

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

Check for Samples: LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

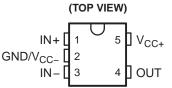
FEATURES

- 2.5-V, 2.7-V, and 5-V Performance
- –40°C to 125°C Operation
- No Crossover Distortion
- Low Supply Current at V_{CC+} = 5 V:
 - LMV821...0.3 mA Typ
 - LMV822...0.5 mA Typ
 - LMV824...1 mA Typ
- Rail-to-Rail Output Swing
- Gain Bandwidth of 5.5 MHz Typ at 5 V
- Slew Rate of 1.9 V/µs Typ at 5 V

DESCRIPTION/ ORDERING INFORMATION

The LMV821 single, LMV822 dual, and LMV824 quad devices are low-voltage (2.5 V to 5.5 V), low-power commodity operational amplifiers. Electrical characteristics are very similar to the LMV3xx operational amplifiers (low supply current, rail-to-rail outputs, input common-mode range that includes ground). However, the LMV8xx devices offer a higher bandwidth (5.5 MHz typical) and faster slew rate (1.9 V/µs typical).

The LMV8xx devices are cost-effective solutions for applications requiring low-voltage/low-power operation and space-saving considerations. The LMV821 is available in the ultra-small DCK package, which is approximately half the size of SOT-23-5. The DCK package saves space on printed circuit boards and enables the design of small portable electronic devices (cordless and cellular phones, laptops, PDAs, PCMIA). It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity. The LMV8xx devices are characterized for operation from -40° C to 85° C. The LMV8xxI devices are characterized for operation from -40° C to 125° C.


LMV824...D, DGV, OR PW PACKAGE

	(TOP VI	IEW)
10UT [1IN-[1IN+ [V _{CC+} [2IN+ [2IN-[20UT [1 2 3	14 40UT 13 4IN- 12 4IN+ 11 GND/V _{CC-} 10 3IN+ 9 3IN- 8 30UT

LMV822...D OR DGK PACKAGE (TOP VIEW)

10UT [1	8 V _{CC+}
1IN - [2	7 2OUT
1IN + [3	6 2IN –
GND/V _{CC-} [4	5 2IN+

LMV821... DBV OR DCK PACKAGE

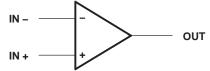
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

T _A		PACKAGE ⁽¹⁾	RDERING INFO		TOP-SIDE MARKING ⁽²⁾
- A			Reel of 3000	LMV821DCKR	
		SC-70 – DCK	Reel of 250	LMV821DCKT	RY_
	Single		Reel of 3000	LMV821DBVR	
		SOT-23 – DBV	Reel of 250	LMV821DBVT	RB8_
			Tube of 75	LMV822D	
		SOIC – D	Reel of 2500	LMV822DR	MV822
–40°C to 85°C	Dual		Tube of 100	LMV822DGK	
		MSOP/VSSOP – DGK	Reel of 2500	LMV822DGKR	RA_
			Tube of 50	LMV824D	1.1.11/00.4
		SOIC – D	Reel of 2500	LMV824DR	LMV824
	Quad		Tube of 90	LMV824PW	10/004
		TSSOP – PW	Reel of 2000	LMV824PWR	MV824
		TVSOP – DGV	Reel of 2000	LMV824DGVR	MV824
		00 70 DOV	Reel of 3000	LMV821IDCKR	7
	Cinala	SC-70 – DCK	Reel of 250	LMV821IDCKT	RZ_
	Single	SOT-23 – DBV	Reel of 3000	LMV821IDBVR	DD4
		SO1-23 - DBV	Reel of 250	LMV821IDBVT	- RB1_
		SOIC – D	Tube of 75	LMV822ID	MV822I
	Dual	50IC - D	Reel of 2500	LMV822IDR	IVIV 6221
–40°C to 125°C	Duai	MSOP/VSSOP – DGK	Tube of 100	LMV822IDGK	- R8_
		W30F/V330F - DGK	Reel of 2500	LMV822IDGKR	ro_
		SOIC – D	Tube of 50	LMV824ID	LMV824I
		3010 - D	Reel of 2500	LMV824IDR	
	Quad	TSSOP – PW	Tube of 90	LMV824IPW	- MV824I
		13305 - FW	Reel of 2000	LMV824IPWR	11110241
		TVSOP – DGV	Reel of 2000	LMV824IDGVR	MV824I


Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at (1) www.ti.com/sc/package. DBV/DCK/DGK: The actual top-side marking has one additional character that designates the assembly/test site.

(2)

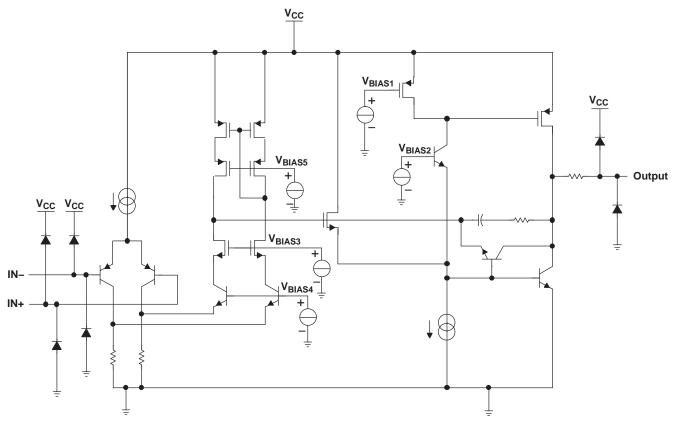


Figure 1. SYMBOL (EACH AMPLIFIER)

Figure 2. LMV824 SIMPLIFIED SCHEMATIC

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾				5.5	V
V_{ID}	Differential input voltage ⁽³⁾				$\pm V_{CC}$	V
VI	Input voltage range (either input)			V _{CC} -	V_{CC+}	V
	Duration of output short circuit (one amplifier) to ground ⁽⁴⁾	At or below $T_A =$	25°C, V _{CC} ≤ 5.5 V	ι	Inlimited	
		D package	8 pin		97	
	$\Theta_{\rm JA}$ Package thermal impedance ⁽⁵⁾ (6)		14 pin		86	
		DBV package			206	
θ_{JA}		DCK package			252	°C/W
		DGK package			172	
		DGV package			127	
		PW package			113	
TJ	Operating virtual junction temperature				150	°C
T _{stg}	Storage temperature range			-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND. (2)

Differential voltages are at IN+ with respect to IN-. (3)

(4)

Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient (5) temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

(6)

Recommended Operating Conditions

			MIN	MAX	UNIT
V_{CC}	Supply voltage (single-supply operation)		2.5	5	V
-		LMV8xxI	-40	125	ŝ
IA	Operating free-air temperature	LMV8xx	-40	85	۰C

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

LMV8xx 2.5-V Electrical Characteristics

 V_{CC+} = 2.5 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_O = 1.25 V, and R_L > 1 M Ω (unless otherwise noted)

		TEST CONDITIONS		Ŧ	LMV8xx			
	PARAMETER	TEST CONDITIONS		T _A MIN TYP MAX 25°C 1 3.5	UNIT			
v	Input offset voltage			25°C		1	3.5	mV
V _{IO}	input onset voltage			-40°C to 85°C			4	IIIV
		High level	25°C	2.3	2.37		-	
		rlightiever	-40°C to 85°C	2.2				
		V_{CC+} = 2.5 V, R_L = 600 Ω to 1.25 V	1	25°C		0.13	0.2	
V		Low level	-40°C to 85°C			0.3	V	
Vo	Output swing			25°C	2.4	2.46		V
			High level	-40°C to 85°C	2.3			
	$V_{CC+} = 2.5 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega \text{ to } 1.25 \text{ V}$	25°C		0.08	0.12			
			Low level	-40°C to 85°C			0.2	

