

TMR9002

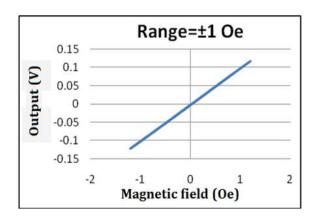
Ultra High Sensitivity, Ultra Low Noise TMR linear sensor

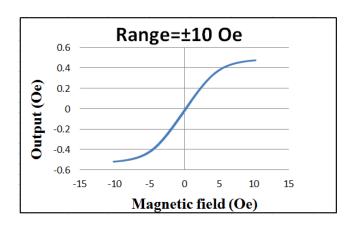
General Description

The TMR9002 linear sensor utilizes a unique push-pull Wheatstone bridge composed of four TMR sensor elements. The TMR9002 is assembled in a 6mm \times 5mm \times 1.5mm SOP8 package.

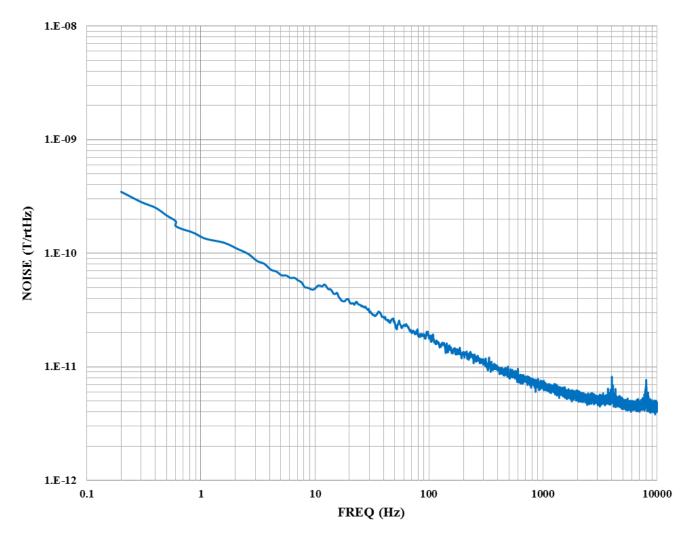
Features and Benefits

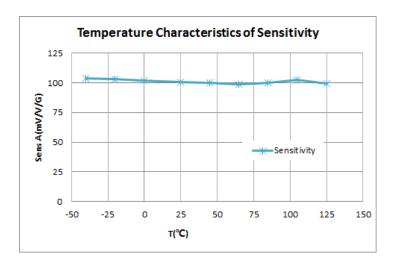
- Tunneling Magnetoresistance (TMR) Technology
- Ultra High Sensitivity(~100mV/V/Oe)
- Ultra Low Noise Spectral Density (150pT/√Hz@1Hz)
- Very Low Power Consumption
- Excellent Thermal Stability
- Low Hysteresis
- Compatible with Wide Range of Supply Voltages
- No need for set/reset calibration


Applications

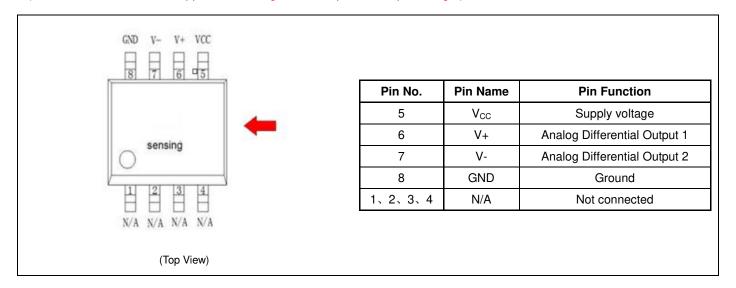

- Weak Magnetic Field Sensing
- Current Sensors
- Position and Displacement Sensing
- Bio-medical Sensing
- Magnetic Communication

Transfer Curve


The following figure shows the response of the TMR9002 to an applied magnetic field in the range of ± 1 Oe and ± 10 Oe when the TMR9002 is biased at 1 V. The following specifications are calculated over an analysis range of ± 1 Oe.


Sensor Noise

The following figure illustrates the Power SpectralDensity (PSD) of the TMR9002 self noise (M). The 1/fnoise is approximately 150 pT/ $\sqrt{\text{Hz}}$ @ 1Hz, and the white noise is approximately 4.5pT/ $\sqrt{\text{Hz}}$ @ 10kHz.


Sensitivity temperature characteristic curve.

The figure below shows the temperature characteristic curve of the TMR9002 sensor (test temperature range: -40, c ~125)

Pin Configuration

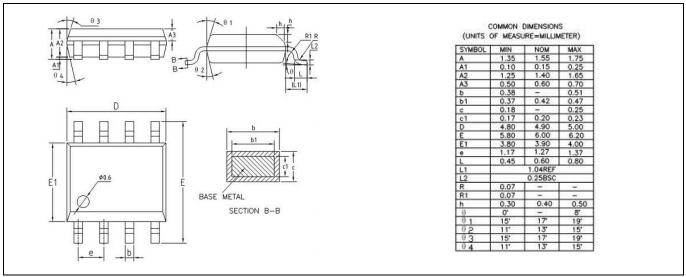
(Arrow indicates direction of applied field that generates a positive output voltage.)

Absolute Maximum Ratings

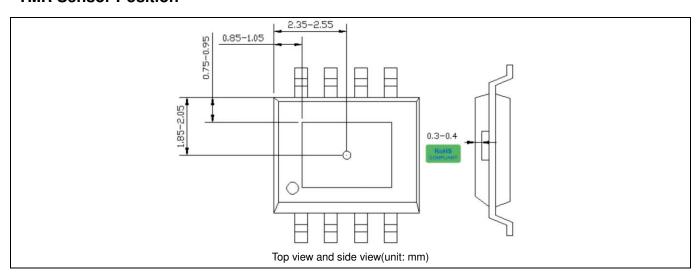
Parameter	Symbol	Limit	Unit	
Supply Voltage	V _{CC}	3	V	
Reverse Supply Voltage	V_{RCC}	3	V	
Max Exposed Field	H _E	4000	Oe ⁽¹⁾	
ESD Voltage	V_{ESD}	4000	V	
Operating Temperature	T _A	-40~125	°C	
Storage Temperature	T _{stg}	-50 ~150	°C	

Specification (V_{CC}=1.0V, T_A=25°C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	Normal Operating		1	3	V
Supply Current	Icc	Output Open		20 ⁽²⁾		μA
Resistance	R			50		kOhm
Sensitivity	SEN	Fit ±10e		100		mV/V/Oe
Saturation Field	H _{sat}			±8		Oe
Non -Linearity	NONL	Fit ±10e		0.5		%FS
Offset Voltage	V _{offset}			15		mV/V
Hysteresis	Hys	Fit ±10e		0.02		Oe
Resistance temperature coefficient	TCR	-40 ºc ~125 ºc		-541		PPM/ºc
Sensitivity temperature coefficient.	TCS	-40 ºc ~125 ºc		-287		PPM/ºc
Self Noise	N _i	@1Hz		150		pT/√Hz


Note:

^{(1) 1} Oe (Oersted) = 1 Gauss in air = 0.1 millitesla = 79.8 A/m.


⁽²⁾ ICC= VCC/R, lccwill vary under different R in practice and it can be customized accordingly $_{\circ}$

Package Information

SOP8 package drawing

TMR Sensor Position

MultiDimension Technology Co., Ltd.

Address:No.7 Guangdong Road, Zhangjiagang Free Trade Zone, Jiangsu, 215634, China

Web: www.dowaytech.com/en Email: info@dowaytech.com

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.