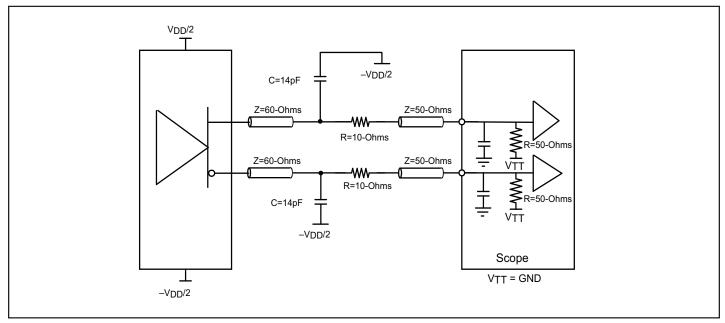


Figure 3. Output Load Test Circuit 2

08-0298 1 0 PS8683D 10/06/08

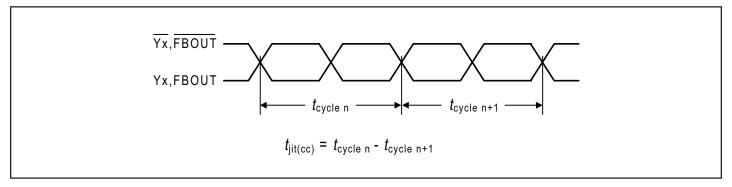


Figure 4. Cycle-to-Cycle Jitter

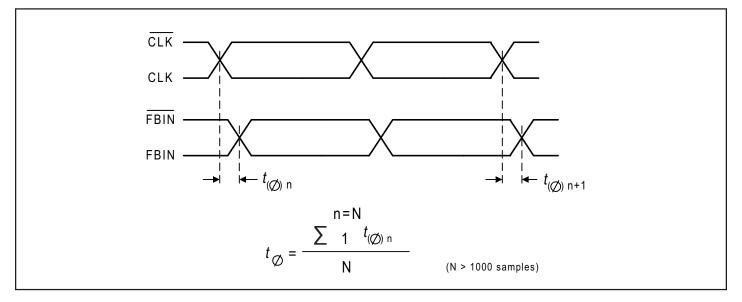


Figure 5. Static Phase Offset

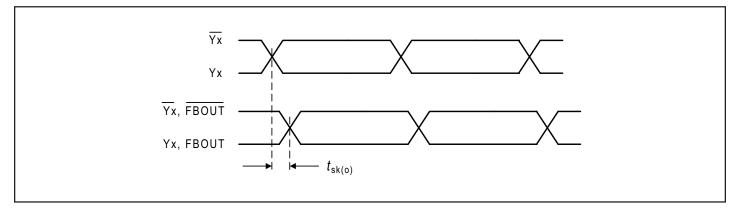


Figure 6. Output Skew

08-0298 11 PS8683D 10/06/08

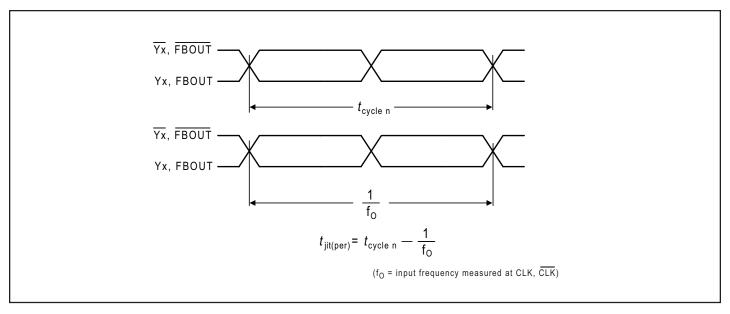
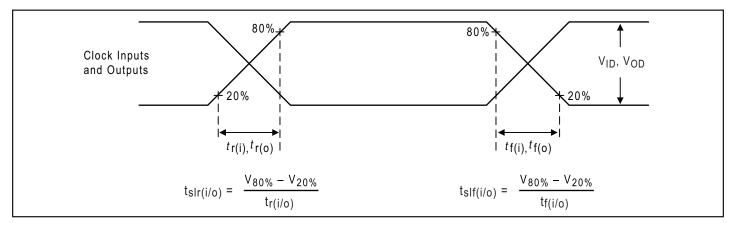
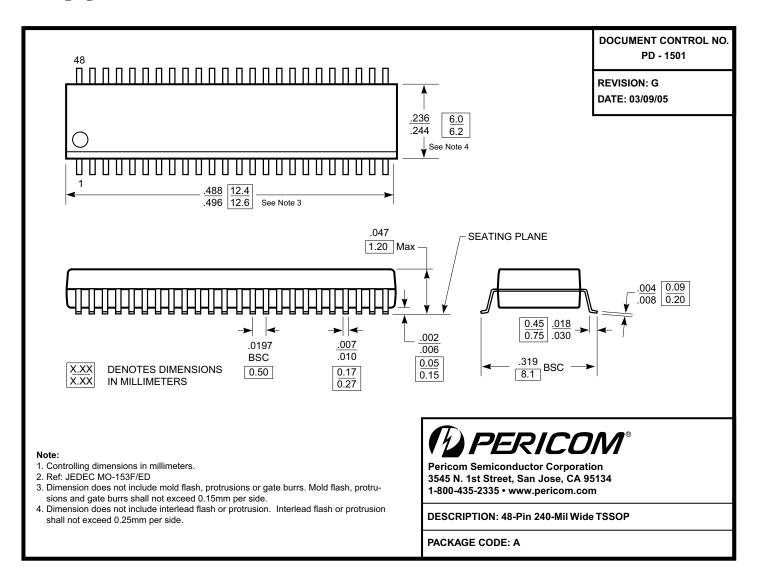


Figure 7. Period Jitter

Figure 8. Half-Period Jitter




Figure 9. Input and Output Slew Rates

08-0298 12 PS8683D 10/06/08

10/06/08

Packaging Mechanical: 48-Pin TSSOP(A)

Ordering Information

Ordering Code	Package Code	Pin Count - Package Type
PI6CVF857A	A	48-pin TSSOP
PI6CVF857AE	A	Pb-free & Green, 48-pin TSSOP

Notes:

1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/

Pericom Semiconductor Corporation • 1-800-435-2336 • http://www.pericom.com