LMV8xxI 2.5-V Electrical Characteristics

 V_{CC+} = 2.5 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_O = 1.25 V, and R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		–	L	MV8xxI		UNIT
	FARAINETER	TEST CONDITIONS		T _A	LMV8xxi MIN TYP MAX 1 3.5 5.5 2.28 2.37 2.18 0.13 0.22 0.32 2.38 2.46 2.28 2.28 0.08 0.14	UNIT		
V	Input offect voltoge			25°C		1	3.5	mV
VIO	Input offset voltage		$= 600 \Omega \text{ to } 1.25 \text{ V}$ $= 2 \text{ k}\Omega \text{ to } 1.25 \text{ V}$ $High level$ $High level$ $High level$ $High level$ $Low level$	-40°C to 125°C			5.5	mv
			High lovel	25°C	2.28	2.37		
			High level	-40°C to 125°C	2.18			
		$V_{CC+} = 2.5 \text{ V}, \text{ R}_{L} = 600 \Omega \text{ to } 1.25 \text{ V}$		25°C		0.13	0.22	
V	Output outing		Low level	-40°C to 125°C			0.32	V
Vo	Output swing		Lligh loval	25°C	2.38	2.46		v
			rign ievei	-40°C to 125°C	2.28			
		V_{CC+} = 2.5 V, R_L = 2 k Ω to 1.25 V		25°C		0.08	0.14	
			Low level	-40°C to 125°C			0.22	

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

LMV8xx 2.7-V Electrical Characteristics

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_O = 1.35 V, and R_L > 1 $M\Omega$ (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS	T _A	L	.MV8xx		
	FANAIWETER			'A	MIN	TYP	MAX	UNI
	Input offset voltage			25°C		1	3.5	mV
V _{IO}	input onset voltage			–40°C to 85°C			4	IIIV
α _{VIO}	Average temperature coefficient of input offset voltage			25°C		1		μV/°
	Input biog ourrent	$\begin{split} & V_{\rm O} = 1.35 \ V \ to \ 2.2 \ V \\ & R_{\rm L} = 600 \ \Omega \ to \ 1.35 \ V, \\ & V_{\rm O} = 1.35 \ V \ to \ 0.5 \ V \\ & R_{\rm L} = 2 \ k\Omega \ to \ 1.35 \ V, \\ & V_{\rm O} = 1.35 \ V \ to \ 2.2 \ V \\ & R_{\rm L} = 2 \ k\Omega \ to \ 1.35 \ V, \\ & V_{\rm O} = 1.35 \ V \ to \ 0.5 \ V \\ & R_{\rm L} = 2 \ k\Omega \ to \ 1.35 \ V, \\ & V_{\rm O} = 1.35 \ V \ to \ 0.5 \ V \\ & R_{\rm L} = 2.7 \ V, \\ & R_{\rm L} = 600 \ \Omega \ to \ 1.35 \ V \\ & Lo \\ & V_{\rm CC+} = 2.7 \ V, \\ & R_{\rm L} = 2 \ k\Omega \ to \ 1.35 \ V \\ & Lo \\ & V_{\rm CC+} = 2.7 \ V, \\ & R_{\rm L} = 2 \ k\Omega \ to \ 1.35 \ V \\ & Lo \\ & V_{\rm CC+} = 2.7 \ V, \\ & R_{\rm L} = 0 \ V \\ & So \\ & V_{\rm O} = 0 \ V \\ & V_{\rm O} = 0 \ V \\ & So \\ & V_{\rm O} = 0 \ V \ & V_{\rm O} = 0 \ V \\ & V_{\rm O} = 0 \ V \ & V_{\rm O} = 0 \ V \\ & V_{\rm O} = 0 \ V \ & V_{\rm O} = 0 \ V \$		25°C		30	90	~ ^
I _{IB}	Input bias current			-40°C to 85°C			140	nA
	Input offect ourrest			25°C		0.5	30	nA
I _{IO}	Input offset current			-40°C to 85°C			50	11/-
CMDD	Common mode rejection ratio	$V_{-} = 0$ to $1.7 V_{-}$		25°C	70	85		dB
CIVIER	Common-mode rejection ratio	$v_{\rm IC} = 0.001.7$ v		–40°C to 85°C	68			UL
. le	Positive supply-voltage	$V_{CC+} = 1.7 \text{ V to } 4 \text{ V}, \text{ V}_{CC}$	_ = −1 V,	25°C	75	85		dE
+k _{SVR}	rejection ratio	$V_0 = 0, V_{IC} = 0$		–40°C to 85°C	70			UL
k.	Negative supply-voltage	$V_{CC+} = 1.7 V, V_{CC-} = -1$	V to -3.3 V,	25°C	73	85		
–k _{SVR}	rejection ratio	$V_{\rm O} = 0, V_{\rm IC} = 0$		-40°C to 85°C	70			dE
V _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	-0.2 to 1.9	-0.3 to 2		V
		$R_1 = 600 \Omega$ to 1.35 V,	Councing	25°C	90	100		
			Sourcing	-40°C to 85°C	85			
٨		$R_1 = 600 \Omega$ to 1.35 V,	Cialvia a	25°C	85	90		dB
	Large-signal voltage		Sinking	-40°C to 85°C	80			
A _V	amplification		0	25°C	95	100		
			Sourcing	-40°C to 85°C	90			
		$R_1 = 2 k\Omega$ to 1.35 V,	Sinking	25°C	90	95		
		$V_0^{-} = 1.35$ V to 0.5 V	Sinking	-40°C to 85°C	85			
			L Park Laura I	25°C	2.5	2.58		
		$V_{CC+} = 2.7 V_{1}$	High level	-40°C to 85°C	2.4			
				25°C		0.13	0.2	
	Output auties		Low level	-40°C to 85°C			0.3	V
Vo	Output swing		Lline laure	25°C	2.6	2.66		v
		V _{CC+} = 2.7 V,	High level	-40°C to 85°C	2.5			
			Low lovel	25°C		0.08	0.12	
			Low level	-40°C to 85°C			0.2	
		V _O = 0 V	Sourcing	25°C	12	16		~
I _O	Output current	V _O = 2.7 V	Sinking	25°C	12	26		m
		1. MV/024		25°C		0.22	0.3	
				-40°C to 85°C			0.5	-
		IMV/822 (both amplifiers)	·	25°C		0.45	0.6	
I _{CC}	Supply current	LMV822 (both amplifiers)		-40°C to 85°C			0.8	+
				25°C		0.72	1	
		LIVIV824 (all four amplifie	LMV824 (all four amplifiers)				1.2	

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV8xx 2.7-V Electrical Characteristics (continued)

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_{O} = 1.35 V, and R_L > 1 M Ω (unless otherwise noted)

		TEST CONDITIONS	–	LMV8xx			UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	ΤΥΡ Μ	AX	UNIT
SR	Slew rate ⁽¹⁾		25°C		1.7		V/µs
GBW	Gain bandwidth product	(2)	25°C		5		MHz
Φ _m	Phase margin	(2)	25°C		60		deg
	Gain margin	(2)	25°C		8.6		dB
	Amplifier-to-amplifier isolation	$V_{CC+} = 5 \text{ V}, \text{ R}_{L} = 100 \text{ k}\Omega \text{ to } 2.5 \text{ V}^{(3)}$	25°C		135		dB
Vn	Equivalent input noise voltage	$f = 1 \text{ kHz}, V_{IC} = 1 \text{ V}$	25°C		45		nV/√Hz
In	Equivalent input noise current	f = 1 kHz	25°C	(0.18		pA/√Hz
THD	Total harmonic distortion	f = 1 kHz, $A_V = -2$, $R_L = 10$ kΩ, V _O = 4.1 V _{p-p}	25°C	(0.01		%

Connected as voltage follower with 1-V step input. Value specified is the slower of the positive and negative slew rates. (1)

(2) 40-dB closed-loop dc gain, $C_L = 22 \text{ pF}$ (3) Each amplifier excited in turn with 1 kHz to produce $V_O = 3 V_{p-p}$

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

LMV8xxI 2.7-V Electrical Characteristics

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_O = 1.35 V, and R_L > 1 M Ω (unless otherwise noted)

		TEST CONDITI		–	LMV8xxI			
	PARAMETER	TEST CONDIT	TEST CONDITIONS		MIN TYP MAX		MAX	UNI
v	Input offect voltage			25°C		1	3.5	mV
V _{IO}	Input offset voltage			-40°C to 125°C			5.5	mv
α _{VIO}	Average temperature coefficient of input offset voltage			25°C		1		μV/°
	Input biog ourrent	$\begin{tabular}{ c c c c c } \hline Ta & \hline Min & TYP & MAX \\ \hline Min & TYP & MAX \\ \hline 25^{\circ}C & 1 & 1 & 3.5 \\ \hline -40^{\circ}C to 125^{\circ}C & 25^{\circ}C & 1 & \\ \hline 25^{\circ}C & 30 & 90 \\ \hline -40^{\circ}C to 125^{\circ}C & 0.5 & 30 \\ \hline -40^{\circ}C to 125^{\circ}C & 0.5 & 30 \\ \hline -40^{\circ}C to 125^{\circ}C & 0.5 & 30 \\ \hline -40^{\circ}C to 125^{\circ}C & 70 & 85 \\ \hline 0 & -40^{\circ}C to 125^{\circ}C & 70 & 85 \\ \hline 0 & -40^{\circ}C to 125^{\circ}C & 70 & 85 \\ \hline 0 & 0, V_{IC} = 0 & 1.7 V & \\ \hline V_{CC+} = 1.7 V to 4 V, V_{CC-} = -1 V, & 25^{\circ}C & 75 & 85 \\ \hline V_{0} = 0, V_{IC} = 0 & -1 V to -3.3 V, & 25^{\circ}C & 70 & \\ \hline V_{0} = 0, V_{IC} = 0 & -1 V to -3.3 V, & 25^{\circ}C & 70 & \\ \hline V_{0} = 0, V_{IC} = 0 & -1 V to -3.3 V, & 25^{\circ}C & 70 & \\ \hline V_{0} = 0, V_{IC} = 0 & 25^{\circ}C & 70 & -0.2 & -0.3 \\ \hline V_{0} = 1.35 V to 2.2 V & Sourcing & 25^{\circ}C & 90 & 100 & \\ \hline R_{L} = 600 \Omega to 1.35 V, & V_{0} = 1.35 V to 2.2 V & \\ \hline R_{L} = 600 \Omega to 1.35 V, & V_{0} = 1.35 V to 2.2 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & Sourcing & 25^{\circ}C & 90 & 95 & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & Sourcing & 25^{\circ}C & 90 & 95 & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline R_{L} = 2 k\Omega to 1.35 V, & \\ \hline V_{0} = 1.35 V to 0.5 V & \\ \hline High level & \hline 25^{\circ}C & 0.13 & 0.2 \\ \hline -40^{\circ}C to 125^{\circ}C & 2.4 & \\ \hline -40^{\circ}C to 125^{\circ}C & 2.5 & \\ \hline -40^{\circ}C to 125^{\circ}C & 2.6 & \\ \hline -40^{\circ}C to 125^{\circ}C & 2.5 & \\ \hline -40^{\circ}C to 125^{\circ}C & 0.08 & 0.12 \\ \hline -40^{\circ}C to 125^{\circ}C & 0.08 & 0.12 \\ \hline -40^{\circ}C to 125^{\circ}C & 0.08 & 0.12 \\ \hline -40^{\circ}C to 125^{\circ}C & 0.28 & \\ \hline -40^{\circ}C to 125^{\circ}C & 0.08 &$	~ ^					
I _{IB}	Input bias current			-40°C to 125°C			140	nA
	Input offect ourrest			25°C		0.5	30	nA
I _{IO}	Input offset current			-40°C to 125°C			50	11/4
CMDD	Common-mode rejection ratio	$V_{\rm res} = 0$ to $1.7 V_{\rm res}$		25°C	70	85		dB
CIVINA	Common-mode rejection ratio	VIC = 0 10 1.7 V		-40°C to 125°C	68			uL
1 k	Positive supply-voltage	$V_{CC+} = 1.7 \text{ V to 4 V}, V_{CC+}$	_ = -1 V,	, 25°C 75 85			d	
+k _{SVR}	rejection ratio			–40°C to 125°C	70			dB
k.	Negative supply-voltage	$V_{CC+} = 1.7 V, V_{CC-} = -1$	V to -3.3 V,	25°C	73	85		dE
-k _{SVR}	rejection ratio			-40°C to 125°C	70			UE
V _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C				V
		$R_{\rm L} = 600 \ \Omega$ to 1.35 V,	Sourcing	25°C	90	100		
		V_{0}^{-} = 1.35 V to 2.2 V	Sourcing	-40°C to 125°C	85			+
		$R_1 = 600 \Omega$ to 1.35 V,	Circlein e	25°C	85	90		
	Large-signal voltage amplification	$V_0 = 1.35$ V to 0.5 V	Sinking	-40°C to 125°C	80			-10
A _V			Coursian	25°C	95	100		dB
			Sourcing	-40°C to 125°C	90			
		$R_1 = 2 k\Omega$ to 1.35 V.	Sinking	25°C	90	95		
		$V_0^2 = 1.35 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 125°C	85			
			LP als Laws I	25°C	2.5	2.58		
		V _{CC+} = 2.7 V,	High level	-40°C to 125°C	2.4			
		$R_L = 600 \Omega$ to 1.35 V		25°C		0.13	0.2	
V	Output output		LOW level	-40°C to 125°C			0.3	V
Vo	Output swing		Link Inval	25°C	2.6	2.66		v
		$V_{CC+} = 2.7 V,$	rign ievei	-40°C to 125°C	2.5			
				25°C		0.08	0.12	
			LOW IEVEI	-40°C to 125°C			0.2	
	Output current	$V_0 = 0 V$	Sourcing	25°C	12	16		~
I _O		V _O = 2.7 V	Sinking	25°C	12	26		m
		1 MV/921		25°C		0.22	0.3	
				-40°C to 125°C			0.5	-
	Supply ourrent	IM/(222 (both amplificate)		25°C		0.45	0.6	
I _{CC}	Supply current	LMV822 (both amplifiers)		-40°C to 125°C			0.8	
				25°C		0.72	1	
		LIVIV824 (all four amplifie	LMV824 (all four amplifiers)				1.2	

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV8xxI 2.7-V Electrical Characteristics (continued)

 V_{CC+} = 2.7 V, V_{CC-} = 0 V, V_{IC} = 1 V, V_O = 1.35 V, and R_L > 1 M Ω (unless otherwise noted)

		TEST CONDITIONS	–	LMV8xxI		
	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
SR	Slew rate ⁽¹⁾		25°C	1.7		V/µs
GBW	Gain bandwidth product	(2)	25°C	5		MHz
Φ _m	Phase margin	(2)	25°C	60		deg
	Gain margin	(2)	25°C	8.6		dB
	Amplifier-to-amplifier isolation	$V_{CC+} = 5 \text{ V}, \text{ R}_{L} = 100 \text{ k}\Omega \text{ to } 2.5 \text{ V}^{(3)}$	25°C	135		dB
Vn	Equivalent input noise voltage	$f = 1 \text{ kHz}, V_{IC} = 1 \text{ V}$	25°C	45		nV/√Hz
l _n	Equivalent input noise current	f = 1 kHz	25°C	0.18		pA/√Hz
THD	Total harmonic distortion	f = 1 kHz, $A_V = -2$, $R_L = 10$ kΩ, $V_O = 4.1$ V_{p-p}	25°C	0.01		%

Connected as voltage follower with 1-V step input. Value specified is the slower of the positive and negative slew rates. (1)

(2) (3)

40-dB closed-loop dc gain, $C_L = 22 \text{ pF}$ Each amplifier excited in turn with 1 kHz to produce $V_O = 3 \text{ V}_{p-p}$

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

LMV8xx 5-V Electrical Characteristics

 V_{CC+} = 5 V, V_{CC-} = 0 V, V_{IC} = 2 V, V_{O} = 2.5 V, and R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDITI	TEST CONDITIONS		l	_MV8xx		
	FANAINETER			TA	MIN	ТҮР	MAX	UNIT
V _{IO}	Input offset voltage			25°C		1	3.5	mV
• IO				-40°C to 85°C			4	IIIV
α _{VIO}	Average temperature coefficient of input offset voltage			25°C		1		μV/°
1	Input biog ourrent			25°C		40	100	54
I _{IB}	Input bias current			-40°C to 85°C			150	nA
	Input offect ourrest			25°C		0.5	30	~ ^
I _{IO}	Input offset current			-40°C to 85°C			50	nA
	Common mode rejection ratio			25°C	72	90		٩D
CINKK	Common-mode rejection ratio	$V_{IC} = 0$ to 4 V		-40°C to 85°C	70			dB
	Positive supply-voltage	$V_{CC+} = 1.7 \text{ V to 4 V}, V_{CC-}$	_ = -1 V,	25°C	75	85		
+k _{SVR}	rejection ratio	$V_0 = 0, V_{IC} = 0$	·	-40°C to 85°C	70			dB
Ŀ	Negative supply-voltage	$V_{CC+} = 1.7 \text{ V}, V_{CC-} = -1$	V to –3.3 V,	25°C	73	85		-10
-k _{SVR}	rejection ratio	$V_0 = 0, V_{IC} = 0$,	-40°C to 85°C	70			dB
V _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	-0.2 to 4.2	-0.3 to 4.3		V
		$R_{L} = 600 \Omega$ to 2.5 V,	o .	25°C	95	105		
		$V_0 = 2.5 \text{ V to } 4.5 \text{ V}$	Sourcing	-40°C to 85°C	90			
		$R_{L} = 600 \ \Omega \text{ to } 2.5 \text{ V},$		25°C	95	105		
	Large-signal voltage	$V_0 = 2.5 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 85°C	90			
	amplification	$R_{\rm I} = 2 \rm k\Omega$ to 2.5 V,		25°C	95	105		dB
		$V_0 = 2.5 \text{ V to } 4.5 \text{ V}$	Sourcing	-40°C to 85°C	90			
		$R_L = 2 k\Omega$ to 2.5 V, V _O = 2.5 V to 0.5 V	Sinking	25°C	95	105		+
				-40°C to 85°C	90			
				25°C	4.75	4.84		
		V _{CC+} = 5 V,	High level	-40°C to 85°C	4.7			
		$R_L = 600 \Omega$ to 2.5 V		25°C		0.17	0.25	
.,			Low level	-40°C to 85°C			0.3	
Vo	Output swing		Liberta Jarra I	25°C	4.85	4.9		V
		V _{CC+} = 5 V,	High level	-40°C to 85°C	4.8			
		$R_L = 2 k\Omega$ to 2.5 V	Low laws	25°C		0.1	0.15	
			Low level	-40°C to 85°C			0.2	
		V - 0.V	Sourcing	25°C	20	45		
	Output ourroat	$V_{O} = 0 V$	Sourcing	-40°C to 85°C	15			
l _o	Output current		Cinking	25°C	20	40		m/
		$V_0 = 5 V$	Sinking	-40°C to 85°C	15			
		LMV821		25°C		0.3	0.4	
				-40°C to 85°C			0.6	
	Current automatic			25°C		0.5	0.7	mA
I _{CC}	Supply current	LMV822 (both amplifiers)		-40°C to 85°C			0.9	
		LMV824 (all four amplifiers)		25°C		1	1.3	4
				-40°C to 85°C			1.5	

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV8xx 5-V Electrical Characteristics (continued)

 V_{CC+} = 5 V, V_{CC-} = 0 V, V_{IC} = 2 V, V_O = 2.5 V, and R_L > 1 M Ω (unless otherwise noted)

		TEST CONDITIONS	–	LMV8xx				
PARAMETER		TEST CONDITIONS	T _A	MIN	MIN TYP		UNIT	
SR	Slew rate	$V_{CC+} = 5 V^{(1)}$	25°C	1.4	1.9		V/µs	
GBW	Gain bandwidth product	(2)	25°C		5.5		MHz	
Φ _m	Phase margin	(2)	25°C		64.2		deg	
	Gain margin	(2)	25°C		8.7		dB	
	Amplifier-to-amplifier isolation	V_{CC+} = 5 V, R_L = 100 k Ω to 2.5 $V^{(3)}$	25°C		135		dB	
Vn	Equivalent input noise voltage	$f = 1 \text{ kHz}, V_{IC} = 1 \text{ V}$	25°C		42		nV/√Hz	
l _n	Equivalent input noise current	f = 1 kHz	25°C		0.2		pA/√Hz	
THD	Total harmonic distortion	f = 1 kHz, $A_V = -2$, $R_L = 10$ kΩ, V _O = 4.1 V _{p-p}	25°C		0.01		%	

Connected as voltage follower with 3-V step input. Value specified is the slower of the positive and negative slew rates. (1)

(2) (3)

40-dB closed-loop dc gain, $C_L = 22 \text{ pF}$ Each amplifier excited in turn with 1 kHz to produce $V_O = 3 \text{ V}_{p-p}$

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

LMV8xxI 5-V Electrical Characteristics

 V_{CC+} = 5 V, V_{CC-} = 0 V, V_{IC} = 2 V, V_O = 2.5 V, and R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDIT	T.	L		UNIT			
	FARAINETER	IESI CONDII	IUNS	T _A	MIN	TYP	MAX		
V _{IO} Input offset voltage				25°C		1	3.5	mV	
' 10	input onset voltage			-40°C to 125°C			5.5	IIIV	
α _{VIO}	Average temperature coefficient of input offset voltage			25°C		1		μV/°C	
	lanut bing gumant			25°C		40	100)	
IB	Input bias current			-40°C to 125°C			150	nA	
	Input offect ourrest			25°C		0.5	30	~ ^	
Ю	Input offset current			-40°C to 125°C			50	nA	
	Common mode rejection ratio	$\mathcal{V} = 0$ to $4 \mathcal{V}$		25°C	72	90		ЧР	
	Common-mode rejection ratio	$V_{IC} = 0$ to 4 V		-40°C to 125°C	70			dB	
	Positive supply-voltage	$V_{CC+} = 1.7 \text{ V to } 4 \text{ V}, \text{ V}_{CC}$;_ = −1 V,	25°C	75	85		ЧР	
+k _{SVR}	rejection ratio	$V_{\rm O} = 0, V_{\rm IC} = 0$		-40°C to 125°C	70			dB	
k.	Negative supply-voltage	V _{CC+} = 1.7 V, V _{CC-} = -1	V to -3.3 V,	25°C	73	85		٩Þ	
-k _{SVR}	rejection ratio	$V_0 = 0, V_{IC} = 0$	-	-40°C to 125°C	70			dB	
/ _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	-0.2 to 4.2	-0.3 to 4.3		V	
Av	Large-signal voltage amplification	$R_L = 600 \Omega$ to 2.5 V, V _O = 2.5 V to 4.5 V	0	25°C	95	105		dB	
			Sourcing	-40°C to 125°C	90				
		$R_1 = 600 \Omega$ to 2.5 V,	0.1.	25°C	95	105			
		$V_0 = 2.5 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 125°C	90				
		$R_L = 2 k\Omega$ to 2.5 V,	0	25°C	95	105			
		$V_0^2 = 2.5 \text{ V to } 4.5 \text{ V}$	Sourcing	-40°C to 125°C	90				
		$R_{L} = 2 k\Omega$ to 2.5 V,	Cialian	25°C	95	105			
		$V_0^2 = 2.5 \text{ V to } 0.5 \text{ V}$	Sinking	-40°C to 125°C	90				
			L Park Lawer	25°C	4.75	4.84			
		$\begin{array}{l} V_{CC+} = 5 \ V, \\ R_L = 600 \ \Omega \ \text{to} \ 2.5 \ V \end{array}$	High level	-40°C to 125°C	4.6				
	Output swing		L avv lavval	25°C		0.17	0.25		
,			Low level	-40°C to 125°C			0.3		
V _O			High lovel	25°C	4.85	4.9		V	
		V _{CC+} = 5 V,	High level	-40°C to 125°C	4.8				
		$R_L = 2 k\Omega$ to 2.5 V	Low level	25°C		0.1	0.15		
			LOW IEVEI	-40°C to 125°C			0.2		
		$V_{O} = 0 V$	Sourcing	25°C	20	45			
		v _O = 0 v	Sourcing	-40°C to 125°C	15			~^^	
0	Output current	V _O = 5 V	Sinking	25°C	20	40		mA	
		vO = 0 v	Sinking	-40°C to 125°C	15				
		LMV821		25°C		0.3	0.4		
			-40°C to 125°C			0.6	mA		
	Supply ourrent	I MV/822 (both amalificate	25°C		0.5	0.7			
СС	Supply current	LMV822 (both amplifiers	-40°C to 125°C			0.9			
		I MV/924 (oll four own life	25°C		1	1.3			
		LMV824 (all four amplifie	-40°C to 125°C			1.5			

www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

LMV8xxI 5-V Electrical Characteristics (continued)

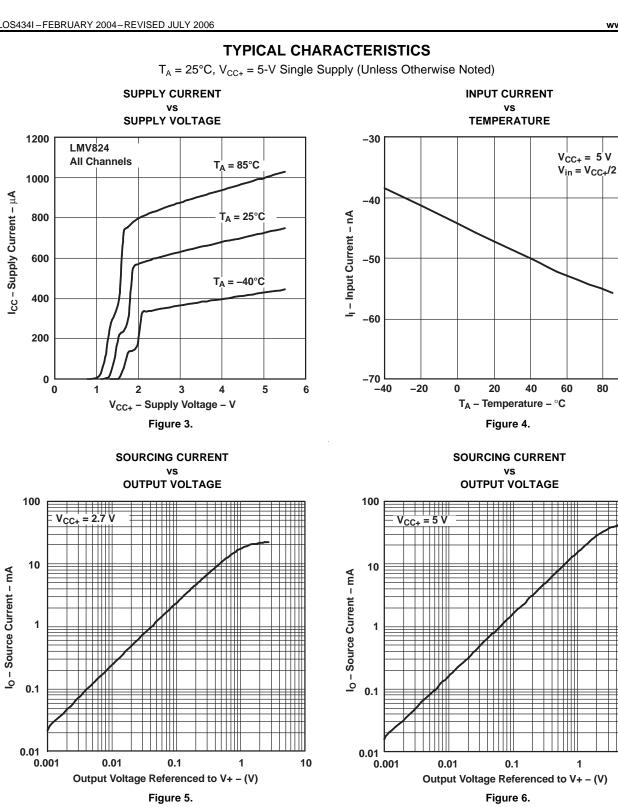
 V_{CC+} = 5 V, V_{CC-} = 0 V, V_{IC} = 2 V, V_O = 2.5 V, and R_L > 1 M Ω (unless otherwise noted)

		TEST CONDITIONS	-	LMV8xxI				
PARAMETER		TEST CONDITIONS	T _A	MIN	MIN TYP		UNIT	
SR	Slew rate	$V_{CC+} = 5 V^{(1)}$	25°C	1.4	1.9		V/µs	
GBW	Gain bandwidth product	(2)	25°C		5.5		MHz	
Φ _m	Phase margin	(2)	25°C		64.2		deg	
	Gain margin	(2)	25°C		8.7		dB	
	Amplifier-to-amplifier isolation	V_{CC+} = 5 V, R_L = 100 k Ω to 2.5 V ⁽³⁾	25°C		135		dB	
Vn	Equivalent input noise voltage	f = 1 kHz, V _{IC} = 1 V	25°C		42		nV/√Hz	
l _n	Equivalent input noise current	f = 1 kHz	25°C		0.2		pA/√Hz	
THD	Total harmonic distortion	$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = -2, \text{R}_{\text{L}} = 10 \text{k}\Omega, \\ \text{V}_{\text{O}} = 4.1 \text{V}_{\text{p-p}} $	25°C		0.01		%	

Connected as voltage follower with 3-V step input. Value specified is the slower of the positive and negative slew rates. (1)

(2) 40-dB closed-loop dc gain, $C_L = 22 \text{ pF}$ (3) Each amplifier excited in turn with 1 kHz to produce $V_O = 3 V_{p-p}$

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

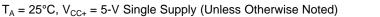


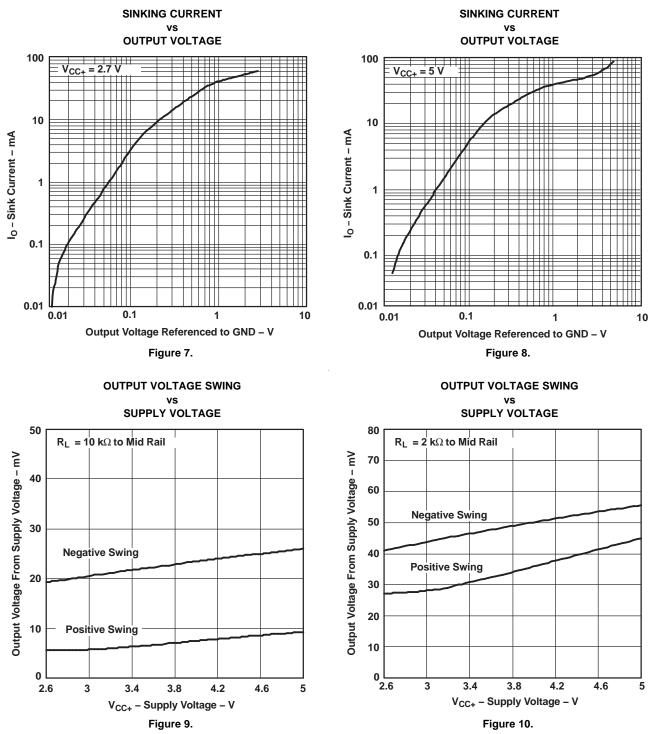
SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

100

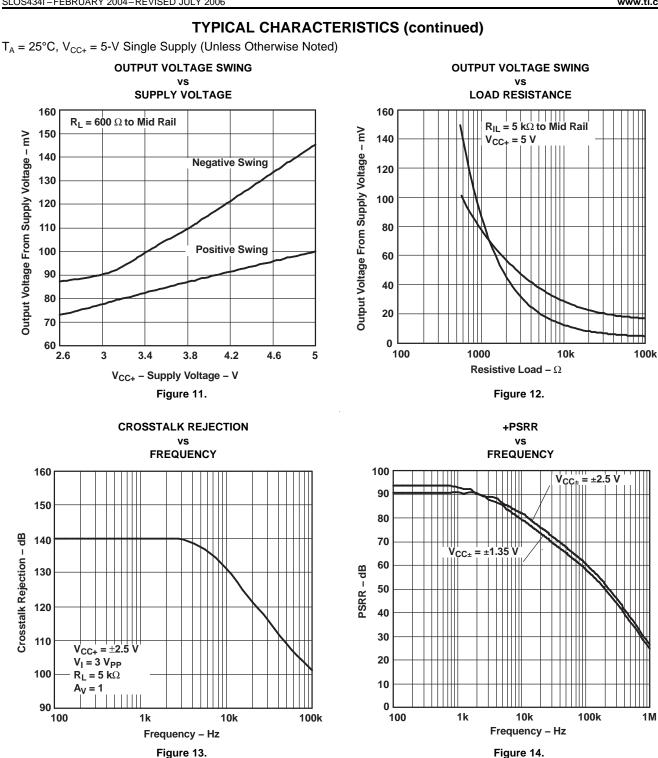
10





SLOS434I-FEBRUARY 2004-REVISED JULY 2006

TYPICAL CHARACTERISTICS (continued)



LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

TYPICAL CHARACTERISTICS (continued)

LMV821 SINGLE, LMV822 DUAL, LMV824 QUAD

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

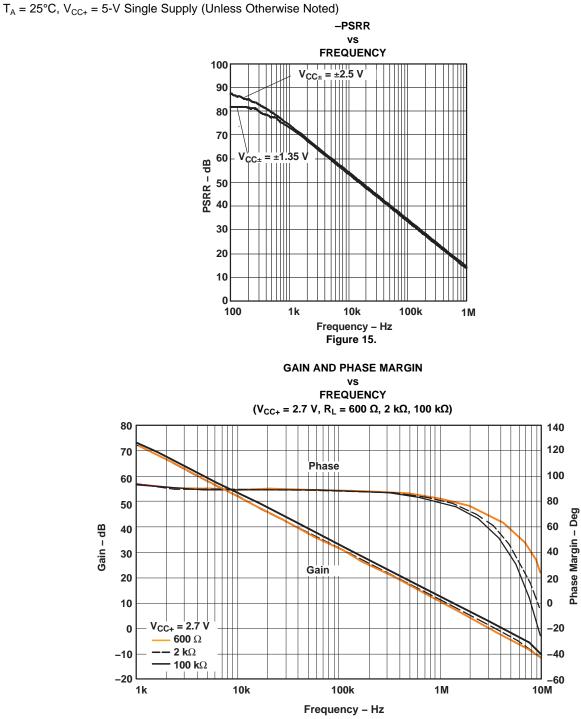
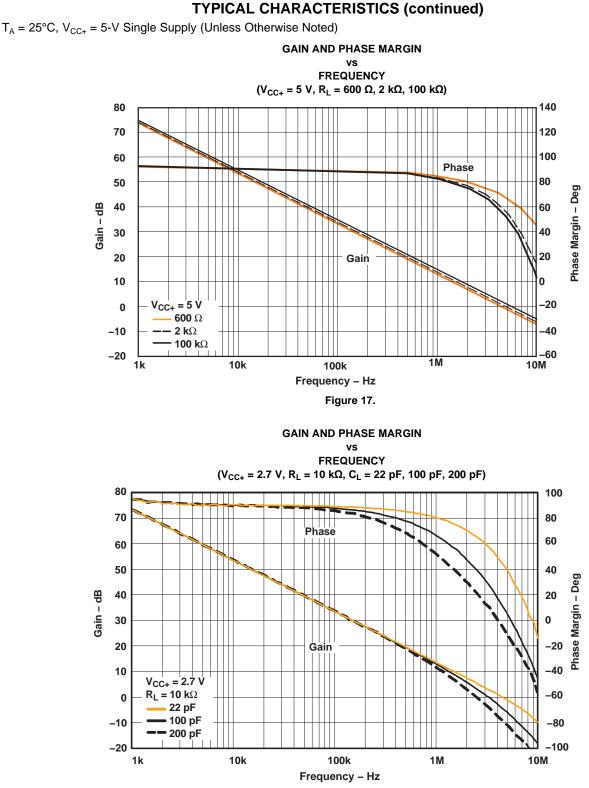
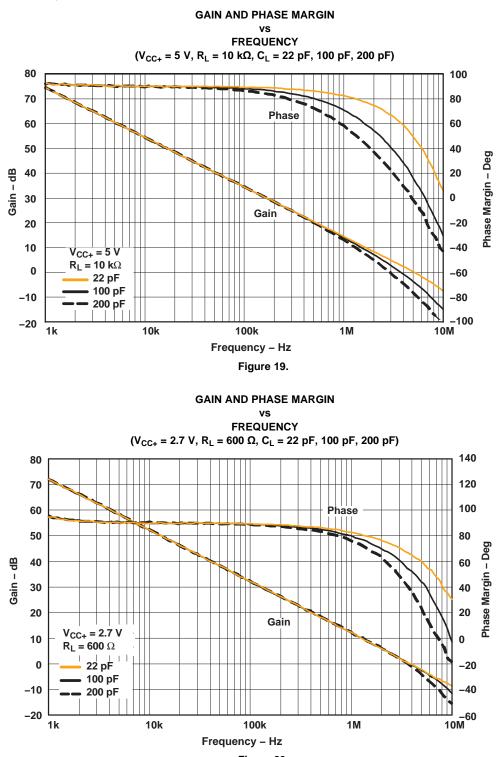



Figure 16.

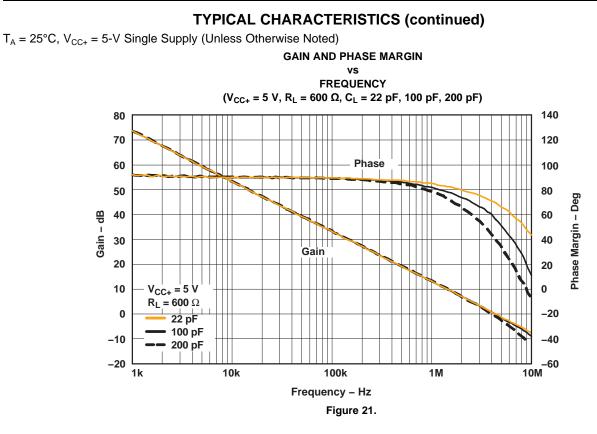
SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com



www.ti.com

SLOS434I-FEBRUARY 2004-REVISED JULY 2006


 $T_A = 25^{\circ}C$, $V_{CC+} = 5$ -V Single Supply (Unless Otherwise Noted)

SLOS434I-FEBRUARY 2004-REVISED JULY 2006

www.ti.com

25-Oct-2016

PACKAGING INFORMATION

Orderable Device		Package Type	•	Pins	-	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMV821DBVR	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85	(RB8B ~ RB8C ~ RB8I)	
LMV821DBVRE4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DBVRG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DBVT	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85	(RB8B ~ RB8C ~ RB8I)	
LMV821DBVTE4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DBVTG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DCKR	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85	(RYB ~ RYC ~ RYI)	
LMV821DCKRE4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DCKRG4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DCKT	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85	(RYB ~ RYI)	
LMV821DCKTE4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85		
LMV821DCKTG4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 85		
LMV821IDBVR	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125	RB1B	
LMV821IDBVRE4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDBVRG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDBVT	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125	RB1B	
LMV821IDBVTE4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDBVTG4	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDCKR	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125	(RZB ~ RZI)	
LMV821IDCKRE4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDCKRG4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDCKT	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125	(RZB ~ RZI)	
LMV821IDCKTE4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125		
LMV821IDCKTG4	OBSOLETE	SC70	DCK	5		TBD	Call TI	Call TI	-40 to 125		
LMV822D	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85	MV822	
LMV822DE4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
LMV822DG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
LMV822DGKR	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 85	(RAB ~ RAC)	

PACKAGE OPTION ADDENDUM

25-Oct-2016

Orderable Device	Status	Package Type	Package	Pins F	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMV822DGKRG4	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 85		
LMV822DR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85	MV822	
LMV822DRE4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
LMV822DRG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
LMV822ID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125	MV822I	
LMV822IDE4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LMV822IDG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LMV822IDGKR	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 125	(R8B ~ R8C)	
LMV822IDGKRG4	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 125		
LMV822IDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125	MV822I	
LMV822IDRE4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LMV822IDRG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125		
LMV824D	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85	LMV824	
LMV824DE4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DG4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DGVR	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 85	MV824	
LMV824DGVRE4	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DGVRG4	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85	LMV824	
LMV824DRE4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85		
LMV824DRG4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 85		
LMV824ID	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125	LMV824I	
LMV824IDE4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDG4	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDGVR	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 125	MV824I	
LMV824IDGVRE4	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDGVRG4	OBSOLETE	TVSOP	DGV	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-40 to 125	LMV824I	
LMV824IDRE4	OBSOLETE		D	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IDRG4	OBSOLETE		D	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IPW	OBSOLETE		PW	14		TBD	Call TI	Call TI	-40 to 125	MV824I	

PACKAGE OPTION ADDENDUM

25-Oct-2016

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMV824IPWE4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IPWG4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IPWR	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125	MV824I	
LMV824IPWRE4	NRND	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125		
LMV824IPWRG4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 125		
LMV824PW	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85	MV824	
LMV824PWE4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85		
LMV824PWG4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85		
LMV824PWR	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85	MV824	
LMV824PWRE4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85		
LMV824PWRG4	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

www.ti.com

25-Oct-2016

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

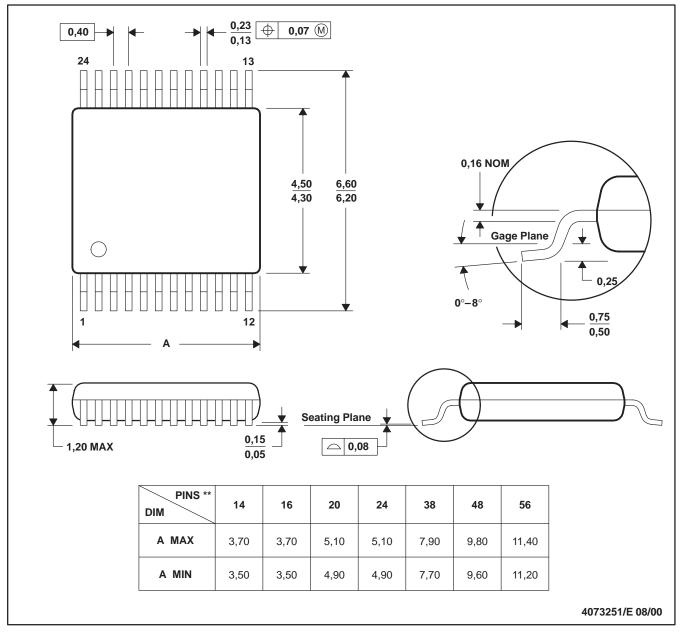
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMV821 :

Automotive: LMV821-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

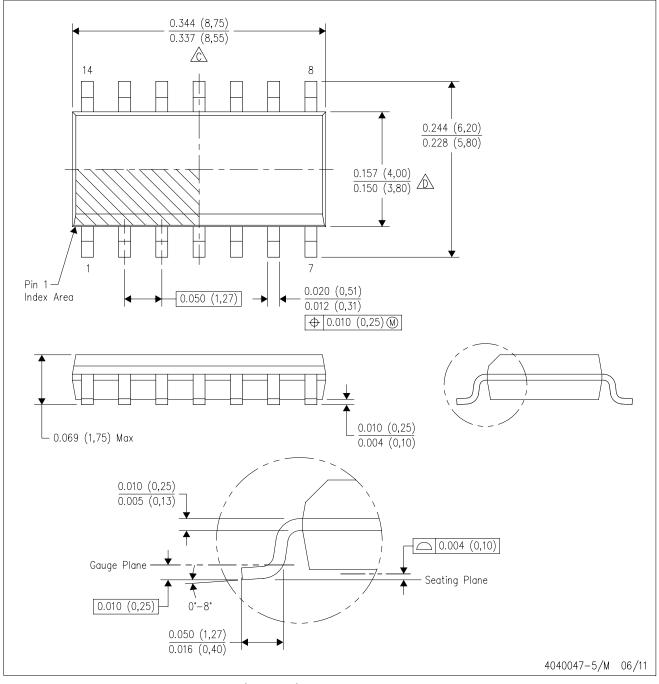
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

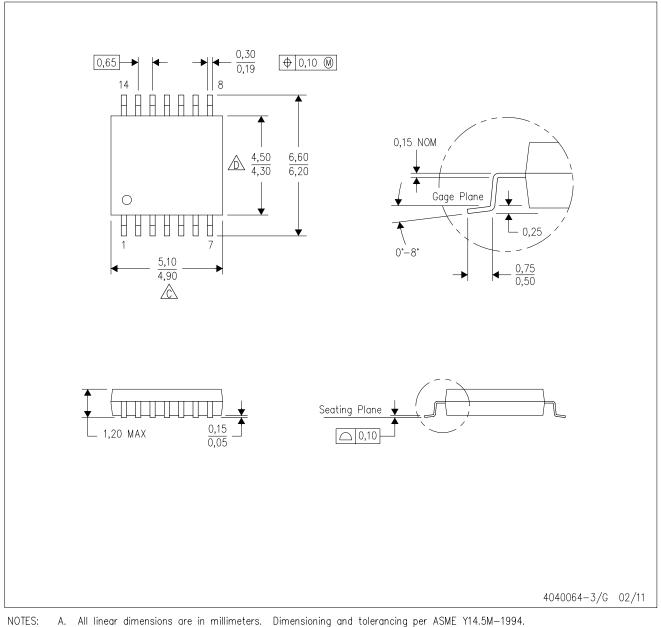
B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters).

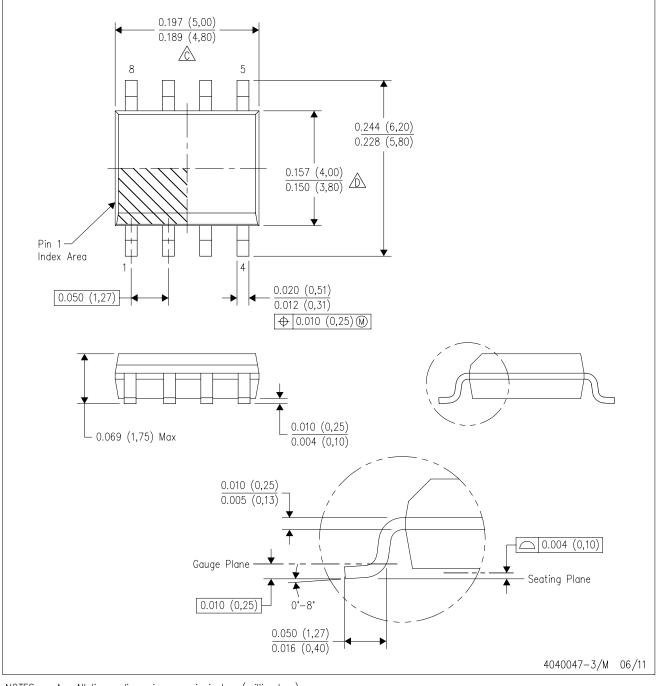
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

A. An integration of the international data to end t

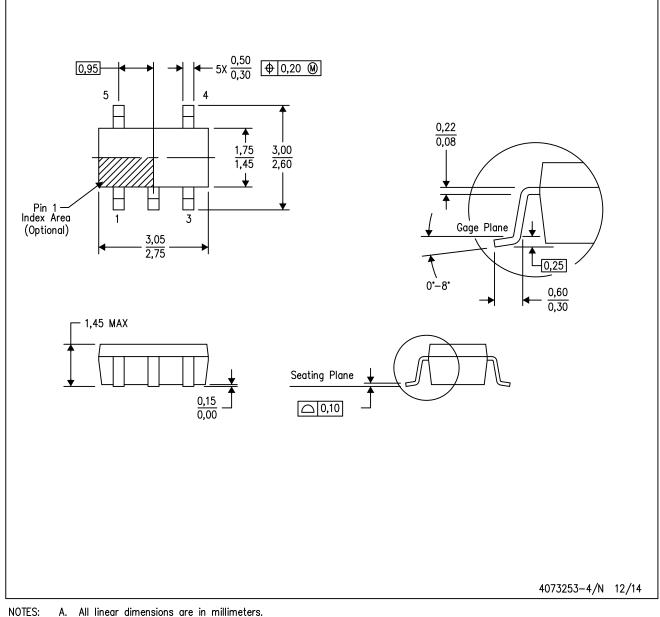
Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.


Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

D (R-PDSO-G8)

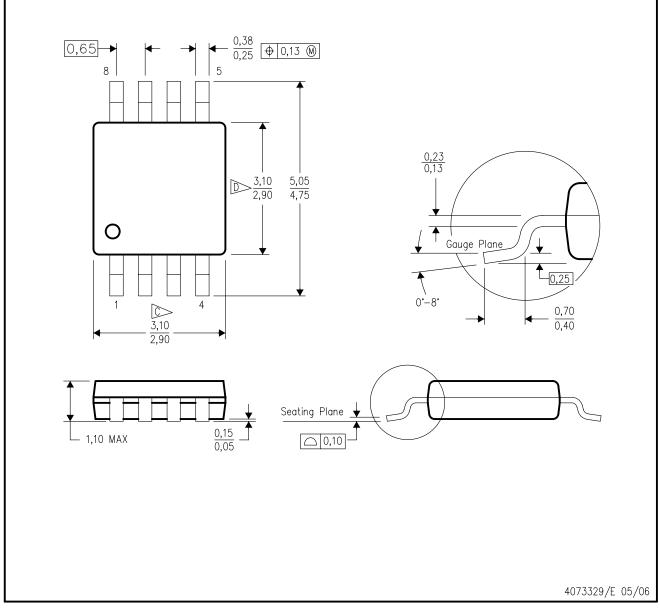
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE



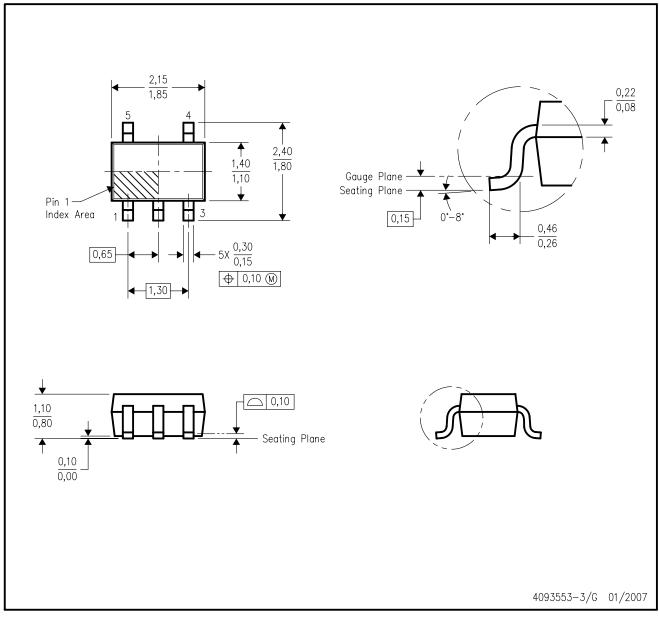
- All linear dimensions are in millimeters. A.
 - This drawing is subject to change without notice. Β.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. C.
 - D. Falls within JEDEC MO-178 Variation AA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D> Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications						
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive					
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications					
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers					
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps					
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy					
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial					
Interface	interface.ti.com	Medical	www.ti.com/medical					
Logic	logic.ti.com	Security	www.ti.com/security					
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense					
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video					
RFID	www.ti-rfid.com							
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com					
Wireless Connectivity	www.ti.com/wirelessconnectivity							

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated