

High Voltage Latch-Up Proof, **Dual SPST Switches**

Data Sheet

ADG5421/ADG5423

FEATURES

Latch-up immune under all circumstances Human body model (HBM) ESD rating: 8 kV Low on resistance: 13.5 Ω ±9 V to ±22 V dual-supply operation 9 V to 40 V single-supply operation 48 V supply maximum ratings Fully specified at ± 15 V, ± 20 V, ± 12 V, and ± 36 V **V**_{DD} to **V**_{SS} analog signal range

APPLICATIONS

High voltage signal routing **Automatic test equipment Analog front-end circuits** Precision data acquisition Industrial instrumentation **Amplifier gain select Relay replacement**

FUNCTIONAL BLOCK DIAGRAMS

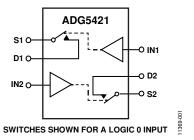


Figure 1. ADG5421



Figure 2, ADG5423

GENERAL DESCRIPTION

The ADG5421/ADG5423 are monolithic industrial, complementary metal oxide semiconductor (CMOS) analog switches containing two independent latch-up immune singlepole/single-throw (SPST) switches. Each switch conducts equally well in both directions when on, and has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. Both ADG5421 switches are turned on with a Logic 1 input, whereas the ADG5423 has one switch turned on and one switch turned off for a Logic 1 input. The ADG5423 exhibits break-before-make action for use in multiplexer applications.

The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. The latch-up immune construction and high ESD rating make these switches more robust in harsh environments.

PRODUCT HIGHLIGHTS

- Trench isolation guards against latch-up. A dielectric trench separates the P channel and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
- Low Ron of 13.5 Ω .
- Dual-supply operation. For applications where the analog signal is bipolar, the ADG5421/ADG5423 can operate from dual supplies up to ±22 V.
- Single-supply operation. For applications where the analog signal is unipolar, the ADG5421/ADG5423 can operate from a single-rail power supply up to 40 V.
- 3 V logic compatible digital inputs: $V_{\text{INH}} = 2.0 \text{ V}$, $V_{\text{INL}} = 0.8 \text{ V}$.
- No V_L logic power supply required.
- Available in 10-lead MSOP and 10-lead 3 mm × 3 mm LFCSP packages.

TABLE OF CONTENTS

reatures	1
Applications	1
Functional Block Diagrams	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
±15 V Dual Supply	3
±20 V Dual Supply	4
12 V Single Supply	5
36 V Single Supply	<i>6</i>

Continuous Current per Channel, Sx or Dx	7
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configurations and Function Descriptions	9
Typical Performance Characteristics	10
Test Circuits.	13
Terminology	15
Applications Information	16
Trench Isolation	16
Outline Dimensions	17
Ordering Guide	17

REVISION HISTORY

1/15—Rev. 0 to Rev. A	
Added 10-Lead LFCSP Package	Universal
Changes to Table 5	7
Added Figure 3, Renumbered Sequentially; Changes to Ta	able 7 9
Changes to Figure 5	10
Changes to Figure 30	14
Updated Outline Dimensions	17
Changes to Ordering Guide	17

9/13—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = -15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance, R _{ON}	13.5			Ω typ	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure 25}$
	15	19	23	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.1			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	1.8			Ω typ	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	2.2	2.7	3.1	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.05			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 24}$
	±0.25	±1	±10	nA max	
Drain Off Leakage, I _D (Off)	±0.05			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 24}$
	±0.25	±1	±10	nA max	_
Channel On Leakage, I _D (On), I _s (On)	±0.1			nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 23
3,- (- // - (- //	±0.4	±4	±20	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND}$ or V_{DD}
, ,			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹				1 71	
ton	185			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	220	273	313	ns max	$V_S = 10 \text{ V}$; see Figure 30
toff	163			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	196	219	242	ns max	$V_s = 10 \text{ V}$; see Figure 30
Break-Before-Make Time Delay, t _D (ADG5423 Only)	73			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			21	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 32
Charge Injection, Q _{INJ}	95			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$ Figure 31
Off Isolation	-55			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Total Harmonic Distortion + Noise	0.01			% typ	R_L = 1 kΩ, 15 V p-p, f = 20 Hz to 20 kHz; see Figure 27
–3 dB Bandwidth	250			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
Insertion Loss	-1			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
C _s (Off)	12			pF typ	$V_S = 0 V$, $f = 1 MHz$
C _D (Off)	13			pF typ	$V_S = 0 V, f = 1 MHz$
C_D (On), C_S (On)	44			pF typ	$V_S = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I_{DD}	45			μA typ	Digital inputs = 0 V or V _{DD}
	55		70	μA max	
I _{SS}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
V - AV			1	μA max	CND - OV
V_{DD}/V_{SS}	1		±9/±22	V min/V max	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2.

14 18 22 Ω max V ₁₀ = -18 V, V ₁₅ = -18 V V ₁₅ = -10 mA Ω max Ω typ V ₁₅ = ±15 V, t ₁₅ = -10 mA Ω max Ω typ V ₁₅ = ±15 V, t ₁₅ = -10 mA Ω max Ω typ V ₁₅ = ±15 V, t ₁₅ = -10 mA Ω max Ω typ V ₁₅ = ±15 V, t ₁₅ = -10 mA Ω max V ₁₀ = +22 V, V ₁₅ = -22 V V ₁₅ = -22 V V ₁₅ = -18 V, V ₁₅ = +15 V; see Figure 2 Ω m M typ V ₁₅ = ±15 V, V ₁₅ = ±15 V; see Figure 2 Ω m M max V ₁₅ = +15 V; see Figure 2 Ω m M max V ₁₅ = ±15 V; see Figure 2 Ω m max Ω typ Ω m m	Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
On Resistance, Row 12.5 On-Resistance Match Between Channels, ΔRow On-Resistance Match Between Channels, ΔRow On-Resistance Flatness, R _(LAT SON) On-Resistance Flatness, R _(LAT SON) On-Resistance Flatness, R _(LAT SON) 2.3 On-Resistance Flatness, R _(LAT SON) 2.4 On-Resistance Flatness, R _(LAT SON) 2.7 3.3 3.7 Omax V ₂₀ = ±15 V, I ₂ = −10 mA v ₂ = ±15 V, I ₂ = −10 mA On max V ₃ = ±15 V, I ₂ = −10 mA On max V ₂ = ±15 V, I ₂ = −10 mA On max V ₃ = ±15 V, I ₂ = −10 mA V ₄ = ±15 V, I ₂ = −10 mA On max V ₅ = ±15 V, I ₂ = −10 mA V ₆ = ±15 V, I ₂ = −10 mA V ₇ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max At yp V ₈ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max At yp V ₈ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max At yp V ₈ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max At yp V ₈ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max At yp V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max At yp V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max At yp V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V, V ₉ = ₹15 V; see Figure 2 mA max V ₉ = ±15 V; see Figure 2 mA max V ₉ = ±15 V; see Figure 2 mA max V ₉ = ±15 V; see Figure 2 mA max V ₉ = ±15 V; see	ANALOG SWITCH					
14 18 22 Ω max N	Analog Signal Range			V_{DD} to V_{SS}	V	
14 18 22 Ω max Ω typ Vs = ±15 V, Vs = −18 V Vs = ±15 V, Vs = −18 V V	On Resistance, Ron	12.5			Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure 25}$
On-Resistance Flatness, R _{ILAT (ON)} 2.3 2.7 3.3 3.7 On max Otyp V _S = ±15 V, I _S = −10 mA Otyp V _S = ±15 V, I _S = −10 mA Otyp V _S = ±15 V, I _S = −10 mA Otyp V _S = ±15 V, I _S = −10 mA Otyp V _S = ±15 V, I _S = −10 mA Otyp V _S = ±15 V, V _S = −22 V V _S = ±25 V, V _S = −22 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −15 V; see Figure 2 Other = ±10 V V _S = ±15 V, V _S = −15 V; see Figure 2 V _S = 0 V V _S = ±15 V, V _S = −15 V; see Figure 2 V _S = 0 V V _S = ±15 V, V _S = −15 V; see Figure 2 V _S = 0 V V _S = ±15 V, V _S = −15 V; see Figure 2 V _S = 0 V V _S = ±15 V, V _S = −15 V; see Figure 2 V _S = 0 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −21 V V _S = ±15 V, V _S = −15 V; see Figure 2 V _S = ±15 V, V _S = −15 V; see Figure 2 V _S = ±15 V, V _S = −15 V; see Figure 2 V _S = ±15 V, V _S = −15 V		14	18	22		$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$
On-Resistance Flatness, R _{EANT (ON)} 2.3 2.7 3.3 3.7 0 typ	On-Resistance Match Between Channels, ΔR _{ON}	0.1			Ωtyp	$V_s = \pm 15 \text{ V, } I_s = -10 \text{ mA}$
On-Resistance Flatness, R _{illat flows} 2.3 2.7 3.3 3.7 0 typ		0.8	1.3	1.4	,,	
LEAKAGE CURRENTS Source Off Leakage, s (Off) ±0.05 ±0.25 ±1 ±10 nA typ V ₅ = ±15 V, V ₉ = ₹15 V; see Figure 2 10.05 nA typ V ₅ = ±15 V, V ₉ = ₹15 V; see Figure 2 10.05 nA typ V ₅ = ±15 V, V ₉ = ₹15 V; see Figure 2 10.05 nA typ V ₅ = ±15 V, V ₉ = ₹15 V; see Figure 2 10.05 nA typ V ₅ = ±15 V, V ₉ = ₹15 V; see Figure 2 10.05 nA typ V ₅ = ±15 V, V ₉ = ₹15 V; see Figure 2 10.05 nA typ V ₅ = ±15 V, V ₉ = ₹15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = V ₉ = ±15 V; see Figure 2 10.05 nA typ V ₈ = 10 V; see Figure 3 10.05 nA typ V ₈ = 10 V; see Figure 3 10.05 nA typ V ₈ = 10 V; see Figure 3 10.05 nA typ V ₈ = 10 V; see Figure 3 10.05 nA typ NA typ V ₈ = 10 V; see Figure 2 10.05 nA typ	On-Resistance Flatness, R _{FLAT (ON)}	2.3			Ωtyp	$V_S = \pm 15 \text{ V, } I_S = -10 \text{ mA}$
Source Off Leakage, Is (Off)		2.7	3.3	3.7	Ω max	
