# 4-Bit Full Adder

The MC14008B 4-bit full adder is constructed with MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. This device consists of four full adders with fast internal look-ahead carry output. It is useful in binary addition and other arithmetic applications. The fast parallel carry output bit allows high-speed operation when used with other adders in a system.

#### **Features**

- Look–Ahead Carry Output
- Diode Protection on All Inputs
- All Outputs Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4008B
- This Device is Pb-Free and is RoHS Compliant

### MAXIMUM RATINGS (Voltages Referenced to V<sub>SS</sub>)

| Symbol                             | Parameter                                            | Value                         | Unit |
|------------------------------------|------------------------------------------------------|-------------------------------|------|
| $V_{DD}$                           | DC Supply Voltage Range                              | -0.5 to +18.0                 | V    |
| V <sub>in</sub> , V <sub>out</sub> | Input or Output Voltage Range (DC or Transient)      | -0.5 to V <sub>DD</sub> + 0.5 | V    |
| I <sub>in</sub> , I <sub>out</sub> | Input or Output Current<br>(DC or Transient) per Pin | ±10                           | mA   |
| P <sub>D</sub>                     | Power Dissipation, per Package (Note 1)              | 500                           | mW   |
| T <sub>A</sub>                     | Ambient Temperature Range                            | -55 to +125                   | °C   |
| T <sub>stg</sub>                   | Storage Temperature Range                            | -65 to +150                   | °C   |
| TL                                 | Lead Temperature<br>(8–Second Soldering)             | 260                           | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating: "D/DW" Package: -7.0 mW/°C From 65°C To 125°C

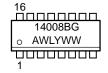
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range  $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.



## ON Semiconductor®

http://onsemi.com




SOIC-16 D SUFFIX CASE 751B

#### **PIN ASSIGNMENT**

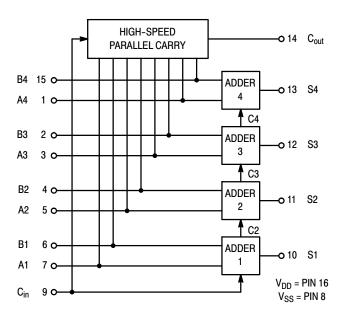
| A4 [              | 1● |    | ] V <sub>DD</sub> |
|-------------------|----|----|-------------------|
| B3 [              | 2  | 15 | ] B4              |
| A3 [              | 3  | 14 | C <sub>out</sub>  |
| B2 [              | 4  | 13 | ] S4              |
| A2 [              | 5  | 12 | ] S3              |
| B1 [              | 6  | 11 | ] S2              |
| A1 [              | 7  | 10 | ] S1              |
| V <sub>SS</sub> [ | 8  | 9  | ] C <sub>in</sub> |
|                   |    |    |                   |

#### **MARKING DIAGRAM**



A = Assembly Location

 $\begin{array}{ll} \text{WL, L} &= \text{Wafer Lot} \\ \text{YY, Y} &= \text{Year} \\ \text{WW, W} &= \text{Work Week} \\ \text{G} &= \text{Pb-Free Indicator} \end{array}$ 


#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

TRUTH TABLE (One Stage)

| C <sub>in</sub> | В | Α | C <sub>out</sub> | S |
|-----------------|---|---|------------------|---|
| 0               | 0 | 0 | 0                | 0 |
| 0               | 0 | 1 | 0                | 1 |
| 0               | 1 | 0 | 0                | 1 |
| 0               | 1 | 1 | 1                | 0 |
| 1               | 0 | 0 | 0                | 1 |
| 1               | 0 | 1 | 1                | 0 |
| 1               | 1 | 0 | 1                | 0 |
| 1               | 1 | 1 | 1                | 1 |

#### **BLOCK DIAGRAM**



## **ORDERING INFORMATION**

| Device       | Package              | Shipping <sup>†</sup>    |
|--------------|----------------------|--------------------------|
| MC14008BDR2G | SOIC-16<br>(Pb-Free) | 2500 Units / Tape & Reel |

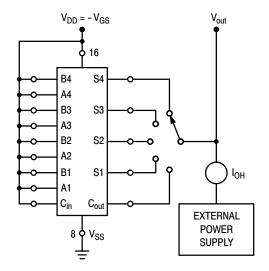
<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V<sub>SS</sub>)

|                                                                                                                                                   |           |                 |                        | -55                           | 5°C                  | 25°C                          |                                                 |                      | 125                           | 5°C                  |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|------------------------|-------------------------------|----------------------|-------------------------------|-------------------------------------------------|----------------------|-------------------------------|----------------------|------|
| Characteristic                                                                                                                                    |           | Symbol          | V <sub>DD</sub><br>Vdc | Min                           | Max                  | Min                           | Typ<br>(Note 2)                                 | Max                  | Min                           | Max                  | Unit |
| Output Voltage<br>V <sub>in</sub> = V <sub>DD</sub> or 0                                                                                          | "0" Level | V <sub>OL</sub> | 5.0<br>10<br>15        | -<br>-<br>-                   | 0.05<br>0.05<br>0.05 | -<br>-<br>-                   | 0<br>0<br>0                                     | 0.05<br>0.05<br>0.05 | -<br>-<br>-                   | 0.05<br>0.05<br>0.05 | Vdc  |
| $V_{in} = 0$ or $V_{DD}$                                                                                                                          | "1" Level | V <sub>OH</sub> | 5.0<br>10<br>15        | 4.95<br>9.95<br>14.95         | -<br>-<br>-          | 4.95<br>9.95<br>14.95         | 5.0<br>10<br>15                                 | -<br>-<br>-          | 4.95<br>9.95<br>14.95         | -<br>-<br>-          | Vdc  |
| Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$      | "0" Level | V <sub>IL</sub> | 5.0<br>10<br>15        | -<br>-<br>-                   | 1.5<br>3.0<br>4.0    | -<br>-<br>-                   | 2.25<br>4.50<br>6.75                            | 1.5<br>3.0<br>4.0    | -<br>-<br>-                   | 1.5<br>3.0<br>4.0    | Vdc  |
| $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$<br>$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$<br>$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$              | "1" Level | V <sub>IH</sub> | 5.0<br>10<br>15        | 3.5<br>7.0<br>11              | -<br>-<br>-          | 3.5<br>7.0<br>11              | 2.75<br>5.50<br>8.25                            | -<br>-<br>-          | 3.5<br>7.0<br>11              | -<br>-<br>-          | Vdc  |
| Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $ | Source    | I <sub>OH</sub> | 5.0<br>5.0<br>10<br>15 | -3.0<br>-0.64<br>-1.6<br>-4.2 | -<br>-<br>-          | -2.4<br>-0.51<br>-1.3<br>-3.4 | -4.2<br>-0.88<br>-2.25<br>-8.8                  |                      | -1.7<br>-0.36<br>-0.9<br>-2.4 |                      | mAdc |
| $(V_{OL} = 0.4 \text{ Vdc})$<br>$(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 1.5 \text{ Vdc})$                                                      | Sink      | I <sub>OL</sub> | 5.0<br>10<br>15        | 0.64<br>1.6<br>4.2            | -<br>-<br>-          | 0.51<br>1.3<br>3.4            | 0.88<br>2.25<br>8.8                             | -<br>-<br>-          | 0.36<br>0.9<br>2.4            | -<br>-<br>-          | mAdc |
| Input Current                                                                                                                                     |           | l <sub>in</sub> | 15                     | _                             | ±0.1                 | _                             | ±0.00001                                        | ±0.1                 | -                             | ±1.0                 | μAdc |
| Input Capacitance<br>(V <sub>in</sub> = 0)                                                                                                        |           | C <sub>in</sub> | -                      | -                             | -                    | -                             | 5.0                                             | 7.5                  | -                             | -                    | pF   |
| Quiescent Current<br>(Per Package)                                                                                                                |           | I <sub>DD</sub> | 5.0<br>10<br>15        | -<br>-<br>-                   | 5.0<br>10<br>20      | -<br>-<br>-                   | 0.005<br>0.010<br>0.015                         | 5.0<br>10<br>20      | -<br>-<br>-                   | 150<br>300<br>600    | μAdc |
| Total Supply Current (Notes 3 & 4) (Dynamic plus Quiescent, Per Package) (C <sub>L</sub> = 50 pF on all outputs, all buffers switching)           |           | lτ              | 5.0<br>10<br>15        |                               |                      | $I_T = (3)$                   | 1.7 μΑ/kHz) f<br>3.4 μΑ/kHz) f<br>5.0 μΑ/kHz) f | + I <sub>DD</sub>    |                               |                      | μAdc |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$


where:  $I_T$  is in  $\mu A$  (per package),  $C_L$  in pF, V = ( $V_{DD} - V_{SS}$ ) in volts, f in kHz is input frequency, and k = 0.005.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

# **SWITCHING CHARACTERISTICS** (Note 5) ( $C_L = 50 \text{ pF}, T_A = 25^{\circ}C$ )

| Characteristic                                                     | Symbol                              | V <sub>DD</sub><br>Vdc | Min | Typ<br>(Note 6) | Max | Unit |
|--------------------------------------------------------------------|-------------------------------------|------------------------|-----|-----------------|-----|------|
| Output Rise and Fall Time                                          | t <sub>TLH</sub> ,                  |                        |     |                 |     | ns   |
| $t_{TLH}$ , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$    | t <sub>THL</sub>                    | 5.0                    | _   | 100             | 200 |      |
| $t_{TLH}$ , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ |                                     | 10                     | _   | 50              | 100 |      |
| $t_{TLH}$ , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$  |                                     | 15                     | _   | 40              | 80  |      |
| Propagation Delay Time                                             | t <sub>PLH</sub> , t <sub>PHL</sub> |                        |     |                 |     | ns   |
| Sum in to Sum Out                                                  |                                     |                        |     |                 |     |      |
| $t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$   |                                     | 5.0                    | _   | 400             | 800 |      |
| $t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 127 \text{ ns}$  |                                     | 10                     | _   | 160             | 320 |      |
| $t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 90 \text{ ns}$    |                                     | 15                     | _   | 115             | 230 |      |
| Sum In to Carry Out                                                |                                     |                        |     |                 |     |      |
| $t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 220 \text{ ns}$   |                                     | 5.0                    | _   | 305             | 610 |      |
| $t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 112 \text{ ns}$  |                                     | 10                     | _   | 145             | 290 |      |
| $t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 85 \text{ ns}$    |                                     | 15                     | _   | 110             | 220 |      |
| Carry In to Sum Out                                                |                                     |                        |     |                 |     |      |
| $t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 290 \text{ ns}$   |                                     | 5.0                    | _   | 375             | 750 |      |
| $t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 122 \text{ ns}$  |                                     | 10                     | _   | 155             | 310 |      |
| $t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 90 \text{ ns}$    |                                     | 15                     | _   | 115             | 230 |      |
| Carry In to Carry Out                                              |                                     |                        |     |                 |     |      |
| $t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 85 \text{ ns}$    |                                     | 5.0                    | _   | 170             | 340 |      |
| $t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 42 \text{ ns}$   |                                     | 10                     | _   | 75              | 150 |      |
| $t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 30 \text{ ns}$    |                                     | 15                     | _   | 55              | 110 |      |

- 5. The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.



**Figure 1. Typical Source Current** Characteristics Test Circuit

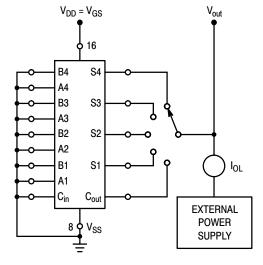



Figure 2. Typical Sink Current **Characteristics Test Circuit** 

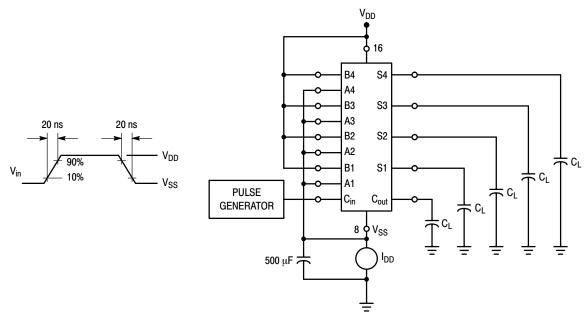



Figure 3. Dynamic Power Dissipation Test Circuit and Waveform

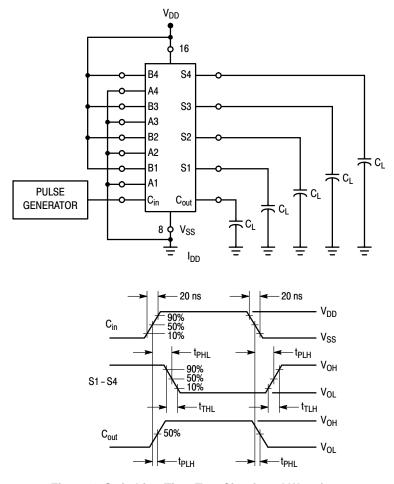



Figure 4. Switching Time Test Circuit and Waveforms

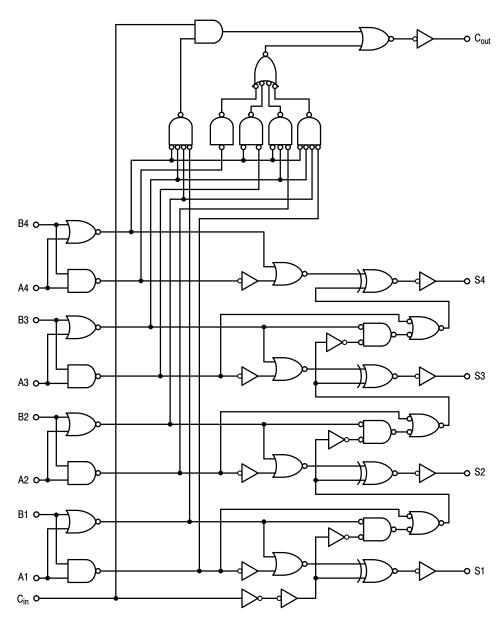
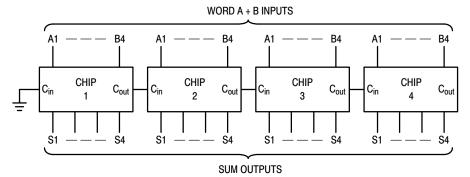
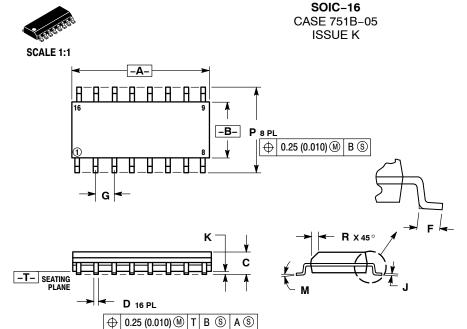




Figure 5. Logic Diagram

# **TYPICAL APPLICATION**




Calculation of 16-bit adder speed:

 $t_P$  total =  $t_P$  (Sum to Carry) +  $t_P$  (Carry to Sum) + 2  $t_P$  (Carry to Carry) The guaranteed 16-bit adder speed at 10 V, 25°C,  $C_L$  = 50 pF is:

 $t_p \text{ total} = 290 + 310 + 300 = 900 \text{ ns}$ 

Figure 6. Using the MC14008B in a 16-Bit Adder Configuration

# **MECHANICAL CASE OUTLINE**



**DATE 29 DEC 2006** 

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
  CONTROLLING DIMENSION: MILLIMETER.
  DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

  MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

  DIMENSION D DOES NOT INCLUDE DAMBAR
  PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

  SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

  DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIN | IETERS | INC       | HES   |  |
|-----|--------|--------|-----------|-------|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |
| Α   | 9.80   | 10.00  | 0.386     | 0.393 |  |
| В   | 3.80   | 4.00   | 0.150     | 0.157 |  |
| С   | 1.35   | 1.75   | 0.054     | 0.068 |  |
| D   | 0.35   | 0.49   | 0.014     | 0.019 |  |
| F   | 0.40   | 1.25   | 0.016     | 0.049 |  |
| G   | 1.27   | BSC    | 0.050 BSC |       |  |
| J   | 0.19   | 0.25   | 0.008     | 0.009 |  |
| K   | 0.10   | 0.25   | 0.004     | 0.009 |  |
| M   | 0°     | 7°     | 0°        | 7°    |  |
| P   | 5.80   | 6.20   | 0.229     | 0.244 |  |
| R   | 0.25   | 0.50   | 0.010     | 0.019 |  |

| STYLE 1: |               | STYLE 2: |               | STYLE 3: |                      | STYLE 4: |                  |                  |                           |
|----------|---------------|----------|---------------|----------|----------------------|----------|------------------|------------------|---------------------------|
|          | COLLECTOR     |          | CATHODE       | PIN 1.   | COLLECTOR, DYE #1    | PIN 1.   | COLLECTOR, DYE # | 1                |                           |
| 2.       | BASE          |          | ANODE         | 2.       | BASE, #1             | 2.       | COLLECTOR, #1    |                  |                           |
| 3.       | EMITTER       | 3.       | NO CONNECTION | 3.       | EMITTER, #1          | 3.       | COLLECTOR, #2    |                  |                           |
| 4.       | NO CONNECTION | 4.       | CATHODE       | 4.       | COLLECTOR, #1        | 4.       | COLLECTOR, #2    |                  |                           |
| 5.       | EMITTER       | 5.       | CATHODE       | 5.       | COLLECTOR, #2        | 5.       | COLLECTOR, #3    |                  |                           |
| 6.       | BASE          | 6.       | NO CONNECTION | 6.       | BASE, #2             | 6.       | COLLECTOR, #3    |                  |                           |
| 7.       | COLLECTOR     | 7.       |               | 7.       | EMITTER, #2          | 7.       | COLLECTOR, #4    |                  |                           |
| 8.       | COLLECTOR     | 8.       | CATHODE       | 8.       | COLLECTOR, #2        | 8.       | COLLECTOR, #4    |                  |                           |
| 9.       | BASE          | 9.       | CATHODE       | 9.       | COLLECTOR, #3        | 9.       | BASE, #4         |                  |                           |
| 10.      | EMITTER       | 10.      |               | 10.      | BASE, #3             | 10.      | EMITTER, #4      |                  |                           |
| 11.      | NO CONNECTION |          | NO CONNECTION | 11.      | EMITTER, #3          | 11.      | BASE, #3         |                  |                           |
| 12.      | EMITTER       | 12.      | CATHODE       | 12.      | COLLECTOR, #3        | 12.      | EMITTER, #3      |                  |                           |
| 13.      | BASE          |          | CATHODE       | 13.      | COLLECTOR, #4        | 13.      | BASE, #2         | SOI DEDING       | FOOTPRINT                 |
| 14.      | COLLECTOR     | 14.      | NO CONNECTION | 14.      | BASE, #4             | 14.      | EMITTER, #2      | SOLDENING        | a FOOTPHINT               |
| 15.      | EMITTER       | 15.      |               | 15.      | EMITTER, #4          | 15.      | BASE, #1         |                  | 8X                        |
| 16.      | COLLECTOR     | 16.      | CATHODE       | 16.      | COLLECTOR, #4        | 16.      | EMITTER, #1      | <b>-</b>         | 6.40 <del>→</del>         |
|          |               |          |               |          |                      |          |                  | -                | , 19                      |
| STYLE 5: |               | STYLE 6: |               | STYLE 7: |                      |          |                  |                  | 16X 1.12 <                |
| PIN 1.   | DRAIN, DYE #1 |          | CATHODE       | PIN 1.   | SOURCE N-CH          |          |                  |                  | 1 1                       |
| 2.       | DRAIN, #1     | 2.       | CATHODE       | 2.       | COMMON DRAIN (OUTPUT | )        |                  | . 🗀 1            | 16                        |
| 3.       | DRAIN, #2     | 3.       | CATHODE       | 3.       | COMMON DRAIN (OUTPUT | ń        |                  | <b>,</b> —       |                           |
| 4.       | DRAIN, #2     | 4.       | CATHODE       | 4.       | GATE P-CH            | ,        |                  | <u>-</u>         |                           |
| 5.       | DRAIN, #3     | 5.       | CATHODE       | 5.       | COMMON DRAIN (OUTPUT | )        | 162              | , <del>T</del> — |                           |
| 6.       | DRAIN, #3     | 6.       | CATHODE       | 6.       | COMMON DRAIN (OUTPUT | ń        | 0.58             |                  | <u> </u>                  |
| 7.       | DRAIN, #4     | 7.       | CATHODE       | 7.       | COMMON DRAIN (OUTPUT | ń        | 0.00             | <b>ч</b>         | · —                       |
| 8.       | DRAIN, #4     | 8.       | CATHODE       | 8.       | SOURCE P-CH          |          |                  |                  |                           |
| 9.       | GATE, #4      | 9.       | ANODE         | 9.       | SOURCE P-CH          |          |                  |                  |                           |
| 10.      | SOURCE, #4    | 10.      | ANODE         | 10.      | COMMON DRAIN (OUTPUT | )        |                  |                  |                           |
| 11.      | GATE, #3      | 11.      | ANODE         | 11.      | COMMON DRAIN (OUTPUT | )        |                  |                  |                           |
| 12.      | SOURCE, #3    | 12.      | ANODE         | 12.      | COMMON DRAIN (OUTPUT | )        |                  |                  | □ □ 1.27                  |
| 13.      | GATE, #2      | 13.      | ANODE         | 13.      | GATE N-CH            |          |                  |                  |                           |
| 14.      | SOURCE, #2    | 14.      |               | 14.      | COMMON DRAIN (OUTPUT | )        |                  |                  | ▼ PITCH                   |
| 15.      | GATE, #1      | 15.      | ANODE         | 15.      | COMMON DRAIN (OUTPUT | )        |                  |                  | \ <u>+-</u> +-            |
| 16.      | SOURCE, #1    | 16.      | ANODE         | 16.      | SOURCE N-CH          |          |                  |                  |                           |
|          |               |          |               |          |                      |          |                  | 8                | 9 + - + -                 |
|          |               |          |               |          |                      |          |                  |                  | _ <u> </u>                |
|          |               |          |               |          |                      |          |                  |                  | DIMENSIONS: MILLIMETERS   |
|          |               |          |               |          |                      |          |                  |                  | DINILINGIONS. MILLIMETERS |

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repos<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | SOIC-16     |                                                                                                                                                                               | PAGE 1 OF 1 |  |  |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales