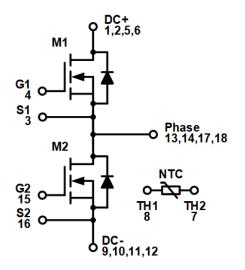
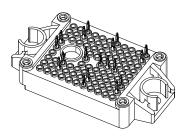
## onsemi

## Silicon Carbide (SiC) Module – EliteSiC, 40 mohm SiC M1 MOSFET, 1200 V, 2-PACK Half Bridge Topology, F1 Package

## Advance Information NXH040P120MNF1PTG, NXH040P120MNF1PG


The NXH040P120MNF1 is a power module containing an 40 m $\Omega$ /1200 V SiC MOSFET half bridge and a thermistor in an F1 package.

#### Features


- $40 \text{ m}\Omega/1200 \text{ V}$  SiC MOSFET Half Bridge
- Thermistor
- Options with Pre–applied Thermal Interface Material (TIM) and without Pre–applied TIM
- Press-fit Pins

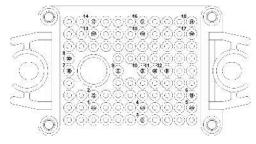
#### **Typical Applications**

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power



DATA SHEET




PIM18 33.8x42.5 (PRESS FIT) CASE 180BW

#### MARKING DIAGRAM



| NXH040P120MNF1PTG | = Specific Device Code      |
|-------------------|-----------------------------|
| NXH040P120MNF1PG  | = Specific Device Code      |
| AT                | = Assembly & Test Site Code |
| YYWW              | = Year and Work Week Code   |
|                   |                             |

#### PIN CONNECTIONS



See Pin Function Description for pin names

#### ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.



This document contains information on a new product. Specifications and information herein are subject to change without notice.

#### PIN FUNCTION DESCRIPTION

| Pin | Name  | Description                          |  |
|-----|-------|--------------------------------------|--|
| 1   | DC+   | DC Positive Bus connection           |  |
| 2   | DC+   | DC Positive Bus connection           |  |
| 3   | S1    | Q1 Kelvin Emitter (High side switch) |  |
| 4   | G1    | Q1 Gate (High side switch)           |  |
| 5   | DC+   | DC Positive Bus connection           |  |
| 6   | DC+   | DC Positive Bus connection           |  |
| 7   | TH2   | Thermistor Connection 2              |  |
| 8   | TH1   | Thermistor Connection 1              |  |
| 9   | DC-   | DC Negative Bus connection           |  |
| 10  | DC-   | DC Negative Bus connection           |  |
| 11  | DC-   | DC Negative Bus connection           |  |
| 12  | DC-   | DC Negative Bus connection           |  |
| 13  | PHASE | Center point of half bridge          |  |
| 14  | PHASE | Center point of half bridge          |  |
| 15  | G2    | Q2 Gate (Low side switch)            |  |
| 16  | S2    | Q2 Kelvin Emitter (High side switch) |  |
| 17  | PHASE | Center point of half bridge          |  |
| 18  | PHASE | Center point of half bridge          |  |

#### **MAXIMUM RATINGS**

| Rating                                                               | Symbol              | Value      | Unit             |
|----------------------------------------------------------------------|---------------------|------------|------------------|
| SIC MOSFET                                                           |                     |            |                  |
| Drain-Source Voltage                                                 | V <sub>DSS</sub>    | 1200       | V                |
| Gate-Source Voltage                                                  | V <sub>GS</sub>     | +25/-15    | V                |
| Continuous Drain Current @ $T_C = 80^{\circ}C (T_J = 175^{\circ}C)$  | ۱ <sub>D</sub>      | 30         | А                |
| Pulsed Drain Current ( $T_J = 175^{\circ}C$ )                        | I <sub>Dpulse</sub> | 90         | А                |
| Maximum Power Dissipation @ $T_C = 80^{\circ}C (T_J = 175^{\circ}C)$ | P <sub>tot</sub>    | 113        | W                |
| Minimum Operating Junction Temperature                               | T <sub>JMIN</sub>   | -40        | °C               |
| Maximum Operating Junction Temperature                               | T <sub>JMAX</sub>   | 175        | °C               |
| THERMAL PROPERTIES                                                   |                     |            |                  |
| Storage Temperature Range                                            | T <sub>stg</sub>    | -40 to 150 | °C               |
| INSULATION PROPERTIES                                                |                     |            |                  |
| Isolation Test Voltage, t = 1 s, 60 Hz                               | V <sub>is</sub>     | 4800       | V <sub>RMS</sub> |
| Creepage Distance                                                    |                     | 12.7       | mm               |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

#### **RECOMMENDED OPERATING RANGES**

| Rating                                | Symbol | Min | Max | Unit |
|---------------------------------------|--------|-----|-----|------|
| Module Operating Junction Temperature | TJ     | -40 | 150 | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise noted)

| Parameter                                | Test Conditions                                                   | Symbol                | Min  | Тур    | Max | Unit |
|------------------------------------------|-------------------------------------------------------------------|-----------------------|------|--------|-----|------|
| SIC MOSFET CHARACTERISTICS               |                                                                   |                       |      |        |     |      |
| Drain–Source Breakdown Voltage           | $V_{GS} = 0 \text{ V}, \text{ I}_{D} = 200 \ \mu\text{A}$         | V <sub>(BR)DSS</sub>  | 1200 | -      | _   | V    |
| Zero Gate Voltage Drain Current          | $V_{GS} = 0 \text{ V}, V_{DS} = 1200 \text{ V}$                   | I <sub>DSS</sub>      | -    | -      | 100 | μΑ   |
| Drain–Source On Resistance               | $V_{GS}$ = 20 V, I <sub>D</sub> = 25 A, T <sub>J</sub> = 25°C     | R <sub>DS(ON)</sub>   | -    | 42     | 56  | mΩ   |
|                                          | $V_{GS}$ = 20 V, I <sub>D</sub> = 25 A, T <sub>J</sub> = 125°C    | 1                     | -    | 55     | _   | 1    |
|                                          | $V_{GS}$ = 20 V, I <sub>D</sub> = 25 A, T <sub>J</sub> = 150°C    | 1                     | _    | 61     | _   | 1    |
| Gate-Source Threshold Voltage            | $V_{GS} = V_{DS}$ , $I_D = 10 \text{ mA}$                         | V <sub>GS(TH)</sub>   | 1.8  | 2.81   | 4.3 | V    |
| Gate Leakage Current                     | $V_{GS} = -10/20 \text{ V}, V_{DS} = 0 \text{ V}$                 | I <sub>GSS</sub>      | -250 | -      | 250 | nA   |
| Internal Gate Resistance                 |                                                                   | R <sub>G</sub>        | _    | 2.2    | _   | Ω    |
| Input Capacitance                        | $V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ | C <sub>ISS</sub>      | -    | 1505   | _   | pF   |
| Reverse Transfer Capacitance             |                                                                   | C <sub>RSS</sub>      | _    | 12     | _   | 1    |
| Output Capacitance                       |                                                                   | C <sub>OSS</sub>      | _    | 159    | _   | 1    |
| C <sub>OSS</sub> Stored Energy           | $V_{DS} = 0 V$ to 800 V, $V_{GS} = 0 V$                           | E <sub>OSS</sub>      | _    | 66     | _   | μJ   |
| Total Gate Charge                        | $V_{DS}$ = 800 V, $V_{GS}$ = 20 V, $I_{D}$ = 25 A                 | Q <sub>G(TOTAL)</sub> | _    | 122.1  | _   | nC   |
| Gate-Source Charge                       |                                                                   | Q <sub>GS</sub>       | _    | 32.2   | _   | nC   |
| Gate–Drain Charge                        |                                                                   | Q <sub>GD</sub>       | _    | 34.7   | _   | nC   |
| Turn-on Delay Time                       | $T_J = 25^{\circ}C$                                               | t <sub>d(on)</sub>    | _    | 43.3   | _   | ns   |
| Rise Time                                | $V_{DS} = 600 \text{ V}, \text{ I}_{D} = 25 \text{ A}$            | t <sub>r</sub>        | _    | 6.35   | _   | -    |
| Turn-off Delay Time                      | $V_{GS}$ = -5 V/18 V, $R_{G}$ = TBD $\Omega$                      | t <sub>d(off)</sub>   | _    | 97     | _   | 1    |
| Fall Time                                |                                                                   | t <sub>f</sub>        | _    | 6.5    | -   | 1    |
| Turn-on Switching Loss per Pulse         | •                                                                 | E <sub>ON</sub>       | _    | 0.13   | _   | mJ   |
| Turn off Switching Loss per Pulse        |                                                                   | E <sub>OFF</sub>      | _    | 0.05   | _   | 1    |
| Turn–on Delay Time                       | T <sub>J</sub> = 150°C                                            | t <sub>d(on)</sub>    | _    | 41.3   | _   | ns   |
| Rise Time                                | $V_{DS} = 6 V, I_{D} = 25 A$                                      | t <sub>r</sub>        | _    | 5.9    | _   | 1    |
| Turn–off Delay Time                      | $V_{GS}$ = -5 V/18 V, $R_{G}$ = TBD $\Omega$                      | t <sub>d(off)</sub>   | _    | 102    | _   | -    |
| Fall Time                                |                                                                   | tf                    | _    | 5.5    | _   | -    |
| Turn-on Switching Loss per Pulse         |                                                                   | E <sub>ON</sub>       | _    | 0.18   | -   | mJ   |
| Turn off Switching Loss per Pulse        |                                                                   | E <sub>OFF</sub>      | _    | 0.05   | _   | 1    |
| Diode Forward Voltage                    | I <sub>D</sub> = 25 A, T <sub>J</sub> = 25°C                      | V <sub>SD</sub>       | _    | 3.97   | 6   | V    |
|                                          | I <sub>D</sub> = 25 A, T <sub>J</sub> = 150°C                     | 1                     | _    | 3.44   | -   | 1    |
| Thermal Resistance – Chip-to-case        | M1, M2                                                            | R <sub>thJC</sub>     | _    | 0.8356 | _   | °C/W |
| Thermal Resistance –<br>Chip–to–heatsink | Thermal grease, Thickness =<br>2 Mil _2%, A = 2.8 W/mK            | R <sub>thJH</sub>     | -    | 1.291  | -   | °C/W |
| THERMISTOR CHARACTERISTICS               |                                                                   | 1 1                   |      |        |     |      |
| Nominal Resistance                       | T = 25°C                                                          | R <sub>25</sub>       | _    | 5      | _   | kΩ   |
| Nominal Resistance                       | T = 100°C                                                         | R <sub>100</sub>      | _    | 457    | _   | Ω    |
| Deviation of R25                         |                                                                   | $\Delta R/R$          | -3   | -      | 3   | %    |
| Power Dissipation                        |                                                                   | PD                    | _    | 50     | _   | mW   |
| Power Dissipation Constant               |                                                                   |                       | _    | 5      | _   | mW/K |
| B-value                                  | B(25/50), tolerance ±3%                                           |                       | _    | 3375   | _   | К    |
| B-value                                  | B(25/100), tolerance ±3%                                          |                       | _    | 3455   | _   | К    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### ORDERING INFORMATION

| Orderable Part Number | Marking           | Package                                                                                                                  | Shipping                |
|-----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|
| NXH040P120MNF1PG      | NXH040P120MNF1PG  | F1–2PACK: Case 180BW<br>Press–fit Pins<br>(Pb–Free and Halide–Free)                                                      | 28 Units / Blister Tray |
| NXH040P120MNF1PTG     | NXH040P120MNF1PTG | F1–2PACK: Case 180BW<br>Press–fit Pins with pre–applied<br>thermal interface material (TIM)<br>(Pb–Free and Halide–Free) | 28 Units / Blister Tray |

#### **TYPICAL CHARACTERISTICS**

SIC MOSFET (M1, M2)

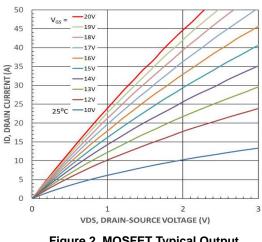



Figure 2. MOSFET Typical Output Characteristics

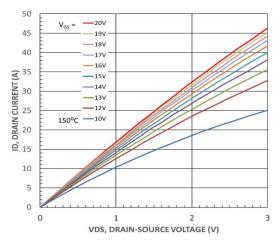



Figure 4. MOSFET Typical Output Characteristics

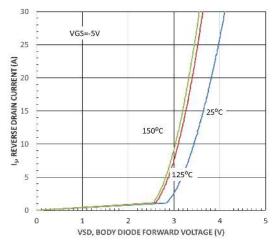



Figure 6. Body Diode Forward Characteristics

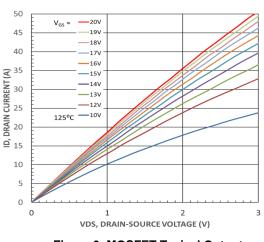
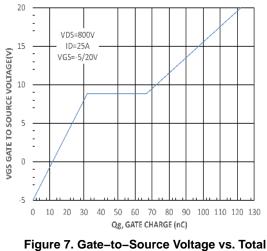




Figure 3. MOSFET Typical Output Characteristics



Figure 5. MOSFET Typical Transfer Characteristics



gure 7. Gate-to-Source Voltage vs. Tota Charge

TYPICAL CHARACTERISTICS SIC MOSFET (M1, M2)

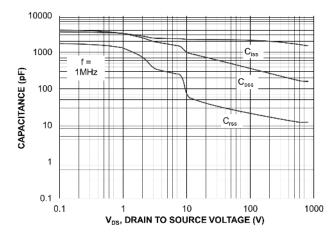



Figure 8. Capacitance vs. Drain-to-Source Voltage

TYPICAL CHARACTERISTICS M1/M2 MOSFET SWITCHING CHARACTERISTICS

0.6 25°C V<sub>DS</sub> = 600 V 125°C V<sub>GS</sub> = + 18 V/-5 V 0.5 . . . . . 150°C =2.7Ω 0.4 E<sub>on</sub>(mJ) 0.3 0.2 0.1 0.0 L 20 40 60 80 100  $I_D(A)$ 

Figure 9. Typical Switching Loss Eon vs. ID

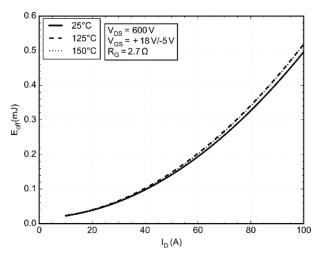



Figure 11. Typical Switching Loss Eoff vs. ID

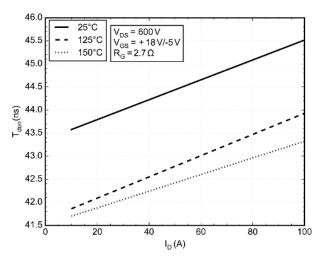



Figure 13. Typical Turn-On Switching Tdon vs. ID

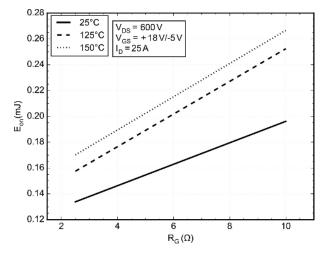



Figure 10. Typical Switching Loss Eon vs. R<sub>G</sub>

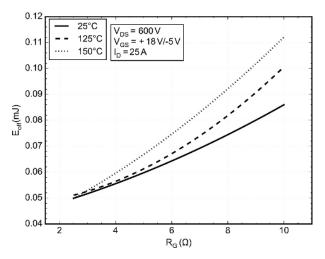
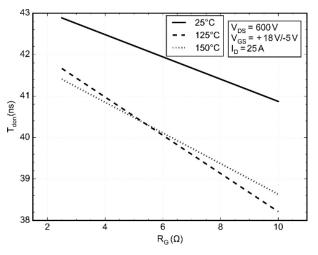




Figure 12. Typical Switching Loss Eoff vs. R<sub>G</sub>





TYPICAL CHARACTERISTICS

M1/M2 MOSFET SWITCHING CHARACTERISTICS

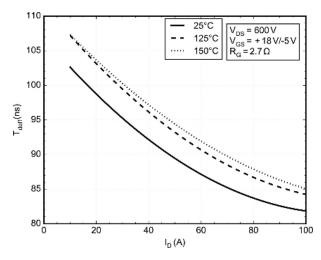



Figure 15. Typical Turn–Off Switching Tdoff vs. ID

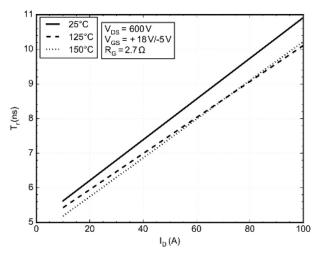



Figure 17. Typical Turn-On Switching Tr vs. ID

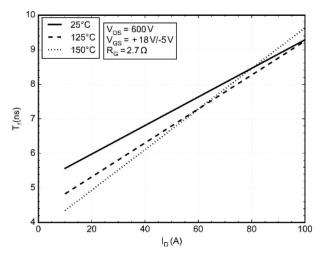



Figure 19. Typical Turn–Off Switching Tf vs. ID

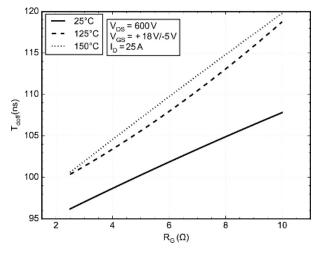



Figure 16. Typical Turn–Off Switching Tdoff vs. R<sub>G</sub>

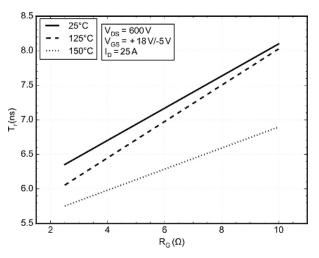
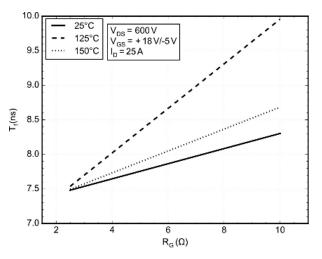
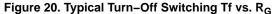
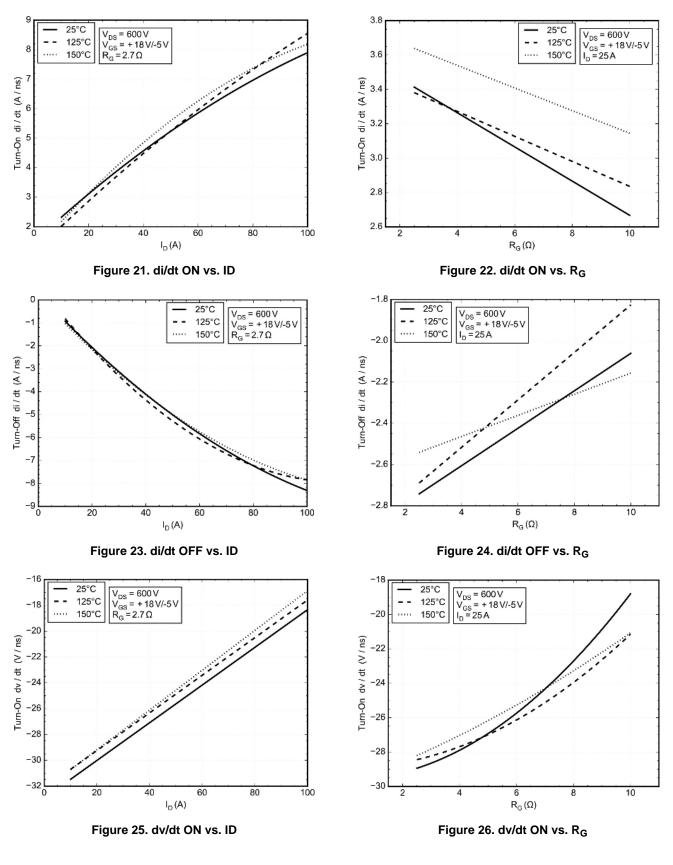






Figure 18. Typical Turn–On Switching Tr vs. R<sub>G</sub>





TYPICAL CHARACTERISTICS M1/M2 MOSFET SWITCHING CHARACTERISTICS



TYPICAL CHARACTERISTICS M1/M2 MOSFET SWITCHING CHARACTERISTICS

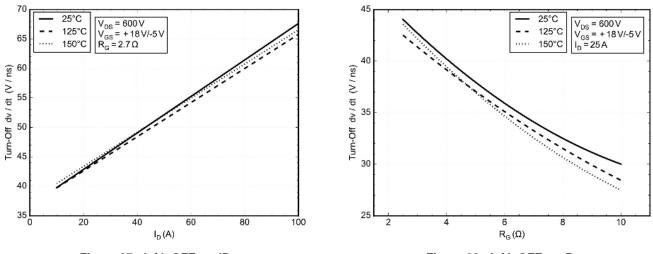



Figure 27. dv/dt OFF vs. ID

Figure 28. dv/dt OFF vs.  $R_G$ 

TYPICAL CHARACTERISTICS SIC MOSFET (M1, M2)

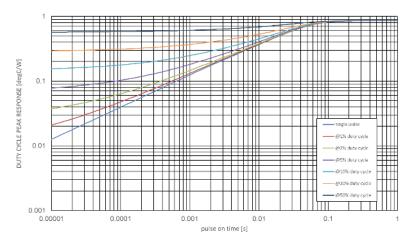
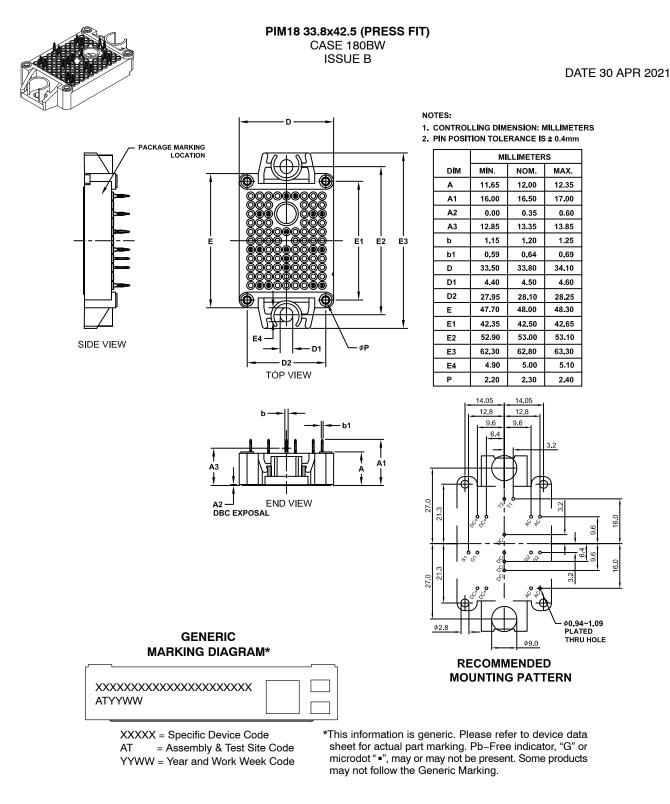



Figure 29. SiC MOSFET Junction-to-Case Transient Thermal Impedance

| Foster    | M1        |            | M2        |            |
|-----------|-----------|------------|-----------|------------|
| Element # | Rth (K/W) | Cth (Ws/K) | Rth (K/W) | Cth (Ws/K) |
| 1         | 0.051996  | 0.002404   | 0.054881  | 0.002284   |
| 2         | 0.046504  | 0.020373   | 0.010554  | 0.082427   |
| 3         | 0.008903  | 0.221087   | 0.064895  | 0.028973   |
| 4         | 0.165341  | 0.039489   | 0.094862  | 0.058574   |
| 5         | 0.600991  | 0.065660   | 0.610507  | 0.052914   |


#### Table 1. FOSTER NETWORKS – M1, M2

#### Table 2. CAUER NETWORKS – M1, M2

| Cauer     | M1        |            | M2        |            |
|-----------|-----------|------------|-----------|------------|
| Element # | Rth (K/W) | Cth (Ws/K) | Rth (K/W) | Cth (Ws/K) |
| 1         | 0.076857  | 0.001961   | 0.076754  | 0.001921   |
| 2         | 0.141063  | 0.010485   | 0.182594  | 0.011596   |
| 3         | 0.274014  | 0.018050   | 0.136313  | 0.018196   |
| 4         | 0.113973  | 0.038620   | 0.215815  | 0.019717   |
| 5         | 0.267827  | 0.046224   | 0.224225  | 0.049799   |

#### MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

# onsemí



| DOCUMENT NUMBER:                                                                                                                                                       | 98AON19723H Electronic versions are uncontrolled except when accessed directly from the Document Repository.   Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |             |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|--|--|
| DESCRIPTION:                                                                                                                                                           | PIM18 33.8x42.5 (PRESS FIT)                                                                                                                                                                    |  | PAGE 1 OF 1 |  |  |
| ansami and OOSEM) are trademarks of Semiconductor Components Industries LLC dia onsemi or its subsidiaries in the United States and/or other countries onsemi reserves |                                                                                                                                                                                                |  |             |  |  |

onsem and OTISCITIL are trademarks or Semiconductor Components industries, LLC doa onsemi or its subsidiaries in the United States and/or other countries. Onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales