

1.8V, MICROPOWER CMOS ZERO-DRIFT OPERATIONAL AMPLIFIERS

Description

The DIODES™ AS2333Q is a dual CMOS operational amplifier designed with chopping stabilization technique. This product can provide ultra-low input offset voltage (8µV typical) and near zero-drift over time and temperature. This technique also eliminates 1/f noise and the cross over distortion presented in most rail-to-rail input operational amplifiers. The high-precision, low quiescent current amplifier offers high-impedance inputs that have a common-mode range 100mV beyond the rails, and rail-to-rail output that swings within 50mV of the rails. Single or dual supplies as low as 1.8V (±0.9V) and up to 5.5V (±2.75V) can be used.

The device is optimized for low voltage single supply applications, especially for low-power high precision applications.

The AS2333Q is available in standard the 8-pin SO-8 package. The device is AEC-qualified for automotive applications and is temperature grade 1, which is specified for operation from -40°C to +125°C.

Features

Low Input Offset Voltage: 8µV (typ)

Zero Drift: 0.02µV/°C (typ)

• 0.01Hz to 10Hz Noise: 1.1μV_{PP}

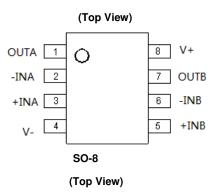
Low Quiescent Current: 12µA per Amplifier

Supply Voltage: 1.8V to 5.5VRail-to-Rail Input and Output

Bandwidth 350kHz

Slew Rate 0.12V/µs (typ)

SO-8 Package


Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)

Halogen and Antimony Free. "Green" Device (Note 3)

For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

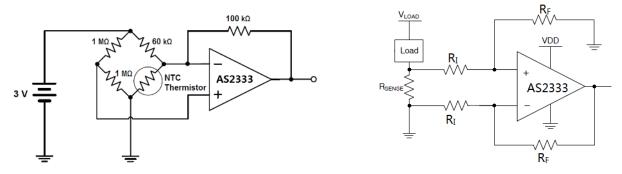
https://www.diodes.com/quality/product-definitions/

Pin Assignments

Applications

- · Battery-powered instruments
- Pumps
- Airbags
- Position sensors
- Vehicle occupant detection sensors

Notes:


- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

May 2022

© Diodes Incorporated

Typical Application

Thermistor Measurement

Low-Side Current Monitor

Pin Descriptions

Pin Number	Pin Name	I/O	Description
3	+INA	I	Noninverting input, channel A
5	+INB	1	Noninverting input, channel B
2	-INA	1	Inverting input, channel A
6	-INB	I	Inverting input, channel B
1	OUTA	0	Output, channel A
7	OUTB	0	Output, channel B
8	V+	_	Positive Power Supply Recommend to place a minimum 0.1µF decoupling capacitor between V+ pin and GND as close as possible.
4	V-	_	Negative Power Supply Single power supply application, it is normally tied to ground. Split power supply application, a minimum 0.1µF decouple capacitor will be recommended to place between V- pin and GND as close as possible.

Absolute Maximum Ratings (Note 4) (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Rating		Unit
V _S = V+ - V-	Supply Voltage Range	6.5	6.5	
V_{-IN} / V_{+IN}	Signal Input Terminals (Note 5)	V 0.3V to V+ + 0.3V		V
	Signal Input Terminals (Note 5)	-1 to	-1 to +1	
_	Output Short-Circuit (Note 6)	Contin	Continuous	
T _{STG}	Storage Temperature	-65 to +150		°C
TJ	Maximum Junction Temperature	+150		°C
T _{LEAD}	Lead Temperature (Soldering, 10 Seconds)	+26	60	°C
R _{θJA}	Junction-to-Ambient Thermal Resistance	SO-8	139	°C/W
R _{θJC}	Junction-to-Case Thermal Resistance	SO-8	25	°C/W
ESD HBM	Human Body Model ESD Protection	4		kV
ESD CDM	Charged-Device Model ESD Protection	1		kV

Notes:

^{4.} Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

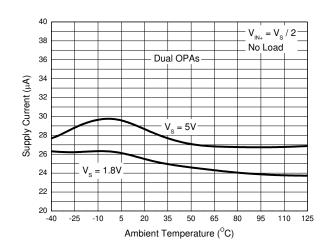
^{5.} Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current limited to 10mA or less.

^{6.} Short-circuit to ground.

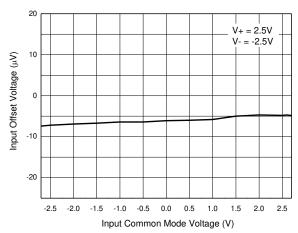
Recommended Operating Conditions (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Parameter Rating	
V _S = V+ - V-	Supply Voltage Range	1.8 to 5.5	V
T _A	Operating Ambient Temperature Range	-40 to +125	°C

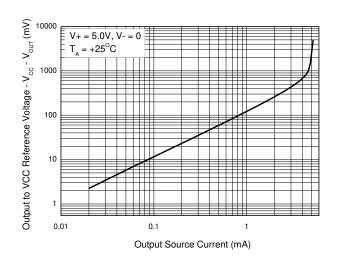
Electrical Characteristics (@ $T_A = +25^{\circ}C$, $V_S = 5.0V$, $R_L = 10k\Omega$ connected to V_S / 2, $V_{CM} = V_S$ / 2, and $V_{OUT} = V_S$ / 2, unless otherwise specified.)

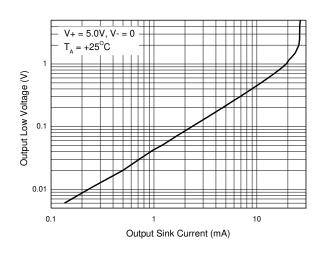

Symbol	Parameter	Cond	Conditions		Тур	Max	Unit
Offset Voltage							
Vos	Input Offset Voltage	V _S = 5V		_	8	22	μV
		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		_	0.02	0.1	μV/°C
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift (Note 7)	$T_A = -40^{\circ}C \text{ to } +12$		_	_	0.2	μV/°C
PSRR	Power-Supply Rejection Ratio	V _S = 1.8V to 5.5V +125°C		_	1	10	μV/V
_	Long-Term Stability	_			(Note 7)	•	μV
_	Channel Separation, DC	_		_	0.1	_	μV/V
Input Bias Cur	rrent						
	Input Bias Current	T _A = +25°C		_	±70	±200	рА
lΒ	Input bias Current	$T_A = -40^{\circ}C \text{ to } +12^{\circ}$	5°C	_	±400	_	
I _{OS}	Input Offset Current	_		_	±140	±400	
Noise							
\ /	Input Valtage Naige	f = 0.01Hz to 1Hz	f = 0.01Hz to 1Hz		0.3	_	
V _N	Input Voltage Noise	f = 0.1Hz to 10Hz		_	1.1	_	μV_{PP}
I _N	Input Current Noise	f = 10Hz		_	100	_	fA/√Hz
Input Voltage							
V _{CM}	Common-Mode Voltage Range	_	<u> </u>		_	(V+) + 0.1	V
CMRR	Common-Mode Rejection Ratio		$(V-) - 0.1V < V_{CM} < (V+) + 0.1V,$ $T_A = -40^{\circ}C$ to +125°C		120	_	dB
Input Capacita	ance					•	
	Differential	_	_		2	_	pF
_	Common-Mode			_	4	_	pF
Open-Loop Ga	ain					1	
A _{OL}	Open-Loop Voltage Gain	$(V-) + 100mV < V_0$ $R_L = 10k\Omega$, $T_A = -40^{\circ}C$ to +12			130	_	dB
Frequency Res	sponse	1.4 10 0 10 112					
GBW	Gain-Bandwidth Product	C _L = 100pF	C _L = 100pF		350	_	kHz
SR	Slew Rate	G = +1		_	0.12	_	V/µs
Output						1	
		Design Dell	T _A = +25°C	_	30	50	
	Voltage Output Swing from Rail	Positive Rail $R_L = 10k\Omega$	T _A = -40°C to +125°C	_	_	70	mV
_			T _A = +25°C	_	10	50	
		Negative Rail $R_L = 10k\Omega$	T _A = -40°C to +125°C	_	_	70	
_		Source Current		_	5	_	mA
I _{SC}	Short-Circuit Current		Sink Current		25	_	mA
_	Open-Loop Output Impedance	f = 350kHz, I _O = 0A		_	2	_	kΩ
Power Supply							
V _S	Specified Voltage Range	_				5.5	V
I _Q	Quiescent Current per Amplifier	I _O = 0A, T _A = +25°C		1.8	12	20	μA
	·	$I_0 = 0A$, $T_A = -40^\circ$	C to +125°C			28	1
ton	Turn-On Time	$V_S = 5V$		_	100	_	μs

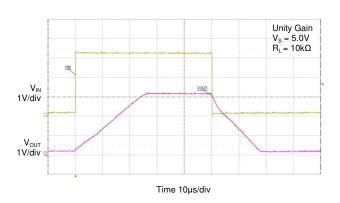
Note: 7. 300-hour life test at +150°C demonstrated randomly distributed variation of approximately 1µV. This parameter guaranteed by design and characterization, not by testing.

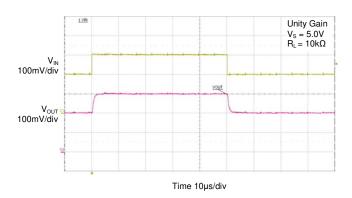


Typical Performance Characteristics

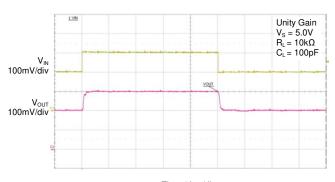

Supply Current vs. Temperature

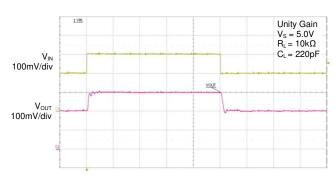

Input Offset Voltage vs. Input Common Mode Voltage


Output Characteristics-Sourcing Current

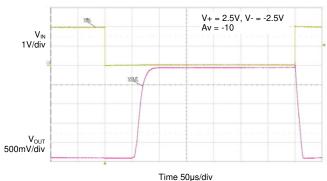

Output Characteristics-Sinking Current

Large Signal Response

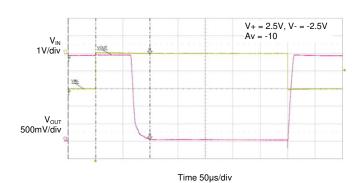

Small Signal Response


Typical Performance Characteristics (continued)

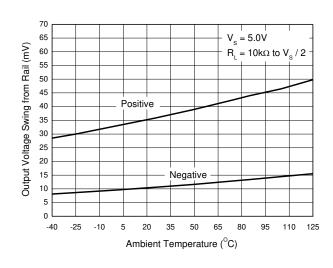
Small Signal Response

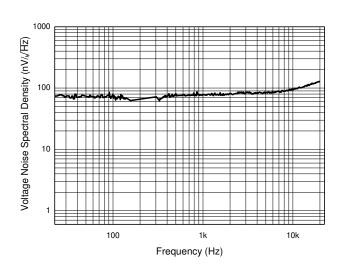

Time 10µs/div

Small Signal Response

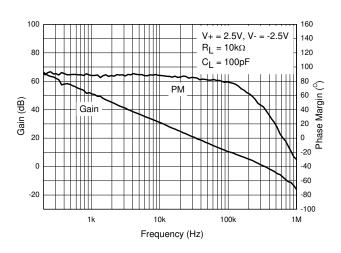


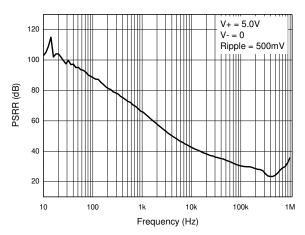
Time 10µs/div


Negative Overvoltage Response

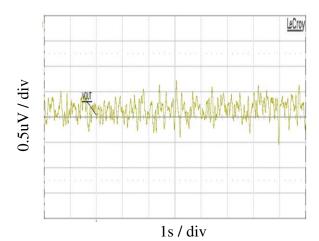

Positive Overvoltage Response

Output Voltage Swing from Rail


Voltage Noise Spectral Density



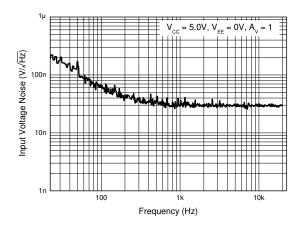
Typical Performance Characteristics (continued)


Frequency Response

Power Supply Rejection Ration vs. Frequency

0.1Hz to 10Hz Noise

Application Information


Overview

The AS2333Q is a low-power, zero-drift, high-precision, rail-to-rail input and output operational amplifier, which adopts chopper-stabilized function circuits to provide the advantage of minimizing input offset voltage and offset voltage drift over time and temperature. Its input common-mode voltage range extends 0.1V beyond the supply rails to allow for sensing near ground or system V_{DD} . The device operates from a single-supply voltage as low as 1.8V, is unity-gain stable, has no 1/f noise, and has good PSRR and CMRR performance. These features make the part suitable for a wide range of general-purpose applications, especially for low-power high-precision applications.

Low Input Referred Noise

The chopper-stabilized technique greatly reduces flicker noise. The zero-drift chopper-stabilized amplifiers are especially suited for accurate, high-gain amplification at lower frequencies. In general, they do not exhibit the higher bandwidth of linear operational amplifiers, and the location of their clock frequency establishes a practical frequency limit on signal fidelity. This makes performance at low frequencies especially important, and the chopper-stabilized architecture further contributes to low-frequency usefulness by eliminating the classic linear operational amplifier 1/f input voltage noise. Many high-gain sensor applications are at low frequencies, making zero-drift amplifiers a natural choice for this function.

Below plots compared conventional amplifier voltage noise density behavior and zero-drift amplifier's, this 1/f noise elimination in zero-drift amplifier allows the AS2333Q to have much lower noise at DC and low frequency compared to conventional low-noise amplifiers.

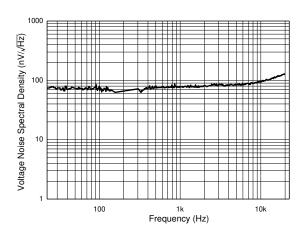


Figure 1. Input Voltage Noise in Conventional Amplifier

Figure 2. Input Voltage Noise in Zero-Drift Amplifier (AS2333Q)

Driving a Capacitive Load

The AS2333Q can directly drive 200pF in unity-gain without oscillation. The unity-gain follower is the most sensitive configuration to capacitive loading. Capacitive loading directly on the output terminal can decrease the device's phase margin leading to high frequency ringing or oscillation.

To drive a heavier capacitive load, the circuit in Figure 3 can be used. The resistor R_{NULL} and C_L form a pole to increase stability by adding more phase margin to the system. The bigger R_{NULL} resistor value the more stable V_{OUT} is. Figure 4 and Figure 5 are AS2333Q output pulse response waveforms with and without R_{NULL} 330 Ω for load conditions $C_L = 470pF$ and $R_L = 10k\Omega$.

Application Information (continued)

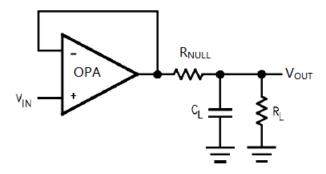


Figure 3. Capacitive Load with R_{NULL}

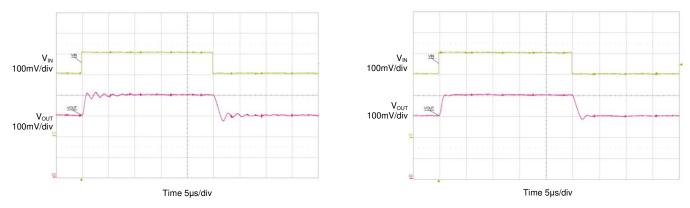


Figure 4. Test Result Without R_{NULL}

Figure 5. Test Result with $R_{\text{NULL}}\,330\Omega$

Reducing capacitive load ringing and overshoot, the RC snubber circuit also can be used, shown in Figure 6, it does allow the amplifier to drive larger values of capacitance while maintaining a minimum of overshoot and ringing. Figure 7 shows AS2333Q test result for capacitive load 470pF with snubber circuit.

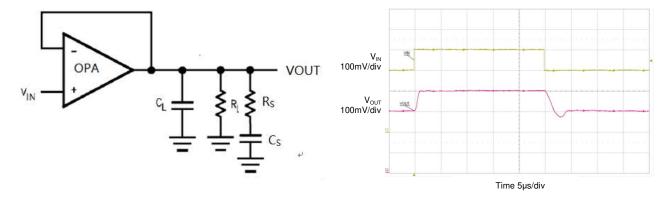


Figure 6. Circuit with Snubber Circuit

Figure 7. Test Result with Snubber Circuit

Application Information (continued)

Low-Side Current Monitor Application

Low-side current sensing is used to monitor the current through a load. This method can be used to detect overcurrent conditions and is often used in feedback control, as shown in Figure 8. A sense resistor is placed in series with the load to ground. Precision resistors are required for high accuracy and the resulting voltage drop is amplified using AS2333Q.

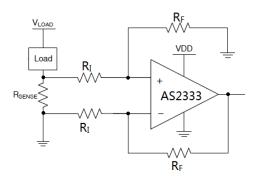


Figure 8. Low-Side Current Monitor Application

Differential Amplifier for Bridged Circuits

Sensors to measure strain, pressure, and temperature are often configured in a Wheatstone bridge circuit as shown in Figure 9. In the measurement, the voltage change that is produced is relatively small and needs to be amplified before going into an ADC. Precision amplifiers are recommended in these types of applications due to their high gain, low noise, and low offset voltage.

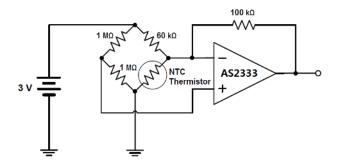
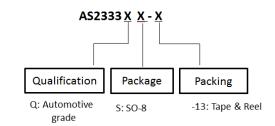



Figure 9. Bridge Circuit Amplification

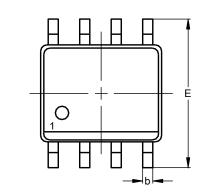
Ordering Information

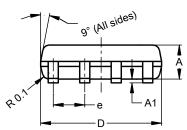
Part Number	Identification Code	Package	Tape and Reel		
Part Number			Quantity	Part Number Suffix	
AS2333QS-13	AS2333Q	SO-8	2500/Tape & Reel	-13	

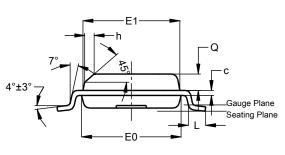
Note: 8. This part will be developed in future.

Marking Information

SO-8

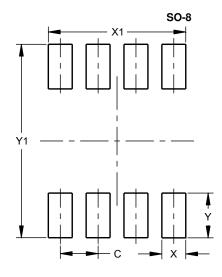



YY : Year : 19, 20, 21~ <u>WW</u> : Week : 01~52; 52 represents 52 and 53 week <u>XX</u> : Internal Code



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.



SO-8

SO-8				
Dim	Min	Max	Тур	
Α	1.40	1.50	1.45	
A 1	0.10	0.20	0.15	
b	0.30	0.50	0.40	
С	0.15	0.25	0.20	
D	4.85	4.95	4.90	
Е	5.90	6.10	6.00	
E1	3.80	3.90	3.85	
E0	3.85	3.95	3.90	
е	-		1.27	
h	-		0.35	
L	0.62	0.82	0.72	
Q	0.60	0.70	0.65	
All Dimensions in mm				

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
С	1.27
Х	0.802
X1	4.612
Υ	1.505
Y1	6.50

Mechanical Data

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208
- Weight: 0.075 grams (Approximate)

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

DIODES is a trademark of Diodes Incorporated in the United States and other countries. The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. © 2022 Diodes Incorporated. All Rights Reserved.

www.diodes.com