

Confidential Degree : Confidential

LOT Number: 101000200554JG

Specification of MEMS Microphone

(RoHS Compliance & Halogen Free)

Customer Name:

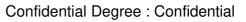
Customer Model:

Goermicro Model: S08OB381-045

Tel: +86 536 3051234

E- Mail : <u>goermicro@goermicro.com</u> Website: <u>http://www.goermicro.com</u>

Address: No.268 Dongfang Road, High-Tech Industry Development District, Weifang, Shandong, P.R.C.



1 Security Warning

The information contained in this document is the exclusive property of Goermicro Inc. and should not be disclosed to any third party without the written consent of Goermicro Inc.

2 Publication History

Version	Description	Date	Author	Approved
1.0	New Design	2019.07.06	Jasne	Daniel
2.0	Update the Logo to Goermicro	2021.08.25	Enoch	Roy
				,

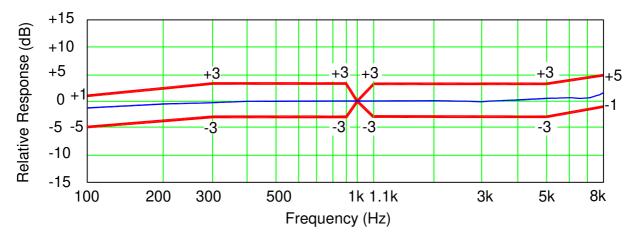
Contents

1	Introduction —————————————————————	4
2	Test Condition ————————————————————————————————————	4
3	Acoustic and Electrical Characteristics——————————————————————————————————	4
4	Frequency Response Curve	4
5	Measurement Circuit ————————————————————————————————————	5
6	Test Setup Drawing	5
7	Mechanical Characteristics — — — — — — — — — — — — — — — — — — —	6
	7.1 Appearance Drawing — — — — — — — — — — — — — — — — — — —	6
8	Reliability Condition	7
	8.1 Vibration Test — — — — — — — — — — — — — — — — — — —	7 7 7 7 7 7 7
9	Package	8 8 9 9
10	9.4 Packing Explain — — — — — — — — — — — — — — — — — — —	10
	Land Pattern Recommendation — — — — — — — — — — — — — — — — — — —	
10		11
12		12
	12.1 Soldering Machine Condition — — — — — — — — — — — — — — — — — — —	12 12 13
13	Cautions When Using MEMS MIC————————————————————————————————————	14 14 14 14
14	Output Inspection Standard	12

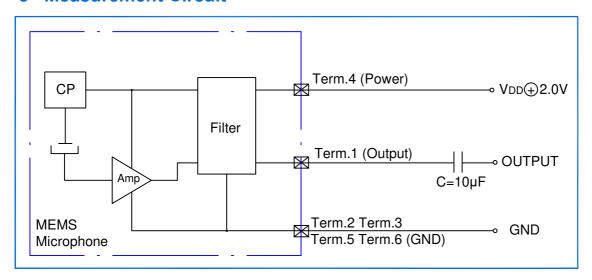
1 Introduction

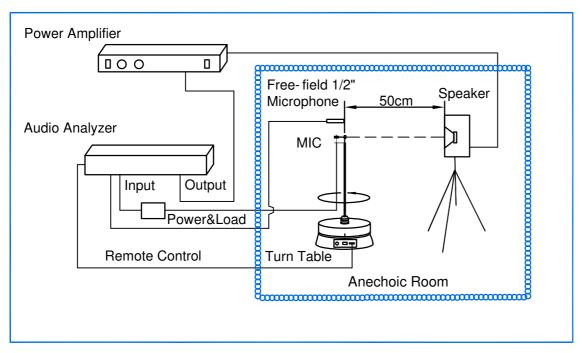
MEMS MIC which is able to endure reflow temperature up to $260\,^{\circ}$ C for 50 seconds can be used in SMT process. It is widely used in telecommunication and electronics device such as mobile phone, MP3, PDAs etc.

2 Test Condition (Vs=2.0V, L=50cm)

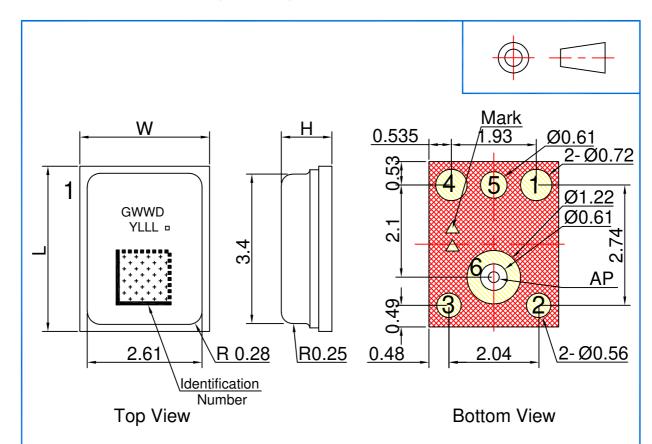

StandardConditions (As IEC 60268-4)	Temperature	Humidity	Air pressure
Environment Conditions	+15℃~+35℃	25%R.H.~75%R.H.	86kPa∼106kPa
Basic Test Conditions	+20°C ± 2°C	60%R.H.∼70%R.H.	86kPa \sim 106kPa

3 Acoustic and Electrical Characteristics


Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Voltage Range	Vs		1.5		3.6	V
Current Consumption	I	Vs=2.0V	50		150	μА
Sensitivity	S	f=1kHz, Pin=1Pa	-39	-38	-37	dBV
S/N Ratio	SNR	f=1kHz, Pin=1Pa A-Weighted	60	63		dB
Total Harmonic Distortion	THD	94dB SPL@1kHz		0.2	0.5	%
Acoustic Overload Point	AOP	10%THD@1kHz	120	126		dB SPL
Power Supply Rejection	PSR	100mVpp square wave@217Hz, Vs=2.0V, A-Weighted		-96		dBV
Output Impedance	Zout	f=1kHz, Pin=1Pa			400	Ω
Decreasing Voltage Characteristic	ΔS	f=1kHz, Pin=1Pa Vs=3.61.5V	No Change			
Directivity	D(θ)		Omnidirectional			
Load Resistor	R∟		10		100	kΩ
Load Capacitance	C∟				150	pF
V _{DD} ramp up time	tvDDup	V _{DD} reaches its final value within +/-10% tolerance	0.1		2	ms


4 Frequency Response Curve and Limits

5 Measurement Circuit


6 Test Setup Drawing

7 Mechanical Characteristics

7.1 Appearance Drawing (Unit: mm)

Pin Output				
Pin#	Function			
1	Output			
23	GND			
5 6	GND			
4	Power			

Item	Dimension	Tol.(±)	Units
Length	3.76	0.10	mm
Width	3.00	0.10	mm
Height	1.10	0.10	mm
Acoustic Port (AP)	Ø0.25	0.05	mm

Note: 1. Tolerance ±0.10mm unless otherwise specified.

2. Identification Number Convention: Job Identification Number.

Identification G G G G G Number Y L L L Y:Ye

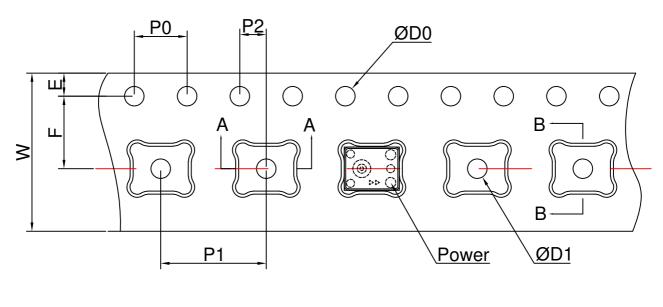
G: Goermicro www:\

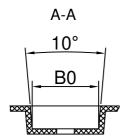
www:Week D:Day

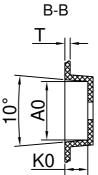
2D Code

7.2 Weight

The weight of the MIC is Less than 0.04g.


8 Reliability Condition

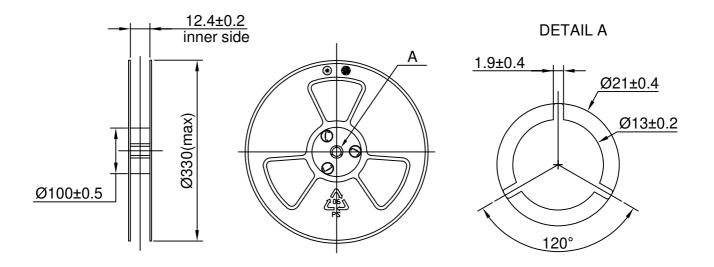

8.1 Vibration Test	To be no interference in operation after vibrations, 4 cycles, from 20 to 2,000Hz in each direction(X,Y,Z), 48 minutes, using peak acceleration of 20g, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C \sim +35°C, R.H.25% \sim 75%)
8.2 Drop Test	To be no interference in operation after dropped to 1.0cm steel plate 12 times from 1.5 meter height in state of JIG, JIG weight of 100g, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C $^{\circ}$ +35 $^{\circ}$ C, R.H.25 $^{\circ}$ C $^{\circ}$ 75%)
8.3 Temperature Test	a) After exposure at +125°C for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C~+35°C, R.H.25%~75%) b) After exposure at -40°C for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C~+35°C, R.H.25%~75%)
8.4 Humidity Test	After exposure at +85°C and 85% relative humidity for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C \sim +35°C, R.H.25% \sim 75%)
8.5 Mechanical Shock Test	Then subject samples to three one-half sine shock pulses (3000 g for 0.3 milliseconds) in each direction (for six axes in total) along each of the three mutually perpendicular axes for a total of 18 shocks, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C +35 $^{\circ}$ C, R.H.25% $^{\circ}$ C75%)
8.6 Thermal Shock Test	After exposure at -40°C for 30 minutes, at +125°C for 30 minutes (change time 20 seconds) 32 cycles, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C \sim +35°C, R.H.25% \sim 75%)
8.7 Reflow Test	Adopt the reflow curve of item 12.3, after three reflows, sensitivity should vary within $\pm 2dB$ from initial sensitivity. (The measurement to be done after 2 hours of conditioning at $\pm 15^{\circ}$ C $\pm 435^{\circ}$ C, R.H.25% $\pm 75\%$)
8.8 Electrostatic Discharge Test	Under C=150pF, R=330ohm. Tested to $\pm 2kV$ contact to I/O terminals.10 times. Grounding. Sensitivity should vary within $\pm 3dB$ from initial sensitivity. (The measurement to be done after 2 hours of conditioning at $\pm 15^{\circ}C \sim \pm 35^{\circ}C$, R.H.25% $\sim 75\%$)



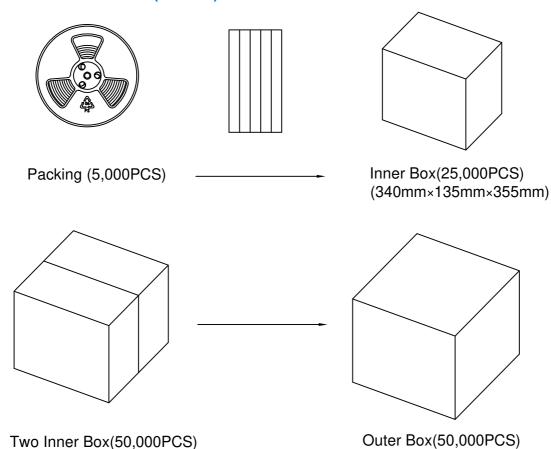
9 Package

9.1 Tape Specification

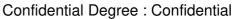
The Dimensions as Follows:


ITEM	W	E	F	ØD0	ØD1
DIM(mm)	12.0±0.30	1.75±0.10	5.5±0.05	1.50±0.1	1.0 MIN
ITEM	P0	10P0	P1	A0	В0
DIM(mm)	4.00±0.10	40.00±0.20	8.00±0.10	3.28±0.10	4.03±0.10
ITEM	K0	P2	Т		
DIM(mm)	1.30±0.10	2.00±0.05	0.30±0.05		

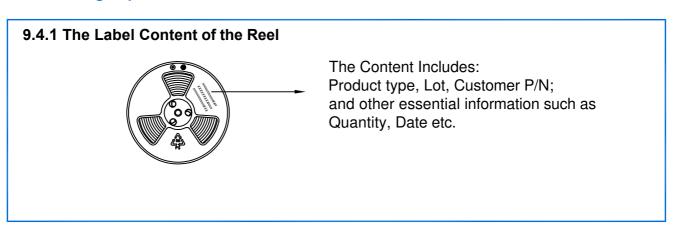
9.2 Reel Dimension

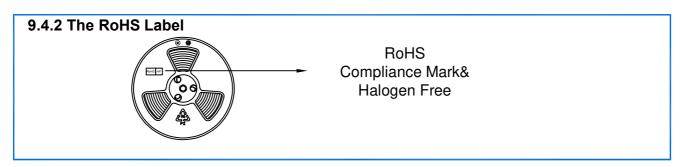

7" reel for sample stage

13" reel will be provided for the mass production stage

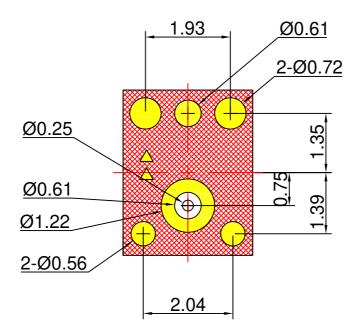

The following is 13" reel dimensions (unit:mm)

9.3 The Content of Box(13" reel)

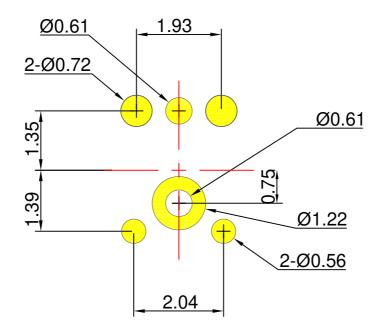



(370mm×300mm×390mm)

9.4 Packing Explain



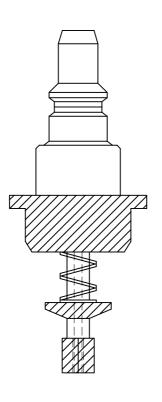
10 Storage and Transportation

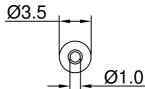

- 10.1 Keep MEMS MIC in warehouse with less than 75% humidity and without sudden temperature change, acid air, any other harmful air or strong magnetic field. Recommend storage period no more than 1 year and floor life(out of bag) at factory no more than 4 weeks.
- 10.2 The MEMS MIC with normal pack can be transported by ordinary conveyances. Please protect products against moist, shock, sunburn and pressure during transportation.
- 10.3 Storage Temperature Range: $-40^{\circ}\text{C} \sim +70^{\circ}\text{C}$ (Microphone units with package)
- 10.4 Operating Temperature Range: -40°C ~+100°C

11 Land Pattern Recommendation

11.1 The Pattern of MIC Pad(Unit:mm)

11.2 Recommended Soldering Surface Land Pattern(Unit:mm)

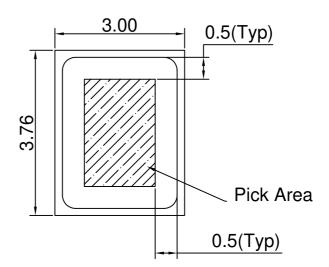


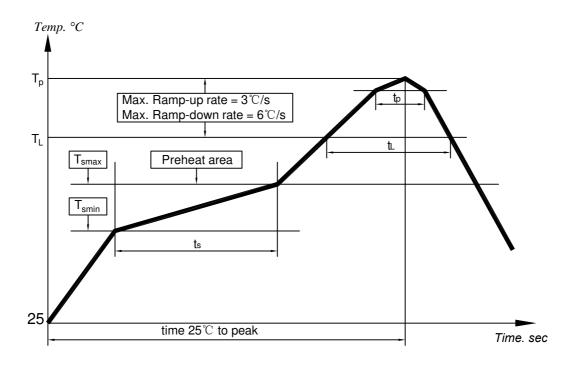

12 Soldering Recommendation

12.1 Soldering Machine Condition

Temperature Control	8 zones
Heater Type	Hot Air
Solder Type	Lead-free

12.2 The Drawing and Dimension of Nozzle




Inside Diameter: Ø1.0mm; Acoustic Port: Ø0.25mm;

Vacuum Degree of Nozzle: -80~-90kPa;

Please don't vacuum over the acoustic port directly. Please don't blow the acoustic port directly.

12.3 Reflow Profile

Key Features of The Profile:

Average Ramp-up rate(T _{smax} to T _p)	3℃/s max.
Preheat : Temperature $Min(T_{smin})$ Temperature $Max(T_{smax})$ Time $(T_{smin}$ to $T_{smax})(t_s)$	150℃ 200℃ 60~180s
Time maintained above : $Tempreature(T_L) \\ Time(t_L)$	217℃ 60~150s
Peak Temperature(T _p)	260℃
Time within $5^{\circ}\mathbb{C}$ of actual Peak Temperature(t_p) :	30~40s
Ramp-down rate(T _p to T _{smax})	6°C/s max
Time 25℃ to Peak Temperature	8min max

When MEMS MIC is soldered on PCB, the reflow profile is set according to solder paste and the thickness of PCB etc.

13 Cautions When Using MEMS MIC

13.1 Board Wash Restrictions

It is very important not to wash the PCBA after reflow process, otherwise this could damage the microphone.

13.2 Nozzle Restrictions

It is very important not to pull a nozzle over the port hole of the microphone. otherwise this could damage the microphone.

13.3 Ultrasonic Restrictions

It is very important not to use ultrasonic process. otherwise this could damage the microphone.

14 Output Inspection Standard

Output inspection standard is executed according to <<ISO2859-1:1999>>.