Drain Off Leakage, Io (Off) ±0.25 ±0.05 ±0.025 ±1 ±10 nA max nA typ nA typ v _S ±±15 V, V _D = ₹15 V; see Figure 2 ±10 nA max nA typ nA typ v _S = ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±15 V; see	LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Drain Off Leakage, Io (Off) ±0.25 ±0.05 ±0.025 ±1 ±10 nA max nA typ nA typ v _S ±±15 V, V _D = ₹15 V; see Figure 2 ±10 nA max nA typ nA typ v _S = ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±15 V; see Figure 2 ±10 nA max nA typ v _S = ±15 V; see Figure 2 ±15 V; see	Source Off Leakage, I _s (Off)	±0.05			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}; \text{ see Figure 24}$
Drain Off Leakage, Io (Off) ±0.05 ±0.25 ±1 ±10 nA typ nA max nA typ nA typ nA typ nA typ nA max nA typ nA max nA typ nA max nA typ nA ty	3,7.	±0.25	±1	±10		
Channel On Leakage, I₀ (On), I₃ (On) ±0.1 ±0.1 ±0.4 ±4 ±10 nA max nA typ nA typ nA max V₃ = V₀ = ±15 V; see Figure 2.0 nA max DIGITAL INPUTS 1 ±0.4 ±4 ±20 nA max Vmin NA typ nA max Vmin NA typ	Drain Off Leakage, In (Off)					$V_S = +15 \text{ V}$ $V_D = \mp 15 \text{ V}$ see Figure 24
Channel On Leakage, Io (On), Is (On)	2. a 2 22a.a.g.; 18 (2)		+1	+10		v3 = ±13 v, v ₀ = +13 v, see rigate 2+
DiGiTAL INPUTS DiGiTAL INPUTS DIGITAL INPUTS DIGITAL INPUTS DIGITAL INPUTS DIGITAL INPUTS DIGITAL INPUT High Voltage, V _{NNH} DIGITAL INPUT High Voltage, V _{NNL} Digital Input Current, I _{NNL} or I _{NNL} or I _{NNL} Digital Input Capacitance, C _{IN} Digital Input Capacitance, C _{IN} 6 DYNAMIC CHARACTERISTICS¹ DYNAMIC CHARACTERISTICS¹ Digital Input Capacitance, C _{IN} Digital Input Capacitance, CIN Capacitance, Colon Digital Input Capacitance, Colon Digital Input Capacitance	Channel On Leakage L. (On) L. (On)			10		V = V = ±15 V; soo Figure 22
DIGITAL INPUTS Input High Voltage, V _{NRL}	Charmer On Leakage, ID (On), IS (On)		1.4	+30	,,	$V_S = V_D = \pm 15 \text{ V}$, see Figure 25
Input High Voltage, V _{BH} Input Low Voltage, V _{BH} Input Current, I _{BAL} or I _{INM} 0.002 ±0.1 μA typ τEigure 30 168 168 168 168 168 169	DICITAL INDUITC	±0.4	<u> </u>	±20	TIA IIIax	
Input Low Voltage, V _{INL} Input Current, I _{INL} or I _{INH} 0.002 ±0.1 μA typ μA max μA typ μA max pF typ				2.0	\/i	
Input Current, Inst. or Inst. Digital Input Capacitance, C _{IN} E DynAmic Characteristics						
Digital Input Capacitance, C _{IN} 6 ±0.1 μA max pf typ		0.002		0.8	_	V V 25V
Digital Input Capacitance, C _{IN} 6 PF typ	Input Current, IINL or IINH	0.002		.01		$V_{IN} = V_{GND} \text{ or } V_{DD}$
DYNAMIC CHARACTERISTICS¹ 168 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 11 Figure 30 199 243 276 ns max V _S = 10 V; see Figure 30 ns typ R _L = 300 Ω, C _L = 35 pF 156 156 ns max V _S = 10 V; see Figure 30 ns typ R _L = 300 Ω, C _L = 35 pF Break-Before-Make Time Delay, t _D (ADG5423 Only) 65 38 ns max V _S = 10 V; see Figure 30 ns typ Charge Injection, Q _{INJ} 120 38 ns min V _S = 0 V, R _S = 0 Q, C _L = 1 F; s Figure 31 Off Isolation -55 38 ns min V _S = 0 V, R _S = 0 Q, C _L = 1 F; s Figure 31 Channel-to-Channel Crosstalk -85 dB typ R _L = 50 Ω, C _L = 5 pF, f= 1 MHz; Figure 26 Total Harmonic Distortion + Noise 0.01 % typ R _L = 1 kΩ, 20 V p-p, f= 20 Hz 20 kHz; see Figure 27 -3 dB Bandwidth 250 MHz typ R _L = 50 Ω, C _L = 5 pF; see Figure 28 Insertion Loss -0.8 MB typ R _L = 50 Ω, C _L = 5 pF; see Figure 28 C _S (Off) 11 pF typ V _S = 0 V, f = 1 MHz see Figure 28 V _S = 0 V, f = 1 MHz See Figure 29	Distribution of Course items of C			±0.1	•	
ton 168 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 10 Figure 30 toff 199 243 276 ns max V _S = 10 V; see Figure 30 styp R _L = 300 Ω, C _L = 35 pF R _L = 300 Ω, C _L = 35 pF R _L = 300 Ω, C _L = 35 pF Break-Before-Make Time Delay, t _D (ADG5423 Only) 65 ns max V _S = 10 V; see Figure 30 Charge Injection, Q _{INJ} 120 ns min V _S = V _S = 10 V; see Figure 30 Charge Injection, Q _{INJ} 120 pC typ V _S = 0 N, R _S = 0 Ω, C _L = 1 FF; sigure 31 Off Isolation -55 dB typ R _L = 50 Ω, C _L = 5 pF, f= 1 MHz; Figure 26 Channel-to-Channel Crosstalk -85 dB typ R _L = 50 Ω, C _L = 5 pF, f= 1 MHz; Figure 29 Total Harmonic Distortion + Noise 0.01 % typ R _L = 1 kΩ, 20 V p-p, f= 20 Hz 20 Hz 20 kHz; see Figure 29 -3 dB Bandwidth 250 MHz typ R _L = 50 Ω, C _L = 5 pF, see Figure 10 Hz; see Figure 29 Insertion Loss -0.8 dB typ R _L = 50 Ω, C _L = 5 pF, see Figure 20 C _S (Off) 11 pF typ V _S = 0 V, f = 1 MHz see Figure 28 pF typ V _S = 0 V, f = 1 MHz to C _D (On), C _S (On)		6			рг тур	
Figure 30 Figure 30 Figure 30 Total Harmonic Distortion + Noise Total Harmonic Distortion + Noise Total Harmonic Distortion + Noise Total Harmonic Distortion Loss Cs (Off) CD (Off) CD (Off) CD (On), Cs (On) Ca (Ca (Ca (Ca (Ca (Ca (Ca (Ca (Ca (Ca						
toff 156 184 204 218 ns typ $R_L = 300 \Omega$, $C_L = 35 pF$ Break-Before-Make Time Delay, t_D (ADG5423 Only) 65 38 ns max $V_S = 10 V$; see Figure 30 Charge Injection, Q_{INJ} 120 38 ns min $V_{S1} = V_{S2} = 10 V$; see Figure 3. Charge Injection, Q_{INJ} 120 $P_C typ$ $V_S = 0 V$, $R_S = 0 \Omega$, $C_L = 35 pF$, $S_S = 0 V$, $S_$	t _{ON}	168			ns typ	
Break-Before-Make Time Delay, t _D (ADG5423 Only) 184 204 218 ns max ns typ R _L = 300 Ω, C _L = 35 pF Charge Injection, Q _{INJ} 120 38 pC typ V _S = 0 V, R _S = 0 Ω, C _L = 1 nF; s Figure 3.7 Off Isolation -55 dB typ R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; Figure 26 Channel-to-Channel Crosstalk -85 dB typ R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; Figure 29 Total Harmonic Distortion + Noise 0.01 % typ R _L = 1 kΩ, 20 V p-p, f = 20 Hz 20 kHz; see Figure 27 -3 dB Bandwidth 250 MHz typ R _L = 50 Ω, C _L = 5 pF; see Figure 28 Insertion Loss -0.8 pF typ V _S = 0 V, f = 1 MHz; see Figure 28 C _S (Off) 11 pF typ V _S = 0 V, f = 1 MHz C _D (On), C _S (On) 44 pF typ V _S = 0 V, f = 1 MHz POWER REQUIREMENTS V _{DD} = +22 V, V _{SS} = -22 V I _{DD} 70 110 µA typ µA max		199	243	276	ns max	$V_S = 10 \text{ V}$; see Figure 30
Break-Before-Make Time Delay, t _D (ADG5423 Only) 65 ns typ R _L = 300 Ω, C _L = 35 pF Charge Injection, Q _{INJ} 120 pC typ V _S = 0 V, R _S = 0 Ω, C _L = 1 nF; s Figure 31 Off Isolation -55 dB typ R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; Figure 26 Channel-to-Channel Crosstalk -85 dB typ R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; Figure 29 Total Harmonic Distortion + Noise 0.01 % typ R _L = 1 kΩ, 20 V p-p, f = 20 Hz 20 kHz; see Figure 27 -3 dB Bandwidth 250 MHz typ R _L = 50 Ω, C _L = 5 pF; see Figure 27 Insertion Loss -0.8 dB typ R _L = 50 Ω, C _L = 5 pF; see Figure 28 C _S (Off) 11 pF typ V _S = 0 V, f = 1 MHz; see Figure 28 C _S (Off) 12 pF typ V _S = 0 V, f = 1 MHz C _D (Onl), C _S (Onl) 44 pF typ V _S = 0 V, f = 1 MHz POWER REQUIREMENTS pF typ V _S = 0 V, f = 1 MHz IbD 50 µA typ Digital inputs = 0 V or V _{DD}	t_{OFF}	156			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
Charge Injection, Q _{INJ} 120 38 ns min pC typ $V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 3: pC typ $V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; so Figure 3: pC typ $V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; so Figure 3: pigure		184	204	218	ns max	$V_S = 10 \text{ V}$; see Figure 30
Charge Injection, Q_{INJ} 120 pC typ $V_S = 0$ V, $R_S = 0$ Ω , $C_L = 1$ nF; s Figure 31 pC typ $R_L = 50$ Ω , $C_L = 5$ pF, $f = 1$ MHz; significant $P_L = 1$ k P	Break-Before-Make Time Delay, t _D (ADG5423 Only)	65			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
Off Isolation $ -55 $ $ dB typ $				38	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charge Injection, Q _{INJ}	120			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 31
Total Harmonic Distortion + Noise $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Off Isolation	-55			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Harmonic Distortion + Noise	0.01			% typ	$R_L = 1 \text{ k}\Omega$, 20 V p-p, f = 20 Hz to 20 kHz; see Figure 27
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	–3 dB Bandwidth	250			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Insertion Loss	-0.8			dB typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _s (Off)	11			pF typ	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1
POWER REQUIREMENTS $I_{DD} \hspace{1cm} 50 \hspace{1cm} \mu A \hspace{1cm} typ \hspace{1cm} Digital \hspace{1cm} inputs = 0 \hspace{1cm} V \hspace{1cm} or \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{DD} = +22 \hspace{1cm} V, \hspace{1cm} V_{SS} = -22 \hspace{1cm} V \hspace{1cm} V_{SS} = -22 $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
70 110 μA max	-	50			uA tvp	
	-55			110		
	I _{SS}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
V_{DD}/V_{SS}	Von Mes				•	GND = 0 V

 $^{^{\}rm 1}\,\mbox{Guaranteed}$ by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, Ron	26			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -10 \text{ mA; see}$ Figure 25
	30	38	44	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.1			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
	1	1.5	1.6	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	5.5			Ω typ	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
	6.8	8.3	12.3	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_S = 1 \text{ V to } 10 \text{ V}, V_D = 10 \text{ V to } 1 \text{ V}; \text{ see}$ Figure 24
	±0.25	±1	±10	nA max	
Drain Off Leakage, I _D (Off)	±0.05			nA typ	$V_S = 1 \text{ V to } 10 \text{ V}, V_D = 10 \text{ V to } 1 \text{ V}; \text{ see}$ Figure 24
	±0.25	±1	±10	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.1			nA typ	$V_S = V_D = 1 \text{ V to } 10 \text{ V}$; see Figure 23
	±0.4	±4	±20	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	295			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	370	470	540	ns max	V _s = 8 V; see Figure 30
t _{OFF}	192			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	235	273	295	ns max	V _s = 8 V; see Figure 30
Break-Before-Make Time Delay, t _D (ADG5423 Only)	142			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			78	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 32
Charge Injection, Q _{INJ}	55			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$ Figure 31
Off Isolation	-55			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Total Harmonic Distortion + Noise	0.03			% typ	$R_L = 1 \text{ k}\Omega$, 6 V p-p, f = 20 Hz to 20 kHz; see Figure 27
–3 dB Bandwidth	290			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
Insertion Loss	-1.7			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
C _s (Off)	14			pF typ	$V_S = 6 \text{ V}, f = 1 \text{ MHz}$
C _D (Off)	15			pF typ	$V_S = 6 V, f = 1 MHz$
C_D (On), C_S (On)	38			pF typ	$V_S = 6 \text{ V}, f = 1 \text{ MHz}$
POWER REQUIREMENTS					V _{DD} = 13.2 V
I_{DD}	40			μA typ	Digital inputs = 0 V or V_{DD}
	50		65	μA max	
V_{DD}			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{ON}	14.5			Ωtyp	$V_s = 0 \text{ V to } 30 \text{ V, } I_s = -10 \text{ mA; see Figure } 25$
•	16	20	24	Ω max	$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between	0.1			Ωtyp	$V_s = 0 \text{ V to } 30 \text{ V, } I_s = -10 \text{ mA}$
Channels, ΔR _{ON}	•				13 01 10 00 1713 10 11
·	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, RFLAT (ON)	3.5			Ωtyp	$V_s = 0 \text{ V to } 30 \text{ V, } I_s = -10 \text{ mA}$
	4.3	5.5	6.5	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.05			nA typ	$V_S = 1 \text{ V to } 30 \text{ V}, V_D = 30 \text{ V to } 1 \text{ V}; \text{ see}$
Jource on Leakage, is (Oil)	±0.05			писур	Figure 24
	±0.25	±1	±10	nA max	1.9
Drain Off Leakage, I _D (Off)	±0.05			nA typ	$V_S = 1 \text{ V to } 30 \text{ V}, V_D = 30 \text{ V to } 1 \text{ V}; \text{ see}$
Drain on Leanage, in (on)				111111111111111111111111111111111111111	Figure 24
	±0.25	±1	±10	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.1			nA typ	$V_{S} = V_{D} = 1 \text{ V to } 30 \text{ V; see Figure } 23$
Charmer on Ecalage, in (on), is (on)	±0.4	±4	±20	nA max	v ₃ = v ₀ = 1 v to 30 v, see rigare 23
DIGITAL INPUTS	±0.4		120	TIATITUA	
			2.0	V min	
Input High Voltage, V					
Input Low Voltage, V _{INL}	0.000		0.8	V max	N N N
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	6			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	181			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	210	245	280	ns max	$V_s = 18 \text{ V}$; see Figure 30
toff	170			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	192	205	220	ns max	$V_s = 18 \text{ V}$; see Figure 30
Break-Before-Make Time Delay, t _D	66			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
(ADG5423 Only)					
			37	ns min	$V_{S1} = V_{S2} = 18 \text{ V}$; see Figure 32
Charge Injection, Q _{INJ}	110			pC typ	$V_s = 18 \text{ V}, R_s = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 31}$
Off Isolation	-55			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Total Harmonic Distortion + Noise	0.01			% typ	$R_L = 1 \text{ k}\Omega$, 18 V p-p, f = 20 Hz to 20 kHz; see Figure 27
−3 dB Bandwidth	260			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
Insertion Loss	-0.9			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
					see Figure 28
C_s (Off)	13			pF typ	$V_s = 18 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	16			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)	38			pF typ	$V_s = 18 \text{ V, } f = 1 \text{ MHz}$
POWER REQUIREMENTS					$V_{DD} = 39.6 \text{ V}$
I _{DD}	80			μA typ	Digital inputs = 0 V or V _{DD}
	100		130	μA max	_ ,
V_{DD}	1		9/40	V min/V max	GND = 0 V, V _{SS} = 0 V

¹ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 5.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					$\theta_{JA} = 133.1^{\circ}\text{C/W}$
10-Lead MSOP					
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$	84	58	39	mA maximum	
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$	89	60	41	mA maximum	
$V_{DD} = 12 V, V_{SS} = 0 V$	67	47	32	mA maximum	
$V_{DD} = 36 V, V_{SS} = 0 V$	87	59	40	mA maximum	
10-Lead LFCSP					$\theta_{JA} = 48.7^{\circ}\text{C/W}$
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$	129	80	48	mA maximum	
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$	135	83	50	mA maximum	
$V_{DD} = 12 V, V_{SS} = 0 V$	103	37	43	mA maximum	
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$	132	82	49	mA maximum	

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

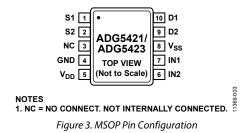
Table 6.

1 4010 01	
Parameter	Rating
V _{DD} to V _{SS}	48 V
V _{DD} to GND	−0.3 V to +48 V
V _{ss} to GND	+0.3 V to -48 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Digital Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Peak Current, Sx or Dx Pins	300 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx or Dx ²	Data + 15%
Temperature Range	
Operating	−40°C to +125°C
Storage	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ_{JA}	
10-Lead MSOP (4-Layer Board)	133.1°C/W
10-Lead LFCSP	48.7°C/W
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
Human Body Model (HBM) ESD	8 kV

¹ Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

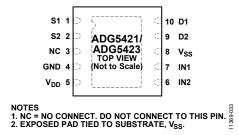


Figure 4. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

MSOP Pin No. ¹	LFCSP Pin No.	Mnemonic	Description
1	1	S1	Source Terminal 1. This pin can be an input or output.
2	2	S2	Source Terminal 2. This pin can be an input or output.
3	3	NC	No Connect. Not internally connected.
4	4	GND	Ground (0 V) Reference.
5	5	V_{DD}	Most Positive Power Supply Potential.
6	6	IN2	Logic Control Input.
7	7	IN1	Logic Control Input.
8	8	Vss	Most Negative Power Supply Potential.
9	9	D2	Drain Terminal 2. This pin can be an input or output.
10	10	D1	Drain Terminal 1. This pin can be an input or output.
N/A	EPAD		Exposed Pad. The exposed pad is tied to substrate, Vss.

¹ N/A means not applicable.

Table 8. ADG5421 Truth Table

INx	Switch Conditions
0	Off
_1	On

Table 9. ADG5423 Truth Table

INx	Switch 1 Condition	Switch 2 Condition
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

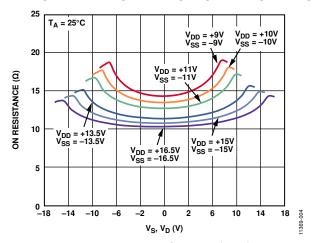


Figure 5. On Resistance as a Function of V_S , V_D (Dual Supply: $\pm 10 \text{ V}$, $\pm 15 \text{ V}$)

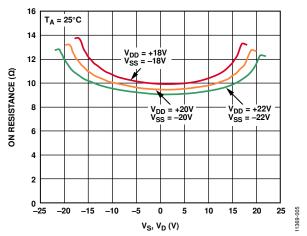


Figure 6. On Resistance as a Function of V_S , V_D (Dual Supply: $\pm 20 \text{ V}$)

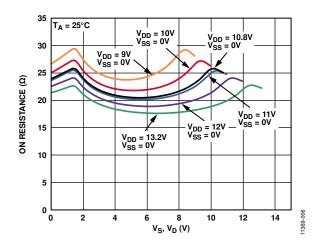


Figure 7. On Resistance as a Function of V_S , V_D (Single Supply: 10 V, 12 V)

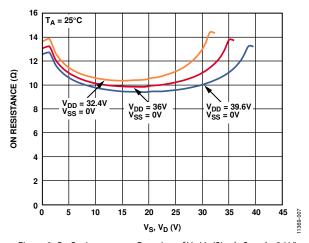


Figure 8. On Resistance as a Function of V_S, V_D (Single Supply: 36 V)

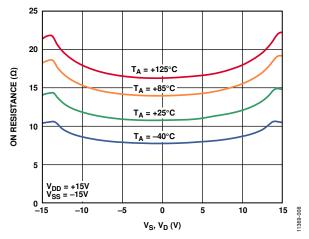


Figure 9. On Resistance as a Function of V_{S} (V_{D}) for Different Temperatures, ± 15 V Dual Supply

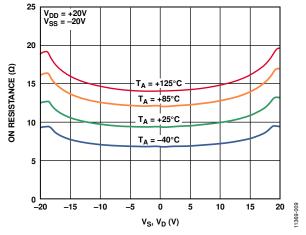


Figure 10. On Resistance as a Function of V_S (V_D) for Different Temperatures, ± 20 V Dual Supply

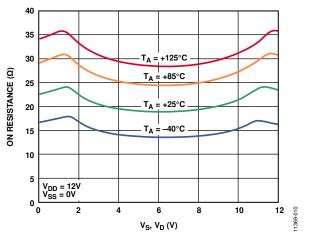


Figure 11. On Resistance as a Function of V_S (V_D) for Different Temperatures, 12 V Single Supply

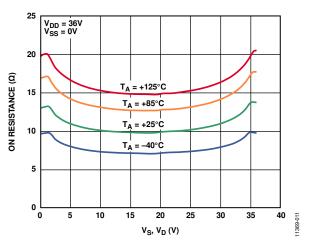


Figure 12. On Resistance as a Function of V_S (V_D) for Different Temperatures, 36 V Single Supply

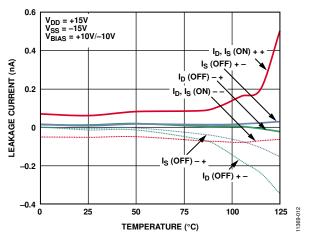


Figure 13. Leakage Currents as a Function of Temperature, ±15 V Dual Supply

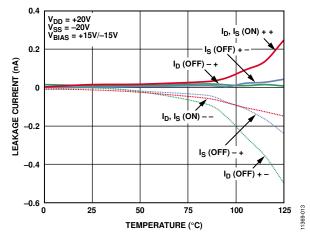


Figure 14. Leakage Currents as a Function of Temperature, ±20 V Dual Supply

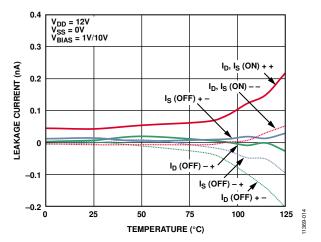


Figure 15. Leakage Currents as a Function of Temperature, 12 V Single Supply

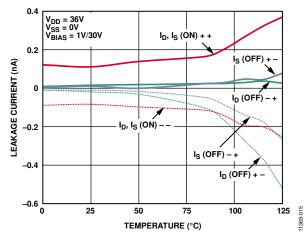


Figure 16. Leakage Currents as a Function of Temperature, 36 V Single Supply

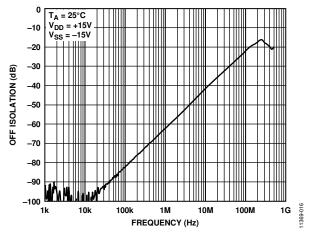


Figure 17. Off Isolation vs. Frequency

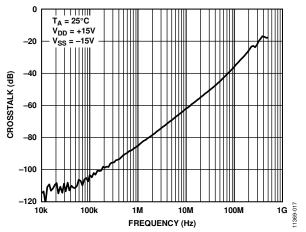


Figure 18. Crosstalk vs. Frequency

Figure 19. Charge Injection vs. Source Voltage (V_s)

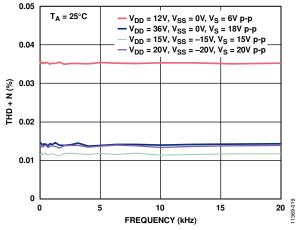


Figure 20. THD + N vs. Frequency

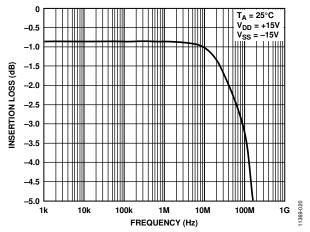


Figure 21. Bandwidth

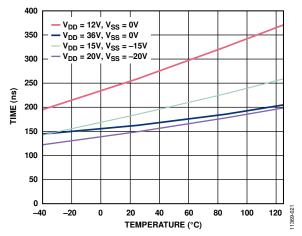


Figure 22. trransition Times vs. Temperature

TEST CIRCUITS

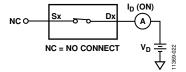


Figure 23. On Leakage

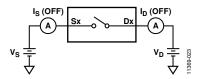


Figure 24. Off Leakage

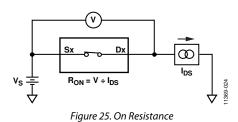


Figure 26. Off Isolation

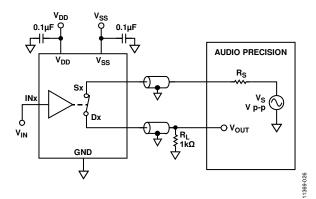


Figure 27. THD + Noise

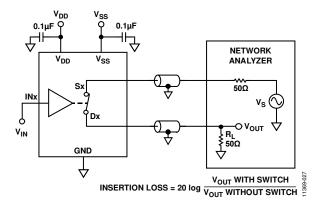


Figure 28. Bandwidth

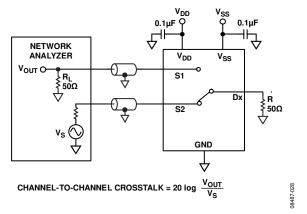


Figure 29. Channel-to-Channel Crosstalk

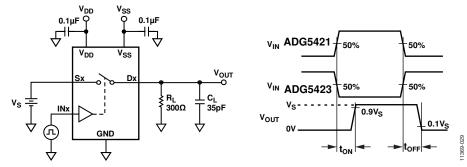


Figure 30. Switching Times, ton and toff

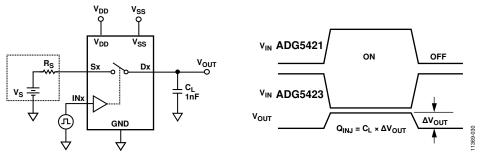


Figure 31. Charge Injection

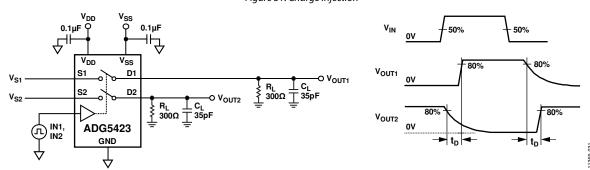


Figure 32. Break-Before-Make Time Delay

TERMINOLOGY

I_{DD}

IDD represents the positive supply current.

Icc

Iss represents the negative supply current.

V_D, V_S

 V_{D} and V_{S} represent the analog voltage on Terminal D and Terminal S, respectively.

Rox

 R_{ON} is the ohmic resistance between Terminal D and Terminal S.

ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT} (ON)

 $R_{\text{FLAT (ON)}}$ represents the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off)

I_S (Off) is the source leakage current with the switch off.

In (Off)

I_D (Off) is the drain leakage current with the switch off.

I_D (On), I_S (On)

 $I_{D}\left(On\right)$ and $I_{S}\left(On\right)$ represent the channel leakage currents with the switch on.

V_{INL}

 V_{INL} is the maximum input voltage for Logic 0.

V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

I_{INL} , I_{INH}

 I_{INL} and I_{INH} represent the low and high input currents of the digital inputs.

C_D (Off)

 C_D (Off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

Cs (Off) represents the off switch source capacitance, which is measured with reference to ground.

C_D (On), C_S (On)

 C_D (On) and C_S (On) represent on switch capacitances, which are measured with reference to ground.

C_{IN}

C_{IN} represents digital input capacitance.

ton

 $t_{\rm ON}$ represents the delay time between the 50% and 90% points of the digital input and switch on condition.

toff

 t_{OFF} represents the delay time between the 50% and 90% points of the digital input and switch off condition.

tο

t_D represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB from its dc level.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD + N.

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5421/ADG5423 high voltage switches allow single-supply operation from 9 V to 40 V and dual-supply operation from ± 9 V to ± 22 V. The ADG5421/ADG5423 (as well as other select devices within this family) achieve an 8 kV human body model ESD rating, which provides a robust solution, eliminating the need for separate protection circuitry designs in some applications.

TRENCH ISOLATION

In the ADG5421/ADG5423, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a completely latch-up immune switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. The two transistors form a silicon-controlled rectifier (SCR) type circuit, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up immune switch.

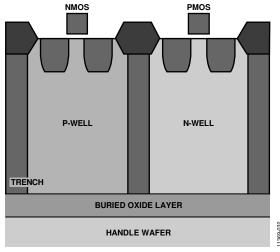


Figure 33. Trench Isolation

OUTLINE DIMENSIONS

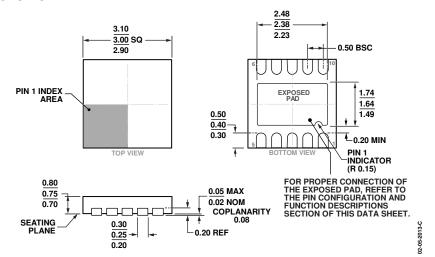
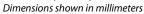



Figure 34. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] 3 mm × 3 mm Body, Very Very Thin, Dual Lead (CP-10-9)

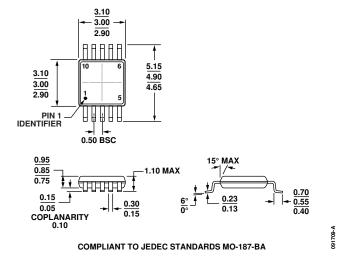


Figure 35. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG5421BCPZ-RL7	-40°C to +125°C	10-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	BN
ADG5421BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S47
ADG5421BRMZ-RL7	−40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S47
ADG5423BCPZ-RL7	-40°C to +125°C	10-Lead Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	BM
ADG5423BRMZ	−40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S3D
ADG5423BRMZ-RL7	−40°C to +125°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	S3D

¹ Z = RoHS Compliant Part.

