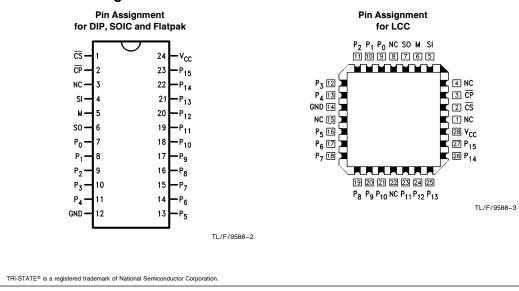
National Semiconductor

54F/74F676 16-Bit Serial/Parallel-In, Serial-Out Shift Register

General Description

The 'F676 contains 16 flip-flops with provision for synchronous parallel or serial entry and serial output. When the Mode (M) input is HIGH, information present on the parallel data (P₀-P₁₅) inputs is entered on the falling edge of the Clock Pulse (CP) input signal. When M is LOW, data is shifted out of the most significant bit position while information present on the Serial (SI) input shifts into the least significant bit position. A HIGH signal on the Chip Select (CS) input prevents both parallel and serial operations.

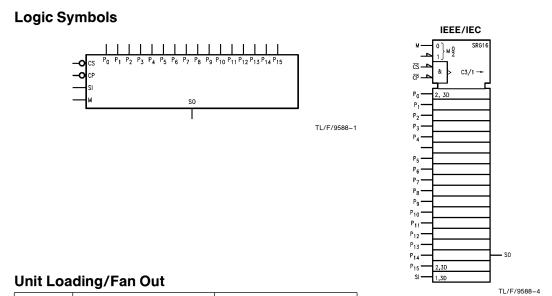
Features


- 16-bit parallel-to-serial conversion
- 16-bit serial-in, serial-out
- Chip select control
- Slim 24 lead 300 mil package

Commercial	Military	Package Number	Package Description
74F676PC		N24A	24-Lead (0.600" Wide) Molded Dual-In-Line
74F676SPC		N24C	24-Lead (0.300" Wide) Molded Dual-In-Line
	54F676DM (Note 2)	J24A	24-Lead (0.600" Wide) Ceramic Dual-In-Line
	54F676SDM (Note 2)	J24F	24-Lead (0.300" Wide) Ceramic Dual-In-Line
74F676SC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC
	54F676FM (Note 2)	W24C	24-Lead Cerpack
	54F676LM (Note 2)	E28A	24-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.


Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9588

RRD-B30M105/Printed in U. S. A.

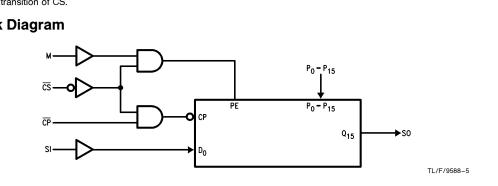
December 1994

		54	F/74F
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}
$\frac{P_0 - P_{15}}{CS}$	Parallel Data Inputs	1.0/1.0	$20 \ \mu A / -0.6 \ m A$
	Chip Select Input (Active LOW)	1.0/1.0	20 μ A/-0.6 mA
CP	Clock Pulse Input (Active LOW)	1.0/1.0	20 µA/−0.6 mA
M	Mode Select Input	1.0/1.0	20 µA/−0.6 mA
SI	Serial Data Input	1.0/1.0	20 µA/−0.6 mA
SO	Serial Output	50/33.3	-1 mA/20 mA

Functional Description

The 16-bit shift register operates in one of three modes, as indicated in the Shift Register Operations Table.

HOLD-a HIGH signal on the Chip Select (CS) input prevents clocking, and data is stored in the sixteen registers.


Shift/Serial Load—data present on the SI pin shifts into the register on the falling edge of \overline{CP} . Data enters the Q_0 position and shifts toward Q15 on successive clocks, finally appearing on the SO pin.

Parallel Load—data present on P_0-P_{15} are entered into the register on the falling edge of \overline{CP} . The SO output represents the Q₁₅ register output.

To prevent false clocking, \overline{CP} must be LOW during a LOW-to-HIGH transition of $\overline{CS}.$

Block Diagram

Shift Register Operations Table **Control Input Operating Mode** CS CP М н Hold Х Х L L Shift/Serial Load Parallel Load L н H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial $\sim = HIGH-to-LOW Transition$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias Plastic	−55°C to +175°C −55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE [®] Output	-0.5V to $+5.5V$
Current Applied to Output	

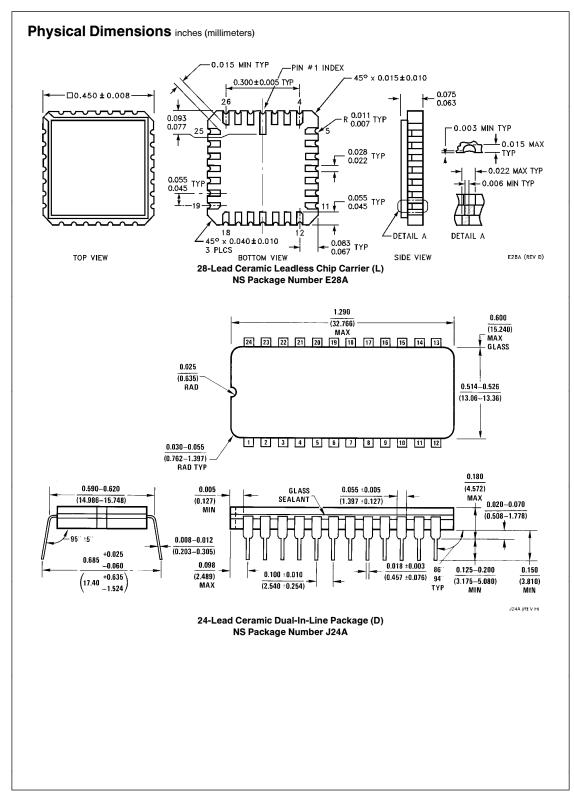
in LOW State (Max) twice the rated I_{OL} (mA) Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

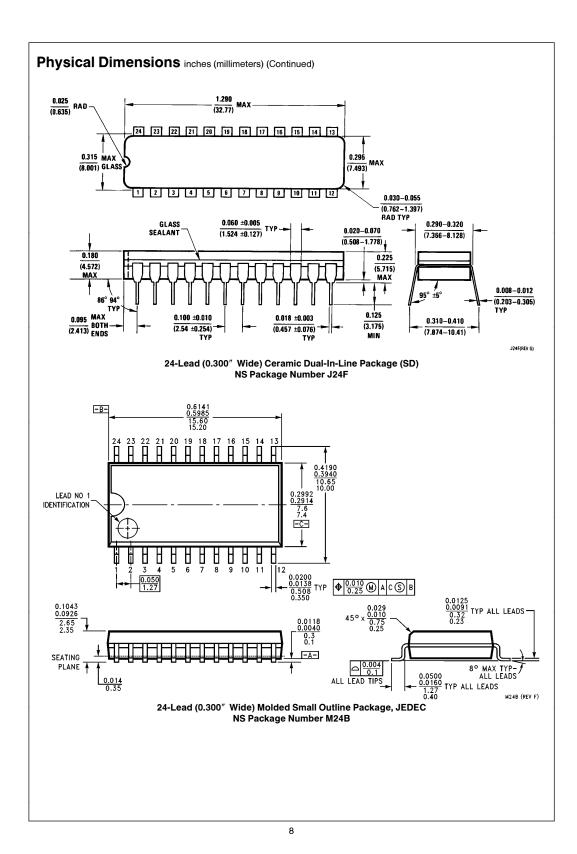
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

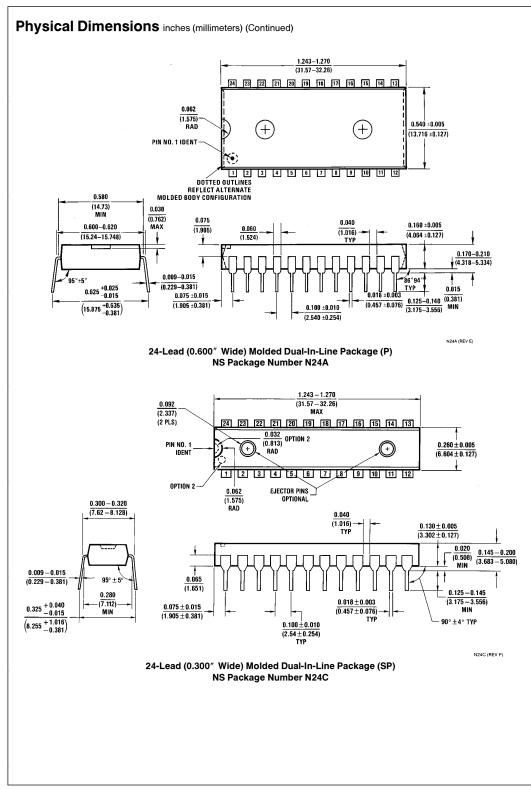
DC Electrical Characteristics

Recommended Operating Conditions

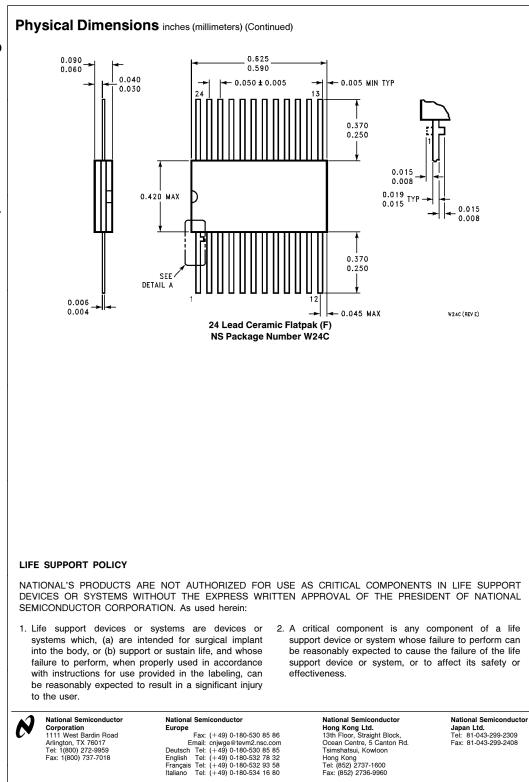
Free Air Ambient Temperature


Symbol	Parameter			54F/74F			Vcc	Conditions
	Faiane		Min	Тур	Max	Units	VCC	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Sign
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signa
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$, All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV, All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OS}	Output Short-Circuit (Current	-60		-150	mA	Мах	$V_{OUT} = 0V$
ICC	Power Supply Curren	t			72	mA	Max	


AC EI	ectrical Characteri	stics							
			74F		5	4F	7	4F	
Symbol	Parameter	$\label{eq:transform} \begin{array}{ c c c } T_A = +25^\circ C & & & \\ V_{CC} = +5.0V & & & \\ C_L = 50 \ pF & & & \\ \end{array} \begin{array}{ c c } T_A, \ V_{CC} = Mil \\ C_L = 50 \ pF \end{array}$						Units	
		Min	Тур	Мах	Min	Мах	Min	Мах	
f _{max}	Maximum Clock Frequency	100	110		45		90		MHz
t _{PLH} t _{PHL}	Propagation Delay \overline{CP} to SO	4.5 5.0	9.0 9.0	11.0 12.5	4.5 5.0	17.0 14.5	4.5 5.0	12.0 13.5	ns


AC Operating Requirements

		7	4F	54	54F74FT_A, V_{CC} = MilT_A, V_{CC} = Com		4F	
Symbol	Parameter		+ 25°C + 5.0V	T _A , V _{CC}			m Units	
		Min	Max	Min	Max	Min	Max	
t _s (H) t _s (L)	Setup Time, HIGH or LOW SI to CP	4.0 4.0		4.0 4.0		4.0 4.0		
t _h (H) t _h (L)	Hold Time, HIGH or LOW SI to CP	4.0 4.0		4.0 4.0		4.0 4.0		– ns
t _s (H) t _s (L)	Setup Time, HIGH or LOW P _n to CP	3.0 3.0		3.0 3.0		3.0 3.0		- ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW P _n to CP	4.0 4.0		4.0 4.0		4.0 4.0		
t _s (H) t _s (L)	Setup Time, HIGH or LOW M to \overline{CP}	8.0 8.0		8.0 8.0		8.0 8.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW M to CP	2.0 2.0		2.0 2.0		2.0 2.0		113
t _s (L)	Setup Time, LOW CS to CP	10.0		12.0		10.0		20
t _h (H)	Hold Time, HIGH CS to CP	10.0		10.0		10.0		- ns
t _w (H) t _w (L)	CP Pulse Width HIGH or LOW	4.0 6.0		5.0 9.0		4.0 6.0		ns


Temperature Range Family 74F = Commercial 54F = Military	<u>74F</u>	676	<u>s</u> (Special Variations QB = Military grade device with environmental and burn-in
Device Type				processing
Package Code P = Plastic DIP SP = Slim Plastic DIP D = Ceramic DIP SD = Slim Ceramic DIP F = Flatpak L = Leadless Chip Carrier (LCC) S = Small Outline SOIC JEDEC				- Temperature Range C=Commercial (0°C to +70°C) M=Military (-55°C to +125°C)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications