HI20201 10-Bit, 160 MSPS, Ultra High Speed D/A Converter August 1997 # Features - Differential Linearity Error 0.5 LSB - · Low Glitch Noise - · Analog Multiplying Function - · Evaluation Board Available - Direct Replacement for Sony CX20201-1, CX20202-1 # **Applications** - · Wireless Communications - · Signal Reconstruction - · Direct Digital Synthesis - · High Definition Video Systems - · Digital Measurement Systems - Radar # Description The HI20201 is a 160MHz ultra high speed D/A converter. The converter is based on an R/2R switched current source architecture that includes an input data register with a complement feature and is Emitter Coupled Logic (ECL) compatible. The HI20201 is available in a commercial temperature range and offered in a 28 lead plastic SOIC (300 mil) and a 28 lead plastic DIP package. # **Ordering Information** | PART
NUMBER | TEMP.
RANGE (°C) | PACKAGE | PKG. NO. | |----------------|---------------------|----------------|----------| | HI20201JCB | -20 to 75 | 28 Ld SOIC | M28.3A-S | | HI20201JCP | -20 to 75 | 28 Ld PDIP | E28.6A-S | | HI20201-EV | 25 | Evaluation Kit | | # **Pinout** HI20201 (PDIP, SOIC) TOP VIEW #### **Typical Application Circuit** HI20201 (28) AV_{SS} D9 . D9 (MSB) (1) 1.5 $k\Omega$ D8 -D8 (2) $\mathbf{1k}\Omega$ ~2.7V D7 D7 (3) (27) V_{REF} D6 D6 (4) DIGITAL DATA (ECL) D5 (5) D5 TL431CP D4 (6) -5.2V (26) AV_{EE} 0.047μF D3 D3 (7) 1.0μF D2 (8) D1 (9) D1 . D0 (LSB) (10) D0 . (11) 75Ω COAX CABLE D/A OUT ((12) (20) I_{OUT} (18, 19, 21-25) NC **82**Ω**≥82**Ω (17) DV_{SS} **CLK** (13) (16) COMPL CLK (14) 1.0μF **0.047**μF 131 Ω **₹**131Ω (15) DV_{EE} $3.6k\Omega$ -5.2V **∢** # Functional Block Diagram #### HI20201 #### **Absolute Maximum Ratings** Thermal Information Digital Supply Voltage DV_{EE} to DV_{SS}-7.0V Thermal Resistance (Typical, Note 1) θ_{JA} (°C/W) Analog Supply Voltage AV_{DD} to AV_{SS}-7.0V Digital Input Voltage +0.3 to DV_{EE} V Maximum Junction Temperature (Plastic Package) 150°C Maximum Storage Temperature Range $\dots -65^{\circ}\text{C}$ to 150°C Maximum Lead Temperature (Soldering 10s)......300°C (SOIC - Lead Tips Only) **Recommended Operating Conditions** Supply Voltage Reference Input Voltage, V_{REF} V_{EE} + 0.5V to V_{EE} + 1.4V Output Voltage, VOLT 0.8V to 1.2V Temperature Range-20°C to 75°C Digital Input Voltage V_{IH} -1.0V to -0.7V V_{IL}.....-1.9V to -1.6V CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air. **Electrical Specifications** $T_A = 25^{\circ}C$, $AV_{EE} = DV_{EE} = -5.2V$, AGND = DGND = 0V, $R_L = \infty$, $V_{OUT} = -1V$ | | | HI20201JCB/JCP | | | | |---|--|----------------|-------|-------|-------| | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | SYSTEM PERFORMANCE | • | | • | | | | Resolution | | 10 | - | - | Bits | | Integral Linearity Error, INL | f _S = 160MHz (End Point) | - | - | ±1.0 | LSB | | Differential Linearity Error, DNL | f _S = 160MHz | - | - | ±0.50 | LSB | | Offset Error, V _{OS} (Adjustable to Zero) | (Note 3) | - | 7 | - | LSB | | Full Scale Error, FSE (Adjustable to Zero) | (Note 3) | - | - | ±102 | LSB | | Full Scale Output Current, I _{FS} | | - | - | 20 | mA | | DYNAMIC CHARACTERISTICS | - | | | | | | Throughput Rate | See Figure 11 | 160 | - | - | MHz | | Glitch Energy, GE | R _{OUT} = 75Ω | - | 15 | - | pV/s | | REFERENCE INPUT | - | | | | | | Voltage Reference Input Range | With Respect to AV _{EE} | +0.5 | - | +1.4 | ٧ | | Reference Input Current | V _{REF} = -4.58V | -0.1 | -0.4 | -3.0 | μΑ | | Voltage Reference to Output Small
Signal Bandwidth | -3dB point 1V _{P-P} Input | - | 14.0 | - | MHz | | Output Rise Time, t _r | $R_{LOAD} = 75\Omega$ | - | 1.5 | - | ns | | Output Fall Time, t _f | $R_{LOAD} = 75\Omega$ | - | 1.5 | - | ns | | DIGITAL INPUTS | • | | | | | | Input Logic High Voltage, V _{IH} | (Note 2) | -1.0 | -0.89 | | ٧ | | Input Logic Low Voltage, V _{IL} | (Note 2) | | -1.75 | -1.6 | ٧ | | Input Logic Current, I _{IL} , I _{IH}
(For D9 thru D6, COMPL) | V _{IH} = -0.89V, V _{IL} = -1.75V (Note 2) | 0.1 | 1.5 | 6.0 | μΑ | | Input Logic Current, I _{IL} , I _{IH} (For D5 thru D0) | , I _{IL} , I _{IH} (For D5 thru D0) V _{IH} = -0.89V, V _{IL} = -1.75V (Note 2) | | 0.75 | 3.0 | μΑ | | TIMING CHARACTERISTICS | - | | - | | | | Data Setup Time, t _{SU} | See Figure 11 | 5 | - | - | ns | | Data Hold Time, t _{HLD} | See Figure 11 | 1 | - | - | ns | | Propagation Delay Time, t _{PD} | See Figure 11 | - | 3.8 | - | ns | | Settling Time, t _{SET} (to ¹ / ₂ LSB) | See Figure 11 | - | 5.2 | - | ns | # $\textbf{Electrical Specifications} \qquad \text{$T_A = 25^{o}C$, $AV_{EE} = DV_{EE} = -5.2V$, $AGND = DGND = 0V$, $R_{L} = \infty$, $V_{OUT} = -1V$ } \label{eq:continued} \textbf{(Continued)}$ | | HI20201JCB/JCP | | P | | | |-------------------------------|-----------------|-----|-----|-----|-------| | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS | | POWER SUPPLY CHARACTERISITICS | | | | | | | IEE | | -60 | -75 | -90 | mA | | Power Dissipation | 75Ω load | - | 420 | 470 | mW | #### NOTES: - 2. Parameter guaranteed by design or characterization and not production tested. - 3. Excludes error due to reference drift. - 4. Electrical specifications guaranteed only under the stated operating conditions. # Timing Diagram FIGURE 1. LADDER SETTLING TIME FULL POWER BANDWIDTH (LS) # Pin Descriptions | 28 PIN SOIC | PIN NAME | PIN DESCRIPTION | | |--------------------|-------------------|---|--| | 1-10 | D0 (LSB)-D9 (MSB) | Digital Data Bit 0, the Least Significant Bit thru Digital Data Bit 9, the Most Significant Bit. | | | 11, 12, 19, 21- 25 | NC | No Connect, not used. | | | 13 | CLK | Negative Differential Clock Input. | | | 14 | CLK | Positive Differential Clock Input | | | 15 | DV _{EE} | Digital (ECL) Power Supply -4.75V to -7V. | | | 16 | COMPL | Data Complement Pin. When set to a (ECL) logic High the input data is complemented in the input buffer. When cleared to a (ECL) logic Low the input data is not complemented. | | | 17 | DV _{SS} | Digital Ground. | | | 18 | AV _{SS} | Analog Ground. | | | 20 | lоит | Current Output Pin. | | | 26 | AV _{EE} | Analog Supply -4.75V to -7V. | | | 27 | V _{REF} | Input Reference Voltage used to set the output full scale range. | | | 28 | AV _{SS} | Analog Ground. | | # Typical Performance Curves FIGURE 2. VO(FS) RATIO vs (VREF - VEE) FIGURE 3. FULL SCALE OUTPUT VOLTAGE VS AMBIENT TEMPERATURE FIGURE 4. OUTPUT CHARACTERISTICS vs MULTIPLYING INPUT SIGNAL FREQUENCY FIGURE 5. GLITCH ENERGY vs CASE TEMPERATURE (FULL SCALE - 1023mV) # **Detailed Description** The HI20201 is a 10-bit, current output D/A converter. The DAC can run at 160MHz and is ECL compatible. The architecture is segmented/R2R combination to reduce glitch and improve linearity. #### **Architecture** The HI20201 is a combined R2R/segmented current source design. The 6 least significant bits of the converter are derived by a traditional R2R network to binary weight the 1mA current sources. The upper 4 most significant bits are implemented as segmented or thermometer encoded current sources. The encoder converts the incoming 4 bits to 15 control lines to enable the most significant current sources. The thermometer encoder will convert binary to individual control lines. See Table 1. TABLE 1. THERMOMETER ENCODER | MSB | BIT 8 | BIT 7 | BIT 6 | THERMOMETER CODE
1 = ON, 0 = OFF, I ₁₅ - I ₀ | |-----|-------|-------|-------|---| | 0 | 0 | 0 | 0 | 000 0000 0000 0000 | | 0 | 0 | 0 | 1 | 000 0000 0000 0001 | | 0 | 0 | 1 | 0 | 000 0000 0000 0011 | | 0 | 0 | 1 | 1 | 000 0000 0000 0111 | | 0 | 1 | 0 | 0 | 000 0000 0000 1111 | | 0 | 1 | 0 | 1 | 000 0000 0001 1111 | | 0 | 1 | 1 | 0 | 000 0000 0011 1111 | | 0 | 1 | 1 | 1 | 000 0000 0111 1111 | | 1 | 0 | 0 | 0 | 000 0000 1111 1111 | | 1 | 0 | 0 | 1 | 000 0001 1111 1111 | | 1 | 0 | 1 | 0 | 000 0011 1111 1111 | | 1 | 0 | 1 | 1 | 000 0111 1111 1111 | | 1 | 1 | 0 | 0 | 000 1111 1111 1111 | | 1 | 1 | 0 | 1 | 001 1111 1111 1111 | | 1 | 1 | 1 | 0 | 011 1111 1111 1111 | | 1 | 1 | 1 | 1 | 111 1111 1111 1111 | The architecture of the HI20201 is designed to minimize glitch while providing a manufacturable 10-bit design that does not require laser trimming to achieve good linearity. #### Glitch Glitch is caused by the time skew between bits of the incoming digital data. Typically the switching time of digital inputs are asymmetrical meaning that the turn off time is faster than the turn on time (TTL designs). In an ECL system where the logic levels switch from one non-saturated level to another, the switching times can be considered close to symmetrical. This helps to reduce glitch in the D/A. Unequal delay paths through the device can also cause one current source to change before another. To minimize this the Harris HI20201 employs an internal register, just prior to the current sources, that is updated on the clock edge. Lastly the worst case glitch usually happens at the major transition i.e., 01 1111 1111 to 10 0000 0000. But in the HI20201 the glitch is moved to the 00 0001 1111 to 11 1110 0000 transition. This is achieved by the split R2R/segmented current source architecture. This decreases the amount of current switching at any one time and makes the glitch practically constant over the entire output range. By making the glitch a constant size over the entire output range this effectively integrates this error out of the end application. In measuring the output glitch of the HI20201 the output is terminated into a 75Ω load. The glitch is measured at the major carry's throughout the DAC's output range. FIGURE 6. HI20201 GLITCH TEST CIRCUIT The glitch energy is calculated by measuring the area under the voltage-time curve. Figure 7 shows the area considered as glitch when changing the DAC output. Units are typically specified in picoVolt/seconds (pV/s). FIGURE 7. GLITCH ENERGY #### **Setting Full Scale** The full scale output voltage is set by the Voltage Reference pin (27). The output voltage performance will vary as shown in Figure 2. The output structure of the HI20201 can handle down to a 75Ω load effectively. To drive a 50Ω load Figure 8 is suggested. Note the equivalent output load is $\sim 75\Omega$. FIGURE 8. HI20201 DRIVING A 50Ω LOAD #### Variable Attenuator Capability The HI20201 can be used in a multiplying mode with a variable frequency input on the V_{REF} pin. In order for the part to operate correctly a DC bias must be applied and the incoming AC signal should be coupled to the V_{REF} pin. See Figure 13 for the application circuit. The user must first adjust the DC reference voltage. The incoming signal must be attenuated so as not to exceed the maximum (+1.4V) and minimum (+0.5V) reference input. The typical output Small Signal Bandwidth is 14MHz. #### Integral Linearity The Integral Linearity is measured using the End Point method. In the End Point method the gain is adjusted. A line is then established from the zero point to the end point or Full Scale of the converter. All codes along the transfer curve must fall within an error band of 1 LSB of the line. Figure 10 shows the linearity test circuit. #### **Differential Linearity** The Differential Linearity is the difference from the ideal step. To guarantee monotonicity a maximum of 1 LSB differential error is allowed. When more than 1 LSB is specified the converter is considered to be missing codes. Figure 10 shows the linearity test circuit. #### **Clock Phase Relationship** The HI20201 is designed to be operated at very high speed (i.e., 160MHz). The clock lines should be driven with ECL100K logic for full performance. Any external data drivers and clock drivers should be terminated with 50Ω to minimize reflections and ringing. #### Internal Data Register The HI20201 incorporates a data register as shown in the Functional Block Diagram. This register is updated on the rising edge of the CLK line. The state of the Complement bit (COMPL) will determine the data coding. See Table 2. TABLE 2. INPUT CODING TABLE | | OUTPUT CODE | | |--------------|-------------|-----------| | INPUT CODE | COMPL = 1 | COMPL = 0 | | 00 0000 0000 | 0 | -1 | | 10 0000 0000 | -0.5 | -0.5 | | 11 1111 1111 | -1 | 0 | #### **Thermal Considerations** The temperature coefficient of the full scale output voltage and zero offset voltage depend on the load resistance connected to I_{OUT}. The larger the load resistor, the better (i.e., smaller) the temperature coefficient of the D/A. See Figure 3 in the performance curves section. #### **Noise Reduction** Digital switching noise must be minimized to guarantee system specifications. Since 1 LSB corresponds to 1mV for 10-bit resolution, care must be taken in the layout of a circuit board. Separate ground planes should be used for DV_{SS} and AV_{SS} . They should be connected back at the power supply. Separate power planes should be used for DV_{EE} and AV_{EE}. They should be decoupled with a $1\mu F$ tantalum capacitor and a ceramic $0.047\mu F$ capacitor positioned as close to the body of the IC as possible. # FIGURE 9. CURRENT CONSUMPTION, INPUT CURRENT AND OUTPUT RESISTANCE 1.023V, that is, to satisfy $V_O - V_{1023} = 1.023V$. | LINEA | LINEARITY ERRORS ARE MEASURED AS FOLLOWS | | | | | | | |-------|--|----|---------|----|-----|-------------------|--| | S1 | S2 | S3 | • • • • | S9 | S10 | D/A OUT | | | 0 | 0 | 0 | • • • • | 0 | 0 | V ₀ | | | 0 | 0 | 0 | • • • • | 0 | 1 | V ₁ | | | 0 | 0 | 0 | • • • • | 1 | 0 | V ₂ | | | | | | : | | | : | | | 1 | 1 | 1 | •••• | 1 | 1 | V ₁₀₂₃ | | | INTEGRAL
LINEARITY ERROR | DIFFERENTIAL
LINEARITY ERROR | |---------------------------------------|-------------------------------------| | V_0 | | | V ₁ | V ₁ - V ₀ | | V_2 | V ₂ - V ₁ | | V_4 | V ₄ - V ₃ | | V ₈ | V ₈ - V ₇ | | V ₁₆ | V ₁₆ - V ₁₅ | | V ₃₂ | V ₃₂ - V ₃₁ | | V ₆₄ | V ₆₄ - V ₆₃ | | V ₁₂₈ | V ₁₂₈ - V ₁₂₇ | | V ₁₉₂ | V ₁₉₂ - V ₁₉₁ | | : | : | | V ₉₆₀
V ₁₀₂₃ | V ₉₆₀ - V ₉₅₉ | Error at individual measurement points are calculated according to the following definition. $(V_{1023} - V_0)/1023 = V_{0(FS)}/1023 \equiv 1 \text{ LSB}.$ FIGURE 10. DIFFERENTIAL LINEARITY ERROR AND LINEARITY ERROR # Test Circuits (Continued) FIGURE 11. MAXIMUM CONVERSION RATE, RISE TIME, FALL TIME, PROPAGATION DELAY, SETUP TIME, HOLD TIME AND SETTLING TIME CIRCUIT #### **Measuring Settling Time** Settling time is measured as follows. The relationship between V and $V_{0(FS)}$ as shown in the D/A output waveform in Figure 12 is expressed as $$V = V_{0(FS)} (1 - e^{-t\tau}).$$ The settling time for respective accuracy of 10, 9 and 8-bit is specified as $V = 0.9995 V_{0(FS)}$ $V = 0.999 V_{0(FS)}$ $V = 0.999 V_{0(FS)}$ which results in the following: $t_S = 7.60\tau$ for 10-bit, $t_S = 6.93\tau$ for 9-bit, and $t_S = 6.24\tau$ for 8-bit, Rise time (t_r) and fall time (t_f) are defined as the time interval to slew from 10% to 90% of full scale voltage $(V_{0(FS)})$: $V = 0.1 V_{0(FS)}$ $V = 0.9 V_{0(FS)}$ and calculated as $t_r = t_f = 2.20\tau$. The settling time is obtained by combining these expressions: $t_S = 3.45t_r$ for 10-bit, $t_S = 3.15t_r$ for 9-bit, and $t_S = 6.24t_r$ for 8-bit FIGURE 12. D/A OUTPUT WAVEFORM # HI20201 Test Circuits (Continued) Adjust so that the voltage at point B becomes -1V with no AC input. 10 $k\Omega$ 0.1μF **0.047**μ → TO SCOPE mm **CLK** ∢ CLK ◀ FIGURE 13A. FIGURE 13B. FIGURE 13C. FIGURE 13. MULTIPLYING BANDWIDTH