

# BQ25618 (BMS024) Evaluation Module

This user's guide provides detailed testing instructions for the BQ25618 evaluation modules (EVM). Also included are descriptions of the necessary equipment, equipment setup, and procedures. The reference documentation contains the printed-circuit board layouts, schematics, and the bill of materials (BOM).

Throughout this user's guide, the abbreviations *EVM*, *BQ25618EVM*, *BMS024*, and the term *evaluation module* are synonymous with te BMS024 evaluation module, unless otherwise noted.

#### Contents

| 1 | Introduction |                                          |     |  |  |  |
|---|--------------|------------------------------------------|-----|--|--|--|
|   | 1.1          | EVM Features                             | . 3 |  |  |  |
|   | 1.2          | I/O Descriptions                         | . 3 |  |  |  |
| 2 | Test S       | ummary                                   | 5   |  |  |  |
|   | 2.1          | Equipment                                | . 5 |  |  |  |
|   | 2.2          | Equipment Setup                          | 5   |  |  |  |
|   | 2.3          | Software Setup                           | 6   |  |  |  |
|   | 2.4          | Test Procedure                           | . 8 |  |  |  |
| 3 | PCB L        | ayout Guideline                          | 10  |  |  |  |
| 4 | Board        | Layout, Schematic, and Bill of Materials | 10  |  |  |  |
|   | 4.1          | Board Layout                             | 10  |  |  |  |
|   | 4.2          | Schematic                                | 19  |  |  |  |
|   | 4.3          | Bill of Materials                        | 20  |  |  |  |

#### List of Figures

| 1  | Original Test Setup for BMS024A       | 6  |
|----|---------------------------------------|----|
| 2  | BQStudio Device Type Selection Window | 6  |
| 3  | BQStudio Charger Selection Window     | 6  |
| 4  | Main Window of BQ2561X EVM Software   | 7  |
| 5  | BMS024 Rev. A Top Overlay             | 11 |
| 6  | BMS025 Rev. A Top Solder Mask         | 12 |
| 7  | BMS025 Rev. A Top Layer               | 13 |
| 8  | BMS025 Rev. A MidLayer 1              | 14 |
| 9  | BMS025 Rev. A MidLayer 2              | 15 |
| 10 | BMS025 Rev. A Bottom Layer            | 16 |
| 11 | BMS025 Rev. A Bottom Solder Mask      | 17 |
| 12 | BMS025 Rev. A Bottom Overlay          | 18 |
| 13 | Schematic                             | 19 |
|    |                                       |    |

#### List of Tables

| 1 | Device Data Sheets                       | 3  |
|---|------------------------------------------|----|
| 2 | EVM I/O Connections                      | 3  |
| 3 | EVM Jumper Shunt and Switch Installation | 4  |
| 4 | Recommended Operating Conditions         | 4  |
| 5 | BQ25618EVM Bill of Materials             | 20 |



# Trademarks

All trademarks are the property of their respective owners.



### 1 Introduction

### 1.1 EVM Features

For detailed features and operation, see Table 1 for a list of devices and their data sheets.

| Device  | Data Sheet | EVM Label  | Variant |
|---------|------------|------------|---------|
| BQ25618 | SLUSDF8A   | BQ25618EVM | 001     |

The BMS024 evaluation module (EVM) is a complete charger module for evaluating an I<sup>2</sup>C-controlled single-cell NVDC charger using any of the devices listed above.

This EVM does not include the EV2300/EV2400 interface board. To evaluate the EVM, an EV2300/EV2400 interface board must be ordered separately.

### 1.2 I/O Descriptions

Table 2 lists the input and output connections available on this EVM and their respective descriptions.

| Jack               | Description                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J1(1) - VIN        | Positive rail of the charger input voltage                                                                                                                                                  |
| J1(2) - GND        | Ground                                                                                                                                                                                      |
| J2(1) - SYSTEM     | Positive rail of the charger system output voltage, typically connected to the system load                                                                                                  |
| J2(2) - GND        | Ground                                                                                                                                                                                      |
| J3(1) - VPB        | Positive rail of the charger output voltage for power<br>bank applications in reverse boost mode (OTG). This<br>output also shares the rail with the VIN input rail in<br>forward buck mode |
| J3(2)-GND          | Ground                                                                                                                                                                                      |
| J4(3) -<br>BATTERY | Positive rail of the charger battery input, connected to the positive terminal of the external battery                                                                                      |
| J4(2) - BATSNS     | Input connected to the positive node of the battery for remote cell voltage measurement                                                                                                     |
| J4(1) - GND        | Ground                                                                                                                                                                                      |
| J5                 | Input source Micro B USB port                                                                                                                                                               |
| J6                 | I <sup>2</sup> C 4-pin connector for the EV2300/2400 interface board                                                                                                                        |

#### Table 2. EVM I/O Connections

Table 3 lists the jumper and shunt installations available on this EVM and their respective descriptions.

| Jack | Description                                                                                                                                                                                                              | BQ25618 Setting      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| JP1  | I/O Pullup rail selection. Selection will have either BAT or SYS as the pullup rail for SDA, SCL, CE, PG, STAT, and INT pins.                                                                                            | Short PULL-UP to SYS |
| JP2  | Remote BATSNS pin connection to Battery input terminal. Disconnect if sensing battery voltage remotely through J4(2). If disconnected with no input on J4(2), charger BATSNS will default connect to BAT pin internally. | Installed            |
| JP3  | PMID_GOOD pin connection to control N-Ch. MOSFET for a power bank application. On PMID_GOOD enabled chargers, connect this to control the PMID to VPB load switch.                                                       | Installed            |
| JP4  | Micro B USB input D+ connection to D+ test point                                                                                                                                                                         | Not Installed        |
| JP5  | Thermistor COOL temperature setting. Connect jumper to simulate charger entering TCOOL (T1-T2) temperature region.                                                                                                       | Not installed        |
| JP6  | Thermistor COLD temperature setting. Connect jumper to simulate charger entering TCOLD ( <t1) region.<="" td="" temperature=""><td>Not installed</td></t1)>                                                              | Not installed        |
| JP7  | VPB status LED indicator connection. On power bank PMID_GOOD enabled chargers, this indicates VPB rail is active.                                                                                                        | Installed            |
| JP8  | $\overline{\text{PG}}$ pin LED indicator connection. On $\overline{\text{PG}}$ enabled chargers, this indicates the Power Good status.                                                                                   | Not installed        |
| JP9  | STAT pin LED indicator connection. This indicates the current charger Status.                                                                                                                                            | Not installed        |
| JP10 | Thermistor NORMAL temperature setting. Connect jumper to simulate charger entering TNORMAL (T2-T3) temperature region.                                                                                                   | Installed            |
| JP11 | Thermistor WARM temperature setting. Connect jumper to simulate charger entering TWARM (T3-T5) temperature region.                                                                                                       | Not Installed        |
| JP12 | Thermistor HOT temperature setting. Connect jumper to simulate charger entering THOT (>T5) temperature region.                                                                                                           | Not installed        |
| JP13 | Micro B USB input D- connection to D- test point.                                                                                                                                                                        | Not installed        |
| JP14 | CE pin connection to ground to enable charging. When removed, CE pin will pull up to disable charge.                                                                                                                     | Installed            |
| JP15 | PSEL pin input current selection. Connect this to HIGH on PSEL enabled chargers to select 500mA default input current limit. Connect this to LOW on PSEL enabled chargers to select 2.4-A default input current limit .  | Short PSEL to LOW    |
| S1   | QON control switch. Press either for exiting Shipping Mode or System Reset.                                                                                                                                              | Default off          |

### Table 3. EVM Jumper Shunt and Switch Installation

Table 4 lists the recommended operating conditions for this EVM.

### **Table 4. Recommended Operating Conditions**

| Symbol              | Description                                     | MIN | TYP  | MAX  | UNIT |
|---------------------|-------------------------------------------------|-----|------|------|------|
| $V_{VBUS}, V_{VAC}$ | Input voltage applied to VAC and VBUS pins      | 3.9 |      | 13.5 | V    |
| V <sub>BAT</sub>    | Battery voltage applied to BAT pin              | 0   | 4.20 | 4.52 | V    |
| I <sub>VBUS</sub>   | Input current into VBUS                         | 0   |      | 3.2  | A    |
| I <sub>SW</sub>     | Output current (SW)                             |     |      | 1.8  | А    |
| I <sub>BAT</sub>    | Fast charging current                           | 0   |      | 1.5  | A    |
|                     | RMS Discharging current through internal BATFET |     |      | 5.0  | A    |

### 2 Test Summary

### 2.1 Equipment

This section includes a list of supplies required for tests on this EVM.

- 1. **Power Supplies:** Power supply #1 (PS1): A power supply capable of supplying 5 V at 3 A is required. While this part can handle larger voltage and current, it is not necessary for this procedure.
- Loads: Load #1 (4-Quadrant Supply, Constant Voltage < 4.5 V): A "Kepco" Load, BOP, 20-5M, DC 0 to ±20 V, 0 to ±5 A (or higher)</li>
   Alternative Option: A 0-20V/0-5A >30-W DC electronic load set in a constant voltage loading mode.

Alternative Option: A 0-20V/0-5A >30-W DC electronic load set in a constant voltage loading mode. Load #2 (Electronic or Resistive Load): 10  $\Omega$ , 5 W (or higher)

- Meters: (6x) "Fluke 75" multimeters, (equivalent or better).
   Alternative Option: (4x) equivalent voltage meters and (2x) equivalent current meters. The current meters must be capable of measruing at least 5-A.
- 4. **Computer:** A computer with at least one USB port and a USB cable. Must have the latest version of Battery Management Studio installed.
- 5. USB-TO-GPIO Communication Kit: EV2300/EV2400 USB-based PC interface board.
- Software: Download BQSTUDIOTEST from www.ti.com. Double click the *Battery Management Studio* installation file and follow the installation steps. The software supports the Microsoft® Windows® XP, 7, and 10 operating systems.

### 2.2 Equipment Setup

Use the following instructions to set up the EVM testing equipment:

- 1. Review EVM connections in Table 2.
- 2. Set PS1 for 5-V DC, 2-A current limit and then turn off the supply.
- 3. Connect the output of PS1 in series with a current meter to J1 (VIN and PGND).
- 4. Connect a voltage meter across TP13 (VAC\_VBUS) and TP23 (PGND).
- 5. Turn on Load #1, set to constant voltage mode, and output to 2.5-V. Disable the load. Connect Load in series with a current meter, ground side, to J4 (BATTERY and PGND) as shown in Figure 1.
- 6. Connect one voltage meter across TP16 (BAT) and TP22 (PGND), or across J4-3 and J4-1 as shown in Figure 1.
- 7. Connect one voltage meter acrosss TP19 (SYS) and TP21 (PGND), or across J2-1 and J2-2 as shown in Figure 1.
- 8. Connect one voltage meter across TP15 (VPB) and TP23 (PGND), or across J3-1 and J3-2 as shown in Figure 1.
- 9. Connect the EV2300/2400 USB interface board to the computer with a USB cable and from the I2C port to J8 with the 4-pin cable. The connections are shown in Figure 1.

5

Test Summary



#### Test Summary



Figure 1. Original Test Setup for BMS024A

# 2.3 Software Setup

Use the following to set up the EVM testing software:

- 1. On the computer connected to the EV2300/2400 interface board, launch Battery Management Studio (BQStudio). Select Charger as seen in Figure 2.
- 2. Select the appropriate configuration file based on the device from the window shown in Figure 3.

```
Field View
```

3. Choose , on the window that appears, and the main window of the BQ2561X EVM software will appear, as shown in Figure 4.

| a Target Selection Wizard                                                             | a Target Selection Wizard                                                                                                                  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Battery Management Studio (bqStudio) Supported Targets<br>Please select a device type | Battery Management Studio (bqStudio) Supported Targets<br>Please select a target                                                           |
| All<br>Gauge<br>Charger                                                               | Charger_1_00-bq25611.bqz<br>Charger_1_00-bq25611D.bqz<br>Charger_1_00-bq25612.bqz                                                          |
| Wireless Charging<br>Protector<br>Reference Design                                    | Charger_1_00-bq25615.bqz<br>Charger_1_00-bq25618.bqz<br>Charger_1_00-bq25618C.bqz<br>Charger_1_00-bq25618C.bqz<br>Charger_1_00-bq25619.bqz |
| Figure 2. BQStudio Device Type Selection Window                                       | Figure 3. BQStudio Charger Selection Window                                                                                                |



| The View Window Help                                                                                                                                                                                                                                                              | Comm                                                                                                                                                 |                           |                                     |                                                                |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------|----------------------------------------------------------------|------------------------------|
| * 8023618 619 Default View * 8023618 619                                                                                                                                                                                                                                          | PRelat View 2                                                                                                                                        |                           |                                     |                                                                | - H                          |
| Registers                                                                                                                                                                                                                                                                         |                                                                                                                                                      |                           |                                     |                                                                |                              |
| Save Reacters   Joad Reacters   Mart Los                                                                                                                                                                                                                                          | Winte Heruster   Read Heruster   Auto Read: Off                                                                                                      | • Update Mo               | de Immediate - EC Address (Dái6á) - | Betresh Desire 10 Detault View Desice ACK Brier Have Betrese h | 4 Yina                       |
| Mult htt OC Pullisuus Neau                                                                                                                                                                                                                                                        | (manadala) (manadala)                                                                                                                                |                           | Status                              | [restriction] [statements]                                     | alani,                       |
| Inc. Current Local                                                                                                                                                                                                                                                                | <ul> <li>trout ViBace Final</li> </ul>                                                                                                               |                           | VBUS Adapter Status                 | Charge Status                                                  | A 7 6 5 4 3 2 1 3 D W R      |
| VINCEN Battery Tracking Voltage                                                                                                                                                                                                                                                   | <ul> <li>ViC OVE Thrashold</li> </ul>                                                                                                                |                           | Power Good Status                   | Thermal Regulation Status                                      |                              |
| 115 Kulle (Im                                                                                                                                                                                                                                                                     | Minimum Sastam Sintana                                                                                                                               |                           | VSYS Regulation Status              | VEUS Cood Status                                               |                              |
| Charac Millions 1 and                                                                                                                                                                                                                                                             | - Decharge Threshold                                                                                                                                 |                           | VINDPM Status                       | INDEW Status                                                   | 00 0 0 0 0 0 0 0 0 0 W R     |
| Charge volte, e 1 mil                                                                                                                                                                                                                                                             |                                                                                                                                                      |                           | EVT3N3 pin Status                   | Top Off Timer Status                                           | 04 0 0 0 0 0 0 0 0 WILE      |
| Past Gharge Gurrent Dimit                                                                                                                                                                                                                                                         | <ul> <li>Pre-charge Ourrent Umit.</li> </ul>                                                                                                         |                           | ACOVP Status                        |                                                                | 05 0 0 0 0 0 0 0 0 W R       |
| termination Curter/Curte                                                                                                                                                                                                                                                          | • Top-OK Timer                                                                                                                                       |                           | Fault                               |                                                                | 05 0 0 0 0 0 0 0 0 0 (W) (R) |
| Charge Safety Timer                                                                                                                                                                                                                                                               | OTC Boost Regulation Votage                                                                                                                          |                           | Walchdog Fault                      | OTG Boost Fault                                                | 07 0 0 0 0 0 0 0 0 W R       |
| OTG Menmum Baltery Voltage                                                                                                                                                                                                                                                        | <ul> <li>Thermal Regulation Threshold</li> </ul>                                                                                                     |                           | Charge Fault                        | Batary Fault                                                   |                              |
| JEITA-Warm (T3-75) VBET                                                                                                                                                                                                                                                           | <ul> <li>JETI4-Cobi (T1-T2) ISET</li> </ul>                                                                                                          | •                         | Battery Temperature Fault           |                                                                |                              |
| JERA-Warm (13-15) ISE1                                                                                                                                                                                                                                                            | <ul> <li>JETIA-Cool Threshold (V12%)</li> </ul>                                                                                                      |                           | Part                                |                                                                |                              |
| JETIA-Warm Threshold (VT3%)                                                                                                                                                                                                                                                       | <ul> <li>Wätchdog Timer</li> </ul>                                                                                                                   | -                         | Device ID                           | 802561X D                                                      | 00 0 0 0 0 0 0 0 0 W R       |
| Parada Zenerada Terminadon<br>Brada Zenerada Selenda distributir<br>Diselako di Netri Fit<br>Enala Cel Refit Tipsten Read with A<br>Enala Cel Refit Tipsten Read with A<br>Bradi Hut modo<br>Mara NLOV Mit publica and Faul<br>Read Cel III<br>Parada Cel IIII<br>Parada Cel IIII | Enable Charge Server, Trans<br>Enable: OTS<br>Enable: OTS<br>Franks of Trans-OTT help<br>Apper Present<br>Reset Watchdog Time<br>Reset Watchdog Time | tesel via vODN.<br>J Faut |                                     |                                                                |                              |
| Wardsdon Timer (19                                                                                                                                                                                                                                                                |                                                                                                                                                      |                           |                                     |                                                                | These Internations           |

Figure 4. Main Window of BQ2561X EVM Software



Test Summary

#### 2.4 Test Procedure

#### 2.4.1 Initial Settings

Use the following steps for enabling the EVM test setup:

- 1. Make sure Section 2.2 steps have been followed.
- 2. Launch the BQ2561X EVM GUI software, if not already done.
- 3. Turn on PS1:
  - Measure  $\rightarrow$  V\_{\_{SYS}} (SYS-TP19 and PGND-TP21) = 4.20V  $\pm 0.3V$

**NOTE:** Completely disconnect Load #1 from BATTERY connections if different value is seen.

#### 2.4.2 Communication Verification

Use teh following steps for communication verification :

- 1. In the EVM software, click the
- Read Register button
- Verify that the GUI reads Device ACK OK in the top right corner.
  - **NOTE:** If the device reads been followed.
- 2. In the Field View (see Figure 4), make the following changes as necessary:
  - Set
     Watchdog Timer Disabled
  - Set Input Voltage Limit 4.2V
  - Set Input Current Limit 0.5A
  - Set Charge Voltage Limit 4.20V
  - Set Fast Charge Current Limit 0.48A
  - Set
     Pre-charge Current Limit
     0.24A
  - Set Minimum System Voltage 3.5V -
  - Check Enable Charge
  - Uncheck Enable Termination

### 2.4.3 Charger Mode Verification

Use the following steps for charger mode verification:

- 1. PS1 should be on from Section 2.4.1. In the EVM software, click
  - Verify that all Fault statuses read "Normal"

twice.

**Read Register** 

| Fault                     |        |                 |        |
|---------------------------|--------|-----------------|--------|
| Watchdog Fault            | Normal | OTG Boost Fault | Normal |
| Charge Fault              | Normal | Battery Fault   | Normal |
| Battery Temperature Fault | Normal | ]               |        |

- 2. Enable Load #1 (see Section 2.2) and take measurements as follows:
  - Measure  $\rightarrow$  V<sub>SYS</sub> (SYS-TP19 and PGND-TP21) = 3.65V ±0.3V
  - Measure  $\rightarrow$  V<sub>BAT</sub> (BAT-TP16 and PGND-TP22) = 2.5V ±0.2V
  - Measure  $\rightarrow$  I<sub>BAT</sub> = 240mA ±50mA
- 3. Change Load #1 to 3.7V and take measurements as follows:
  - Measure  $\rightarrow$  V<sub>SYS</sub> (SYS-TP19 and PGND-TP21) = 3.8V ±0.3V
  - Measure  $\rightarrow$  V\_{BAT} (BAT-TP16 and PGND-TP22) = 3.7V  $\pm 0.2V$
  - Measure  $\rightarrow$  I<sub>BAT</sub> = 480mA ±200mA
- 4. In the EVM software set Fast Charge Current Limit 0.96A ▼
  - Measure  $\rightarrow$  I<sub>IN</sub> = 500mA ±200mA

#### 2.4.4 Boost Mode Verification

Use the following steps for boost mode verification:

- 1. Turn off and disconnect PS1 .
- 2. Set Load #1 to 3.7V and 2A current limit.

**NOTE:** If Load #1 connected from BATTERY-J4(3) to PGND-J4(1) is not a four quadrant supply, remove Load #1 and use PS1, set to 3.7V, 2A current limit and connect to BATTERY-J4(3) and PGND-J4(1).

- 3. In the EVM software, check I Enable OTG
- 4. Connect Load #2 across VPB-J3(1) and PGND-J3(2).
  - Across **measure** $\rightarrow$  I<sub>IN</sub> = 500mA ±200mA
- 5. Turn off and disconnect the power supply.
- 6. Remove Load #2 from the connection.

#### 2.4.5 Helpful Tips

- 1. The leads and cables to the various power supplies, batteries and loads have resistance. The current meters also have series resistance. The charger dynamically reduces charge current depending on the voltage sensed at its VBUS pin (using the VINDPM feature), BAT pin (as part of normal termination), and TS pin (through its battery temperature monitoring feature via battery thermistor). Therefore, voltmeters must be used to measure the voltage as close to the IC pins as possible instead of relying on the digital readouts of the power supply. If a battery thermistor is not available, make sure shunt JP10 is in place.
- 2. When using a source meter that can source and sink current as your battery simulator, TI highly recommends adding a large (1000+ μF) capacitor at the EVM BATTERY and GND connector in order to prevent oscillations at the BAT pin due to mismatched impedances of the charger output and source meter input within their respective regulation loop bandwidths. Configuring the source meter for 4-wire sensing eliminates the need for a separate voltmeter to measure the voltage at the BAT pin. When using 4-wire sensing, always ensure that the sensing leads are connected in order to prevent accidental overvoltage by the power leads.
- 3. For precise measurements of input and output current, especially near termination, the current meter in series with the battery or battery simulator should not be set to auto-range and may need be removed entirely. An alternate method for measuring charge current is to either use an oscilloscope with hall effect current probe or by a differential voltage measurement across the relevant sensing resistors populated on the BMS024 EVM.

### 3 PCB Layout Guideline

Minimize the switching node rise and fall times for minimum switching loss. Proper layout of the components minimizing high-frequency current path loop is important to prevent electrical and magnetic field radiation and high-frequency resonant problems. This PCB layout priority list must be followed in the order presented for proper layout:

- 1. Place the input capacitor as close as possible to the PMID pin and GND pin connections and use the shortest copper trace connection or GND plane.
- 2. Place the inductor input terminal as close to the SW pin as possible. Minimize the copper area of this trace to lower electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other trace or plane.
- 3. Put an output capacitor near to the inductor and the IC. Tie ground connections to the IC ground with a short copper trace connection or GND plane.
- 4. Route analog ground separately from power ground. Connect analog ground and connect power ground separately. Connect analog ground and power ground together using power pad as the single ground connection point or use a  $0-\Omega$  resistor to tie analog ground to power ground.
- 5. Use a single ground connection to tie the charger power ground to the charger analog ground just beneath the IC. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.
- 6. Place decoupling capacitors next to the IC pins and make the trace connection as short as possible.
- It is critical that the exposed power pad on the backside of the IC package be soldered to the PCB ground. Ensure that there are sufficient thermal vias directly under the IC connecting to the ground plane on the other layers.
- 8. The via size and number should be enough for a given current path.

See the EVM design for the recommended component placement with trace and via locations.

### 4 Board Layout, Schematic, and Bill of Materials

### 4.1 Board Layout

Figure 5 through Figure 12 illustrate the PCB board layouts.





Figure 5. BMS024 Rev. A Top Overlay





Figure 6. BMS025 Rev. A Top Solder Mask





Figure 7. BMS025 Rev. A Top Layer





#### Figure 8. BMS025 Rev. A MidLayer 1





Figure 9. BMS025 Rev. A MidLayer 2





Figure 10. BMS025 Rev. A Bottom Layer





#### Figure 11. BMS025 Rev. A Bottom Solder Mask







# Figure 12. BMS025 Rev. A Bottom Overlay



# 4.2 Schematic

Figure 13 illustrates the schematic for the BQ25618EVM.





# 4.3 Bill of Materials

Table 5 lists the BQ25618EVM BOM.

### Table 5. BQ25618EVM Bill of Materials

| Designator                                                                     | QTY | Value   | Description                                                  | Package<br>Reference          | Part Number        | Manufacturer                   | Alternate Part<br>Number <sup>(1)</sup> | Alternate<br>Manufacturer <sup>(1)</sup> |
|--------------------------------------------------------------------------------|-----|---------|--------------------------------------------------------------|-------------------------------|--------------------|--------------------------------|-----------------------------------------|------------------------------------------|
| PCB1                                                                           | 1   |         | Printed Circuit Board                                        |                               | BMS024             | Any                            |                                         |                                          |
| C3                                                                             | 1   | 1uF     | CAP, CERM, 1 uF, 35 V, +/-<br>10%, X5R, 0603                 | 603                           | GMK107BJ105KA-T    | Taiyo Yuden                    |                                         |                                          |
| C5                                                                             | 1   | 0.047uF | CAP, CERM, 0.047 uF, 25<br>V, +/- 10%, X7R, 0402             | 402                           | GRM155R71E473KA88D | MuRata                         |                                         |                                          |
| C6                                                                             | 1   | 4.7uF   | CAP, CERM, 4.7 uF, 16 V,<br>+/- 10%, X5R, 0603               | 603                           | GRM188R61C475KAAJ  | MuRata                         |                                         |                                          |
| C9, C14                                                                        | 2   | 10uF    | CAP, CERM, 10 uF, 16 V,<br>+/- 10%, X7R, 0805                | 805                           | CL21B106KOQNNNE    | Samsung Electro-<br>Mechanics  |                                         |                                          |
| C15                                                                            | 1   | 4.7uF   | CAP, CERM, 4.7 uF, 25 V,<br>+/- 10%, X5R, 0805               | 805                           | C0805C475K3PACTU   | Kemet                          |                                         |                                          |
| C18                                                                            | 1   | 10uF    | CAP, CERM, 10 uF, 25 V,<br>+/- 10%, X7S, 0805                | 805                           | GRM21BC71E106KE11L | MuRata                         |                                         |                                          |
| C20                                                                            | 1   | 0.1uF   | CAP, CERM, 0.1 uF, 25 V,<br>+/- 10%, X5R, 0402               | 402                           | GRM155R61E104KA87D | MuRata                         |                                         |                                          |
| D4, D6                                                                         | 2   | Green   | LED, Green, SMD                                              | 1.6x0.8x0.8mm                 | LTST-C190GKT       | Lite-On                        |                                         |                                          |
| H1, H2, H3,<br>H4                                                              | 4   |         | Bumpon, Hemisphere, 0.44<br>X 0.20, Clear                    | Transparent<br>Bumpon         | SJ-5303 (CLEAR)    | 3М                             |                                         |                                          |
| J1, J2, J3                                                                     | 3   |         | Conn Term Block, 2POS, 3.81mm, TH                            | 2POS Terminal<br>Block        | 1727010            | Phoenix Contact                |                                         |                                          |
| J4                                                                             | 1   |         | Terminal Block Receptacle,<br>3x1, 3.81mm, R/A, TH           | Term Block, 3 pos             | 1727023            | Phoenix Contact                |                                         |                                          |
| J5                                                                             | 1   |         | Connector, Receptacle,<br>Micro-USB Type B, Top<br>Mount SMT | Connector USB<br>Mini B       | ZX62R-B-5P(30)     | Hirose Electric Co. Ltd.       |                                         |                                          |
| J6                                                                             | 1   |         | Header (friction lock),<br>100mil, 4x1, R/A, TH              | 4x1 R/A Header                | 22/05/3041         | Molex                          |                                         |                                          |
| JP1, JP15                                                                      | 2   |         | Header, 100mil, 3x1, Tin, TH                                 | Header, 3 PIN,<br>100mil, Tin | PEC03SAAN          | Sullins Connector<br>Solutions |                                         |                                          |
| JP2, JP3,<br>JP4, JP5,<br>JP6, JP7,<br>JP9, JP10,<br>JP11, JP12,<br>JP13, JP14 | 12  |         | Header, 100mil, 2x1, Tin, TH                                 | Header, 2 PIN,<br>100mil, Tin | PEC02SAAN          | Sullins Connector<br>Solutions |                                         |                                          |

<sup>(1)</sup> Unless otherwise noted in the Alternate Part Number and/or Alternate Manufacturer columns, all parts may be substituted with equivalents.



Table 5. BQ25618EVM Bill of Materials (continued)

| Designator                                                                               | QTY | Value | Description                                                                    | Package<br>Reference            | Part Number        | Manufacturer     | Alternate Part<br>Number <sup>(1)</sup> | Alternate<br>Manufacturer <sup>(1)</sup> |
|------------------------------------------------------------------------------------------|-----|-------|--------------------------------------------------------------------------------|---------------------------------|--------------------|------------------|-----------------------------------------|------------------------------------------|
| L1                                                                                       | 1   | 1uH   | Inductor, 1 uH, 3.2 A, 0.028<br>ohm, SMD                                       | 2.5x2mm                         | MPIM252010F1R0M-LF | Microgate        |                                         |                                          |
| LBL1                                                                                     | 1   |       | Thermal Transfer Printable<br>Labels, 0.650" W x 0.200" H<br>- 10,000 per roll | PCB Label 0.650 x<br>0.200 inch | THT-14-423-10      | Brady            |                                         |                                          |
| Q1                                                                                       | 1   | -30V  | MOSFET, P-CH, -30 V, -5.9<br>A, SOT-23                                         | SOT-23                          | SI2343CDS-T1-GE3   | Vishay-Siliconix |                                         | None                                     |
| Q2                                                                                       | 1   | 60V   | MOSFET, N-CH, 60 V, 0.2<br>A, AEC-Q101, SOT-23                                 | SOT-23                          | ZVN4106FTA         | Diodes Inc.      |                                         | None                                     |
| R1, R2, R6,<br>R13                                                                       | 4   | 0.01  | RES, 0.01, 1%, 1 W, 2010                                                       | 2010                            | WSL2010R0100FEA18  | Vishay-Dale      |                                         |                                          |
| R4                                                                                       | 1   | 0     | RES, 0, 5%, 0.063 W, AEC-<br>Q200 Grade 0, 0402                                | 402                             | CRCW04020000Z0ED   | Vishay-Dale      |                                         |                                          |
| R7, R9, R11,<br>R12, R22,<br>R24                                                         | 6   | 10.0k | RES, 10.0 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402                            | 402                             | CRCW040210K0FKED   | Vishay-Dale      |                                         |                                          |
| R10                                                                                      | 1   | 20.0k | RES, 20.0 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402                            | 402                             | CRCW040220K0FKED   | Vishay-Dale      |                                         |                                          |
| R14                                                                                      | 1   | 15.0k | RES, 15.0 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402                            | 402                             | CRCW040215K0FKED   | Vishay-Dale      |                                         |                                          |
| R15, R16,<br>R18                                                                         | 3   | 2.21k | RES, 2.21 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402                            | 402                             | CRCW04022K21FKED   | Vishay-Dale      |                                         |                                          |
| R19                                                                                      | 1   | 5.23k | RES, 5.23 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402                            | 402                             | CRCW04025K23FKED   | Vishay-Dale      |                                         |                                          |
| R20                                                                                      | 1   | 7.68k | RES, 7.68 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402                            | 402                             | CRCW04027K68FKED   | Vishay-Dale      |                                         |                                          |
| R21                                                                                      | 1   | 30.1k | RES, 30.1 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402                            | 402                             | CRCW040230K1FKED   | Vishay-Dale      |                                         |                                          |
| R23                                                                                      | 1   | 4.87k | RES, 4.87 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402                            | 402                             | CRCW04024K87FKED   | Vishay-Dale      |                                         |                                          |
| S1                                                                                       | 1   |       | Switch, Normally open, 2.3N force, 200k operations, SMD                        | KSR                             | KSR221GLFS         | C&K Components   |                                         |                                          |
| SH-JP1, SH-<br>JP2, SH-JP3,<br>SH-JP7, SH-<br>JP9, SH-<br>JP10, SH-<br>JP14, SH-<br>JP15 | 8   | 1x2   | Shunt, 100mil, Gold plated,<br>Black                                           | Shunt                           | SNT-100-BK-G       | Samtec           | 969102-0000-DA                          | ЗМ                                       |



| Designator                                                                                                                                 | QTY | Value  | Description                                        | Package<br>Reference           | Part Number        | Manufacturer                  | Alternate Part<br>Number <sup>(1)</sup> | Alternate<br>Manufacturer <sup>(1)</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----------------------------------------------------|--------------------------------|--------------------|-------------------------------|-----------------------------------------|------------------------------------------|
| TP1, TP2,<br>TP3, TP4,<br>TP7, TP8,<br>TP9, TP10,<br>TP11, TP12,<br>TP17, TP20,<br>TP24, TP25,<br>TP26, TP27,<br>TP28, TP29,<br>TP30, TP31 | 20  |        | Test Point, Miniature, White,<br>TH                | White Miniature<br>Testpoint   | 5002               | Keystone                      |                                         |                                          |
| TP13, TP14,<br>TP15                                                                                                                        | 3   |        | Test Point, Miniature, Red,<br>TH                  | Red Miniature<br>Testpoint     | 5000               | Keystone                      |                                         |                                          |
| TP16                                                                                                                                       | 1   |        | Test Point, Miniature,<br>Yellow, TH               | Yellow Miniature<br>Testpoint  | 5004               | Keystone                      |                                         |                                          |
| TP18, TP19                                                                                                                                 | 2   |        | Test Point, Miniature,<br>Orange, TH               | Orange Miniature<br>Testpoint  | 5003               | Keystone                      |                                         |                                          |
| TP21, TP22,<br>TP23, TP32,<br>TP33, TP34                                                                                                   | 6   |        | Test Point, Compact, SMT                           | Testpoint_Keyston<br>e_Compact | 5016               | Keystone                      |                                         |                                          |
| U1                                                                                                                                         | 1   |        | BQ25618YFF,<br>YFF0030AAAA (DSBGA-30)              | YFF0030AAAA                    | BQ25618YFF         | Texas Instruments             |                                         | Texas Instruments                        |
| C1                                                                                                                                         | 0   | 1uF    | CAP, CERM, 1 uF, 25 V, +/-<br>10%, X7R, 0805       | 805                            | GRM219R71E105KA88D | MuRata                        |                                         |                                          |
| C2                                                                                                                                         | 0   | 1uF    | CAP, CERM, 1 μF, 25 V,+/-<br>10%, X5R, 0603        | 603                            | TMK107BJ105KA-T    | Taiyo Yuden                   |                                         |                                          |
| C4, C19                                                                                                                                    | 0   | 1000pF | CAP, CERM, 1000 pF, 25 V,<br>+/- 10%, X7R, 0402    | 402                            | 885012205044       | Wurth Elektronik              |                                         |                                          |
| C7                                                                                                                                         | 0   | 2200pF | CAP, CERM, 2200 pF, 25 V,<br>+/- 10%, X5R, 0402    | 402                            | GRM155R61E222KA01D | MuRata                        |                                         |                                          |
| C8, C12,<br>C13, C21                                                                                                                       | 0   | 0.1uF  | CAP, CERM, 0.1 uF, 25 V,<br>+/- 10%, X5R, 0402     | 402                            | GRM155R61E104KA87D | MuRata                        |                                         |                                          |
| C10, C11                                                                                                                                   | 0   | 10uF   | CAP, CERM, 10 uF, 16 V,<br>+/- 10%, X7R, 0805      | 805                            | CL21B106KOQNNNE    | Samsung Electro-<br>Mechanics |                                         |                                          |
| C16                                                                                                                                        | 0   | 1000pF | CAP, CERM, 1000 pF, 50 V,<br>+/- 1%, C0G/NP0, 0402 | 402                            | GRM1555C1H102FA01D | MuRata                        |                                         |                                          |
| C17                                                                                                                                        | 0   | 10uF   | CAP, CERM, 10 uF, 25 V,<br>+/- 10%, X5R, 0805      | 805                            | GRM21BR61E106KA73L | MuRata                        |                                         |                                          |
| D1, D2                                                                                                                                     | 0   | 20V    | Diode, Schottky, 20 V, 1 A,<br>152AD               | 152AD                          | NSR10F20NXT5G      | ON Semiconductor              |                                         |                                          |
| D3                                                                                                                                         | 0   | 100V   | Diode, Ultrafast, 100 V, 0.15<br>A, SOD-123        | SOD-123                        | 1N4148W-7-F        | Diodes Inc.                   |                                         |                                          |



### Table 5. BQ25618EVM Bill of Materials (continued)

| Designator                                                                   | QTY | Value | Description                                         | Package<br>Reference          | Part Number      | Manufacturer                   | Alternate Part<br>Number <sup>(1)</sup> | Alternate<br>Manufacturer <sup>(1)</sup> |
|------------------------------------------------------------------------------|-----|-------|-----------------------------------------------------|-------------------------------|------------------|--------------------------------|-----------------------------------------|------------------------------------------|
| D5                                                                           | 0   | Green | LED, Green, SMD                                     | 1.6x0.8x0.8mm                 | LTST-C190GKT     | Lite-On                        |                                         |                                          |
| FID1, FID2,<br>FID3, FID4,<br>FID5, FID6                                     | 0   |       | Fiducial mark. There is nothing to buy or mount.    | N/A                           | N/A              | N/A                            |                                         |                                          |
| JP8                                                                          | 0   |       | Header, 100mil, 2x1, Tin, TH                        | Header, 2 PIN,<br>100mil, Tin | PEC02SAAN        | Sullins Connector<br>Solutions |                                         |                                          |
| R3                                                                           | 0   | 2     | RES, 2.0, 5%, 0.063 W,<br>AEC-Q200 Grade 0, 0402    | 402                           | CRCW04022R00JNED | Vishay-Dale                    |                                         |                                          |
| R5                                                                           | 0   | 0     | RES, 0, 5%, 0.1 W, AEC-<br>Q200 Grade 0, 0603       | 603                           | CRCW06030000Z0EA | Vishay-Dale                    |                                         |                                          |
| R8                                                                           | 0   | 100k  | RES, 100 k, 1%, 0.0625 W, 0402                      | 402                           | RC0402FR-07100KL | Yageo America                  |                                         |                                          |
| R17                                                                          | 0   | 2.21k | RES, 2.21 k, 1%, 0.063 W,<br>AEC-Q200 Grade 0, 0402 | 402                           | CRCW04022K21FKED | Vishay-Dale                    |                                         |                                          |
| SH-JP4, SH-<br>JP5, SH-JP6,<br>SH-JP8, SH-<br>JP11, SH-<br>JP12, SH-<br>JP13 | 0   | 1x2   | Shunt, 100mil, Gold plated,<br>Black                | Shunt                         | SNT-100-BK-G     | Samtec                         | 969102-0000-DA                          | 3M                                       |
| TP5, TP6                                                                     | 0   |       | Test Point, Miniature, White,<br>TH                 | White Miniature<br>Testpoint  | 5002             | Keystone                       |                                         |                                          |

# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated