

Octal-Bus Transceiver/Registers, 3-State

SCHS294

B3 DATA CD54/74AC/ACT651 - Inverting B4 PORT CD54/74AC/ACT652 - Non-Inverting

> Type Features: Buffered inputs

Typical propagation delay:
5.3 ns @ Vcc = 5 V, T_A = 25° C, C_L = 50 pF

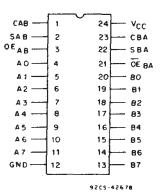
The RCA CD54/74AC651 and CD54/74AC652 and the CD54/74ACT651 and CD54/74ACT652 3-state, octal-bus transceiver/registers use the RCA ADVANCED CMOS technology. The CD54/74AC651 and CD54/74ACT651 have inverting outputs. The CD54/74AC652 and CD54/74ACT652 have non-inverting outputs. These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Output Enables OEAB and OEBA are provided to control the transceiver functions. SAB and SBA control pins are provided to select whether real-time or stored data is transferred. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A LOW input level selects real-time data, and a HIGH selects stored data. The following examples demonstrate the four fundamental busmanagement functions that can be performed with the octal-bus transceivers and registers.

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock pins (CAB or CBA) regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OE_{AB} and \overline{OE}_{BA} . In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.

The CD74AC/ACT651 and CD74AC/ACT652 are supplied in 24-lead dual-in-line narrow-body plastic packages (EN suffix) and in 24-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT651 and CD54AC/ACT652, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:


- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design

TEXAS

INSTRUMENTS Data sheet acquired from Harris Semiconductor

- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TERMINAL ASSIGNMENT

This data sheet is applicable to the CD74AC562, CD74ACT651, and CD74ACT652. The CD54/74AC651, CD54AC652, CD54ACT651, and CD54ACT652 were not acquired from Harris Semiconductor. File Number **1974**

314

CD54/74AC651, CD54/74AC652 CD54/74ACT651, CD54/74ACT652

FUNCTION TABLE

	INPUTS					DAT	A I/O	OPERATION OR FUNCTION		
OEAB	OE _{BA}	CAB	CBA	SAB	SBA	A0 THRU A7	B0 THRU B7	651	652	
L	н	HorL	H or L	X	×	Input	Innut	Isolation *	Isolation*	
L	н			X	X	mput	Input	Store A and B Data	Store A and B Data	
X	н		H or L	X	х	Input	Unspecified [†]	Store A, Hold B	Store A, Hold B	
н	н			x‡	X	Input	Output	Store A in both registers	Store A in both registers	
L	x	H or L		X	х	Unspecified [†]	Input	Hold A, Store B	Hold, A Store B	
L	L			X	x‡	Output	Input	Store B in both registers	Store B in both registers	
L	L	X	X	X	L	<u></u>		Real-Time B Data to A Bus	Real-Time B Data to A Bus	
L	L	X	H or L	X	н	Output	Input	Stored B Data to A Bus	Stored B Data to A Bus	
н	н	X	х	L	×			Real-Time A Data to B Bus	Real-Time A Data to B Bus	
н	<u>H</u> -	H or L	X	н	Х	Input	Output	Stored A Data to B Bus	Stored A Data to B Bus	
н	1	Harl	Hort	ы	ц	.	<u> </u>	Stored A Data to B Bus and	Stored A Data to B Bus	
	L	HorL	- n or L	н	Н	Output	Output	Stored B Data to A bus	Stored B Data to A Bus	

* To prevent excess currents in the High-Z (isolation) modes, all I/O terminals should be terminated with 10kΩ to 1MΩ resistors.

† The data output functions may be enabled or disabled by various signals at the OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

‡ Select control = L: clocks can occur simultaneously.

Select control = H: clocks must be staggered in order to load both registers.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (V _{cc}) DC INPUT DIODE CURRENT, I _{IK} (for V _i < -0.5 V or V _i $>$ V _{cc} $+ 0.5$ V) DC OUTPUT DIODE CURRENT, I _{ok} (for V ₀ < -0.5 V or V ₀ $>$ V _{cc} $+ 0.5$ V)	+20 mA
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I ₀ (for $V_0 > -0.5$ V or V	$V_0 < V_{cc} + 0.5 V$
DC Vcc or GROUND CURRENT (Icc or Ignp)	
POWER DISSIPATION PER PACKAGE (Po):	
For $T_A = -55$ to $\pm 100^{\circ}$ C (PACKAGE TYPE E)	
For $T_A = +100$ to $+125^{\circ}$ C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For $T_A = -55$ to $+70^{\circ}$ C (PACKAGE TYPE M)	
For $T_A = +70$ to $+125^{\circ}$ C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum	+265°C
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contact	ting lead tips only +300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.	

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	LIN			
	MIN.	MAX.	UNITS	
Supply-Voltage Range, Vcc*:	· · · · · · · · · · · · · · · · · · ·	1		
(For T _A = Full Package-Temperature Range)				
AC Types	1.5	5.5	V	
ACT Types	4.5	5.5	V V	
DC Input or Output Voltage, VI, Vo	0	Vcc	V	
Operating Temperature, T _A	-55	+125	°C	
Input Rise and Fall Slew Rate, dt/dv		1	1	
at 1.5 V to 3 V (AC Types)	0	50	ns/V	
at 3.6 V to 5.5 V (AC Types)	0	20	ns/V	
at 4.5 V to 5.5 V (ACT Types)	0	10	ns/V	

*Unless otherwise specified, all voltages are referenced to ground.

STATIC ELECTRICAL CHARACTERISTICS: AC Series

•			<u> </u>		AMBIENT TEMPERATURE (TA) - °C						
CHARACTERIST	CS	TEST CO	NDITIONS	V _{cc}	+25		-40'to +85		-55 to +125		UNITS
		V, (V).	l _o (mA)	(Ÿ)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1 1
High-Level Input Voltage	VIH			1.5 3 5.5	1.2 2.1 3.85		1.2 2.1 3.85		1.2 2.1 3.85	-	v
Low-Level Input Voltage	Vil			1.5 3 5.5		0.3 0.9 1.65	-	0.3 0.9 1.65	-	0.3 0.9 1.65	v
High-Level Output			-0.05	1.5	1.4	<u> </u>	1.4		1.4		1
Voltage	V _{OH}	VIH	-0.05	3	2.9	-	2.9	_	2.9	-]
,		or	-0.05	4.5	4.4		4.4	_	4.4	·	
		V _{iL}	-4	3	2.58		2.48	-	2.4] V
			-24	4.5	3.94	_	3.8		3.7		
		#, * }	-75	5.5			3.85	-	-]
		··· 1	-50	5.5	_		-	-	3.85]
Low-Level Output			0.05	1.5		0.1	-	0.1		0.1	
Voltage	Vo∟	Vн	0.05	3		0.1		0.1		0.1	· ·
		or	0.05	4.5	-	0.1		0.1		0.1]
		ViL	12	3		0.36		0.44		0.5] V
		8	24	4.5		0.36		0.44	<u> </u>	0.5]
		#, * {	75	5.5				1.65			
· · · · · · · · · · · · · · · · · · ·		(50	5.5	-		·			1.65]
Input Leakage Current	li.	V _{cc} or GND		5.5		±0.1		±1		±1	μA
3-State Leakage Current	loz	ViH or ViL Vo= Vcc or GND		5.5		±0.5		±5		<u>+</u> 10	μA
Quiescent Supply Current, MSI	l _{cc}	V _{cc} or GND	0	5.5		8		80		160	μA

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

_ Technical Data

CD54/74AC651, CD54/74AC652 CD54/74ACT651, CD54/74ACT652

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

						AMBIEN	Т ТЕМРЕ	RATURE	E (T _A) - °	c	
CHARACTERISTICS		TEST CONDITIONS		V _{cc}	+25		-40 to +85		-55 to +125		UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	Vін			4.5 to 5.5	2	-	2	·	2	-	v
Low-Level Input Voltage	Vil			4.5 to 5.5		0.8		0.8	_	0.8	v
High-Level Output		ViH	-0.05	4.5	4.4	-	4.4		4.4		
Voltage	Vон	or Vit	-24	4.5	3.94		3.8	<u> </u>	3.7	<u> </u>]
		#, * {	-75	5.5		-	3.85		_		1 V
		<u>"' (</u>	-50	5.5					3.85		1
Low-Level Output		Vін	0.05	4.5	—	0.1		0.1	- 1	0.1	
Voltage	Vol	or Vı∟	24	4.5	_	0.36		0.44		0.5	1 v
		#, * {	75	5.5	_			1.65	_	<u> </u>	1
		" , " {	50	5.5	-				-	1.65	1
Input Leakage Current	ħ	V _{cc} or GND		5.5	—	±0.1	_	±1	_	±1	μΑ
3-State Leakage Current	loz	V _{IH} or V _{IL} Vo ⁼ Vcc or GND		5.5		±0.5	_	±5	_	±10	μΑ
Quiescent Supply Current, MSI	łcc	V _{cc} or GND	0	5.5		8	_	80	_	160	μA
Additional Quiescent Si Current per Input Pin TTL Inputs High 1 Unit Load		V _{cc} -2.1		4.5 to 5.5		2.4		2.8		3	mA

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. * Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

INPUT	UNIT LOAD*
CAB, CBA	1.25
SAB, SBA	1.2
OEAB	0.67
ŌĒBA	1.17
An, Bn	0.4

ACT INPUT LOADING TABLE

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

PREREQUISITE FOR SWITCHING: AC Series

		V _{cc} (V)	AMBI	AMBIENT TEMPERATURE (TA) - °C				
CHARACTERISTICS	SYMBOL		-40 to +85		-55 to +125		UNITS	
		(•)	MIN.	MAX.	MIN.	MAX.].	
Max. Frequency	fmax	1.5 3.3* 5†	11 101 143		10 89 125		MHz	
Setup Time Data to Clock	tsu	1.5 3.3 5	27 3.1 2.2	-	31 3.5 2.5		ns	
Hold Time Data to Clock	t _H	1.5 3.3 5	2 2 2		2 2 2		ns	
Clock Pulse Data to Clock	tw	1.5 3.3 5	44 4.9 3.5		50 5.6 4		ns	

*3.3 V: min. is @ 3 V

†5 V; min. is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t, t = 3 ns, CL = 50 pF

			AMBI	1				
CHARACTERISTICS	SYMBOL	V _{cc}	-40 1	o +85	-55 to +125		UNITS	
		(V)	MIN.	MAX.	MIN.	MAX.		
Propagation Delays:			<u> </u>				1	
Store A Data to B Bus	t _{PLH}	1.5	-	154	-	169		
Store B Data to A Bus	ten	3.3*	4.8	17.1	4.7	18.9	ns	
652		5†	3.5	12.3	3.4	13.5		
Store A Data to B Bus	telh	1.5	- 1	154	-	169]	
Store B Data to A Bus	тені	3.3	4.8	17.1	4.7	18.9	ns	
651	(PML	5	3.5	12.3	3.4	13.5		
A Data to B Bus		1.5	- 1	125	_	138		
B Data to A Bus	t _{PLH}	3.3	4	14	3.9	15.4	ns	
652	Lehr	5	2.8	10	2.8	11		
A Data to B Bus		1.5		125	_	138		
B Data to A Bus	tern		4	14	3.9	15.4	ns	
651 tPHL		5	2.8	10	2.8	11		
Select to Data		1.5		136		150		
652	telH	3.3	4.3	15.3	4.2	16.8	ns	
. – –	t _{PHL}	5	3.1	10.9	3	12		
Select to Data		1.5		136		150		
651	t _{PLH}	3.3	4.3	15.3	4.2	16.8	ns	
	t _{PHL}	5	3.1	10.9	3	12	(
3-State Enabling/	tezi	1.5	<u>+</u>	154		169		
Disabling Time	tezh	1.5	5.0	1		4		
Bus to Output or	telz	3.3 5	5.2 3.5	18.4	5.1 3.4	20.2 13.5	ns	
Register to Output	t _{PHZ}	5	3.5	12.3	3.4	13.0		
Power Dissipation Capacitance	CPD§		150	Тур.	150	Тур.	pF	
	Гон				· · · · · · · · · · · · · · · · · · ·			
During Switching of	VOHV		1					
Other Outputs (Output	See	5	ļ	4 Typ. (@ 25° C		V	
Under Test Not	Fig. 1							
Switching)								
Max. (Peak)	/ol							
During Switching of	VOLP		J				ļ	
Other Outputs (Output	See	5	5 1 Typ. @ 25°C				V	
Under Test Not	Fig. 1						1	
Switching)			l					
Input Capacitance	C,	_	—	10	—	10	pF	
3-State Output Capacitance	Co			15		15	DF	

max. is @ 3 V

15 V: min. is @ 5.5 V

max. is @ 4.5 V

 $P_D = V_{CC}^{-2} \, C_{PD} \, f_i + \Sigma \, (V_{CC}^{-2} C_L f_o)$ where $|f_i| = input$ frequency

 $f_o =$ output frequency $C_L =$ output load capacitance

Vcc - supply voltage.

_ Technical Data

CD54/74AC651, CD54/74AC652 CD54/74ACT651, CD54/74ACT652

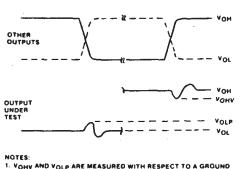
PREREQUISITE FOR SWITCHING: ACT Series

		V _{cc} (V)	AMBI				
CHARACTERISTICS	SYMBOL		-40 to +85		-55 to +125		
			MIN.	MAX.	MIN.	MAX.	
Max. Frequency	fmax	5*	125		110	_	MHz
Setup Time Data to Clock	tsu	5	2.2		2.5	-	ns
Hold Time Data to Clock	t _H	5	2	-	2	-	ns
Clock Pulse Width	tw	5	3.9	-	4.5	—	ns

*5 V: min. is @ 4.5 V

\$+- 1.

SWITCHING CHARACTERISTICS: ACT Series; t,, tr = 3 ns, CL = 50 pF

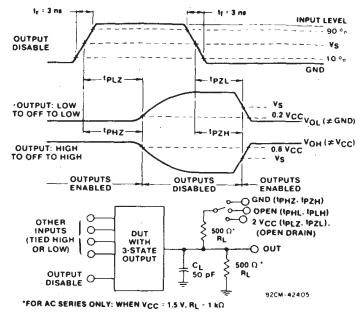

			AMBI				
CHARACTERISTICS	SYMBOL	V _{cc}	-40	lo +85	-55 to +125		
		(V)	MIN.	MAX.	MIN. MAX.		
Propagation Delays: Store A Data to B Bus Store B Data to A Bus 652	t _{РLH} t _{PHL}	5*	4	14.1	3.9	15.5	ns
Store Ā Data to B Bus Store B Data to A Bus 651	t _{РLН} t _{РНL}	5	4	14.1	3.9	15.5	ns
A Data to B Bus B Data to A Bus 652	tein teni	5	3.2	11.4	3.1	12.5	ns
Ā Data to B Bus B Data to A Bus 651	tрін tрні	5	3.2	11.4	3.1	12.5	ns
Select to Data 652	t _{РСН} tенс	5	3.7	13.2	3.6	14.5	ns
Select to Data 651	t _{РЕН} tрнс	5	4	14.1	3.9	15.5	ns
3-State Enabling/ Disabling Time Bus to Output or Register to Output	tpzi tpzh tplz tplz tphz	5	4	14.1	3.9	15.5	ns
Power Dissipation Capacitance	CPD§	_	150	Тур.	150	Тур.	рF
Min. (Valley) V During Switching of Other Outputs (Output Under Test Not Switching)	V _{он} v See Fig. 1	5			v		
Max. (Peak) During Switching of Other Outputs (Output Under Test Not Switching)	Vol P See Fig. 1	5		1 Тур. (@ 25°C		v
Input Capacitance	Ci			10		10	рF
3-State Output Capacitance	Co	_	-	15	_	15	pF

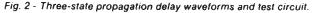
*5 V: min. is @ 5.5 V max. is @ 4.5 V §CPD is used to determine the dynamic power consumption, per package. $P_{D} = V_{CC}^{2} C_{PD} f_{i} + \Sigma V_{CC}^{2} C_{L} f_{o} + V_{CC} \Delta I_{CC} \text{ where } f_{i} = \text{input frequency}$

 $f_0 = output frequency$


 $C_L =$ output load capacitance $V_{CC} =$ supply voltage.

9




1. VGNV AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST. 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: PRR -1 MHz, 1- 3 as, 1- 3 as, 5 KEW 1 ns. 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED.

- IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 # CAPACITOR. SCOPE AND PROBES REQUIRE 700-MH2 BANDWIDTH.

9205-42406

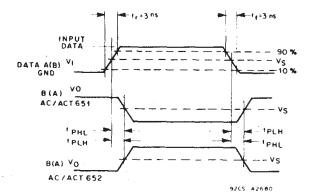
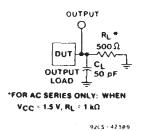



Fig. 3 - Propagation delay times.

LEVEL DATA A(B) CAB (CBA)		
	/	
		92CS-38405RI

Fig. 4 - Data setup and hold times.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 Vcc

Fig. 5 - Test circuit.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
CD74AC652M	LIFEBUY	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC652M	
CD74AC652M96	ACTIVE	SOIC	DW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC652M	Samples
CD74ACT652M	LIFEBUY	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT652M	
CD74ACT652M96	ACTIVE	SOIC	DW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT652M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

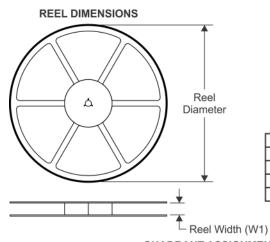
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

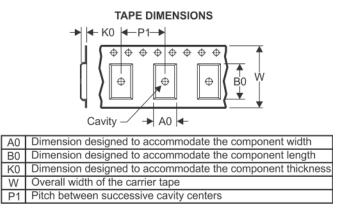
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

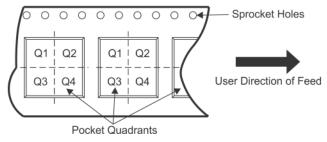
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

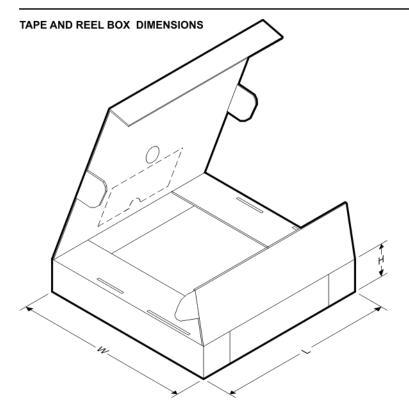

PACKAGE MATERIALS INFORMATION

Texas Instruments


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

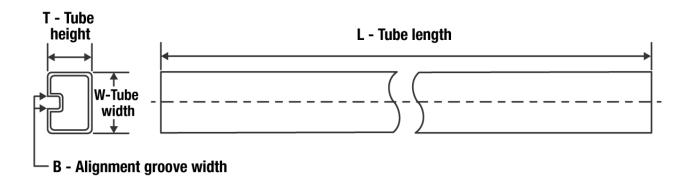

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC652M96	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
CD74ACT652M96	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC652M96	SOIC	DW	24	2000	350.0	350.0	43.0
CD74ACT652M96	SOIC	DW	24	2000	350.0	350.0	43.0

www.ti.com

5-Jan-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
CD74AC652M	DW	SOIC	24	25	506.98	12.7	4826	6.6
CD74ACT652M	DW	SOIC	24	25	506.98	12.7	4826	6.6

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated