# **STI6N90K5**



# N-channel 900 V, 0.91 Ω typ., 6 A MDmesh™ K5 Power MOSFET in an I<sup>2</sup>PAK package

Datasheet - production data

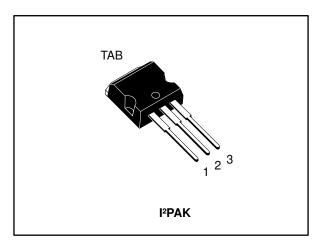
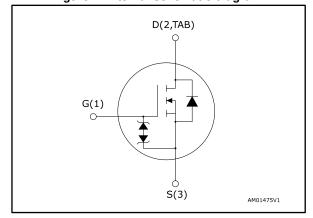




Figure 1: Internal schematic diagram



### **Features**

| Order code | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | Ι <sub>D</sub> |
|------------|-----------------|--------------------------|----------------|
| STI6N90K5  | 900 V           | 1.10 Ω                   | 6 A            |

- Industry's lowest R<sub>DS(on)</sub> x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

### **Applications**

Switching applications

### **Description**

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

| Order code | Marking | Package            | Packing |
|------------|---------|--------------------|---------|
| STI6N90K5  | 6N90K5  | I <sup>2</sup> PAK | Tube    |

Contents STI6N90K5

# **Contents**

| 1 | Electric | cal ratings                            | 3  |
|---|----------|----------------------------------------|----|
| 2 | Electric | cal characteristics                    | 4  |
|   | 2.1      | Electrical characteristics (curves)    | 6  |
| 3 | Test cir | cuits                                  | 8  |
| 4 | Packag   | e information                          | 9  |
|   | 4.1      | I <sup>2</sup> PAK package information | 9  |
| 5 | Revisio  | on history                             | 11 |

STI6N90K5 Electrical ratings

# 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                        | Parameter                                                    | Value     | Unit |
|-------------------------------|--------------------------------------------------------------|-----------|------|
| V <sub>GS</sub>               | Gate-source voltage                                          | ± 30      | V    |
| $I_D$                         | Drain current (continuous) at T <sub>C</sub> = 25 °C         | 6         | Α    |
| I <sub>D</sub>                | Drain current (continuous) at T <sub>C</sub> = 100 °C        | 4         | Α    |
| I <sub>D</sub> <sup>(1)</sup> | I <sub>D</sub> <sup>(1)</sup> Drain current (pulsed)         |           | Α    |
| P <sub>TOT</sub>              | P <sub>TOT</sub> Total dissipation at T <sub>C</sub> = 25 °C |           | W    |
| dv/dt (2)                     | Peak diode recovery voltage slope                            | 4.5       | \//  |
| dv/dt (3)                     | MOSFET dv/dt ruggedness                                      | 50        | V/ns |
| Tj                            | Operating junction temperature range                         | FE to 150 | °C   |
| T <sub>stg</sub>              | Storage temperature range                                    |           | 1.0  |

### Notes:

Table 3: Thermal data

| Symbol                | Parameter                           | Value | Unit |
|-----------------------|-------------------------------------|-------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case    | 1.14  | °C/W |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient | 62.5  | °C/W |

**Table 4: Avalanche characteristics** 

| Symbol | Parameter                                                                                   | Value | Unit |
|--------|---------------------------------------------------------------------------------------------|-------|------|
| lar    | Avalanche current, repetitive or not repetitive (pulse width limited by T <sub>jmax</sub> ) | 2     | Α    |
| Eas    | Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$ , $V_{DD} = 50$ V)    | 210   | mJ   |

<sup>&</sup>lt;sup>(1)</sup>Pulse width limited by safe operating area

 $<sup>^{(2)}</sup>I_{SD} \leq 6$  A, di/dt  $\leq$  100 A/ $\mu s;$  VDS peak < V(BR)DSS, VDD = 450 V.

 $<sup>^{(3)}</sup>V_{DS} \le 720 \text{ V}$ 

Electrical characteristics STI6N90K5

## 2 Electrical characteristics

T<sub>C</sub> = 25 °C unless otherwise specified

Table 5: On/off-state

| Symbol               | Parameter                                        | Test conditions                                                               | Min. | Тур. | Max. | Unit |
|----------------------|--------------------------------------------------|-------------------------------------------------------------------------------|------|------|------|------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage                   | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$                                    | 900  |      |      | V    |
|                      | I <sub>DSS</sub> Zero gate voltage drain current | $V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V}$                                |      |      | 1    | μΑ   |
| I <sub>DSS</sub>     |                                                  | $V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V}$ $T_{C} = 125 \text{ °C}^{(1)}$ |      |      | 50   | μΑ   |
| Igss                 | Gate body leakage current                        | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$                             |      |      | ±10  | μΑ   |
| V <sub>GS(th)</sub>  | Gate threshold voltage                           | $V_{DD} = V_{GS}$ , $I_D = 100 \mu A$                                         | 3    | 4    | 5    | V    |
| R <sub>DS(on)</sub>  | Static drain-source on-<br>resistance            | V <sub>G</sub> S = 10 V, I <sub>D</sub> = 3 A                                 |      | 0.91 | 1.10 | Ω    |

### Notes:

Table 6: Dynamic

| Symbol                            | Parameter                             | Test conditions                                                        | Min. | Тур. | Max. | Unit |
|-----------------------------------|---------------------------------------|------------------------------------------------------------------------|------|------|------|------|
| Ciss                              | Input capacitance                     |                                                                        | 1    | 342  | -    | pF   |
| Coss                              | Output capacitance                    | $V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$<br>$V_{GS} = 0 \text{ V}$ | 1    | 31   | -    | pF   |
| $C_{rss}$                         | Reverse transfer capacitance          | V 43 - 0 V                                                             | -    | 1.2  | -    | pF   |
| C <sub>o(tr)</sub> (1)            | Equivalent capacitance time related   | $V_{DS} = 0 \text{ to } 720 \text{ V},$                                | -    | 55   | -    | рF   |
| C <sub>o(er)</sub> <sup>(2)</sup> | Equivalent capacitance energy related | V <sub>GS</sub> = 0 V                                                  | ı    | 20   | -    | pF   |
| Rg                                | Intrinsic gate resistance             | f = 1 MHz, I <sub>D</sub> = 0 A                                        | 1    | 6.4  | -    | Ω    |
| $Q_g$                             | Total gate charge                     | $V_{DD} = 720 \text{ V}, I_D = 6 \text{ A}$                            | -    | 11   | -    | nC   |
| Qgs                               | Gate-source charge                    | V <sub>GS</sub> = 10 V                                                 | -    | 2.5  | -    | nC   |
| Q <sub>gd</sub>                   | Gate-drain charge                     | (see Figure 15: "Test circuit for gate charge behavior")               | -    | 7    | -    | nC   |

### Notes:

<sup>&</sup>lt;sup>(1)</sup> Defined by design, not subject to production test.

 $<sup>^{(1)}</sup>$   $C_{O(tr)}$  is a constant capacitance value that gives the same charging time as  $C_{OSS}$  while  $V_{DS}$  is rising from 0 to 80%  $V_{DSS}$ 

 $<sup>^{(2)}</sup>$   $C_{\text{O(er)}}$  is a constant capacitance value that gives the same stored energy as  $C_{\text{oss}}$  while  $V_{\text{DS}}$  is rising from 0 to 80%  $V_{\text{DSS}}.$ 

Table 7: Switching times

| Symbol              | Parameter           | Test conditions                                                                              | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|----------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  | $V_{DD}$ = 450 V, $I_{D}$ = 3 A, $R_{G}$ = 4.7 $\Omega$                                      | 1    | 12.4 | 1    | ns   |
| tr                  | Rise time           | V <sub>GS</sub> = 10 V (see Figure 14: "Test circuit for resistive load switching times" and | -    | 12.2 | -    | ns   |
| t <sub>d(off)</sub> | Turn-off delay time |                                                                                              | -    | 30.4 | -    | ns   |
| t <sub>f</sub>      | Fall time           | Figure 19: "Switching time waveform")                                                        | -    | 15.5 | -    | ns   |

### Table 8: Source-drain diode

| Symbol                          | Parameter                     | Test conditions                                                                                                                          | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                                                                                          | -    |      | 6    | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                                                                                          | -    |      | 24   | Α    |
| V <sub>SD</sub> <sup>(2)</sup>  | Forward on voltage            | I <sub>SD</sub> = 6 A, V <sub>GS</sub> = 0 V                                                                                             | -    |      | 1.5  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 6 A, di/dt = 100 A/μs,                                                                                                 | -    | 342  |      | ns   |
| Q <sub>rr</sub>                 | Reverrse recovery charge      | V <sub>DD</sub> = 60 V  (see Figure 16: "Test circuit for inductive load switching and diode recovery times")                            | -    | 3.13 |      | μС   |
| I <sub>RRM</sub>                | Reverse recovery current      |                                                                                                                                          | -    | 18.3 |      | Α    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 6 A, di/dt = 100 A/μs,                                                                                                 | -    | 536  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | V <sub>DD</sub> = 60 V, T <sub>j</sub> = 150 °C<br>(see Figure 16: "Test circuit for inductive load switching and diode recovery times") | -    | 4.42 |      | μС   |
| I <sub>RRM</sub>                | Reverse recovery current      |                                                                                                                                          | -    | 16.5 |      | Α    |

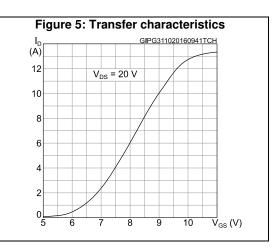
#### Notes:

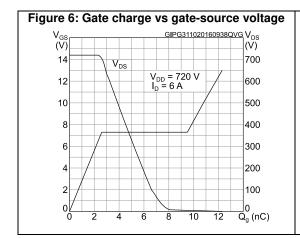
Table 9: Gate-source Zener diode

| Symbol           | Parameter                     | Test conditions                                | Min. | Тур. | Max. | Unit |  |
|------------------|-------------------------------|------------------------------------------------|------|------|------|------|--|
| $V_{(BR)GSO} \\$ | Gate-source breakdown voltage | $I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$ | 30   | -    | 1    | V    |  |

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.




<sup>&</sup>lt;sup>(1)</sup>Pulse width limited by safe operating area


 $<sup>^{(2)}\</sup>text{Pulsed:}$  pulse duration = 300  $\mu\text{s},$  duty cycle 1.5%

# 2.1 Electrical characteristics (curves)

Figure 2: Safe operating area GIPG311020160947SOA (A) Operation in this area is limited by R<sub>DS(on)</sub> 10 t<sub>o</sub>=10 μs t<sub>o</sub>=100 μs 10<sup>0</sup> t<sub>p</sub>=1 ms t<sub>p</sub>=10 ms V<sub>cs</sub>= 10 V T<sub>j</sub>≤150 °C 10  $T_c = 25^{\circ}C$ single pulse 10<sup>-2</sup>  $\overline{V}_{DS}(V)$ 10<sup>1</sup> 10<sup>2</sup>

Figure 3: Thermal impedance  $\begin{matrix} \mathsf{K} \\ \bar{\delta} = 0.5 \end{matrix} \\ \bar{\delta} = 0.2 \\ \bar{\delta} = 0.1 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.02 \\ \bar{\delta} = 0.02 \\ \bar{\delta} = 0.02 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.02 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.02 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.02 \\ \bar{\delta} = 0.01 \\ \bar{\delta} = 0.02 \\ \bar{\delta}$ 





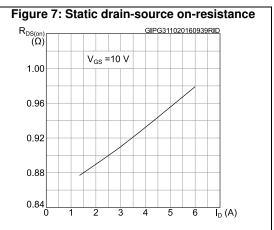
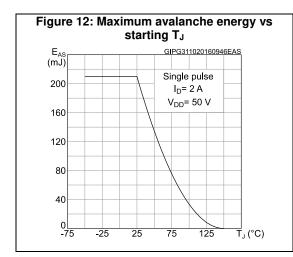
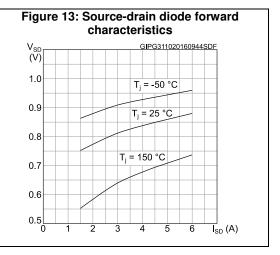



Figure 8: Capacitance variations

C GIPG311020160937CVR


10<sup>3</sup>


10<sup>2</sup>

Coss

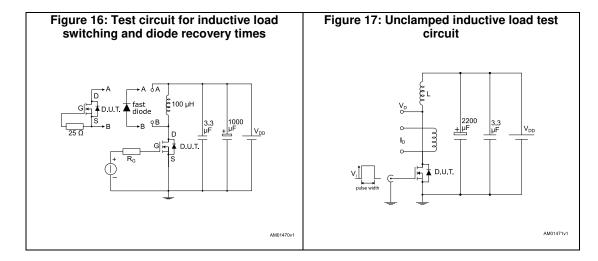
C







Test circuits STI6N90K5


## 3 Test circuits

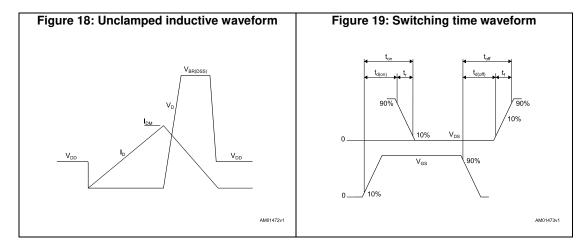

Figure 14: Test circuit for resistive load switching times

Figure 15: Test circuit for gate charge behavior

Figure 15: Test circuit for gate charge behavior

Vost pulse width pulse wid





STI6N90K5 Package information

## 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

## 4.1 I<sup>2</sup>PAK package information

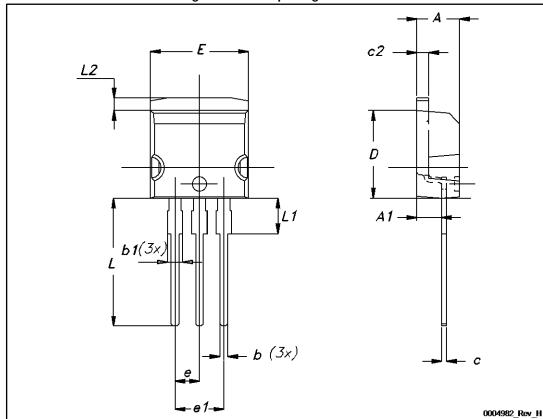



Figure 20: I<sup>2</sup>PAK package outline

Table 10: I<sup>2</sup>PAK package mechanical data

| Dim  | mm   |      |       |  |  |
|------|------|------|-------|--|--|
| Dim. | Min. | Тур. | Max.  |  |  |
| А    | 4.40 | _    | 4.60  |  |  |
| A1   | 2.40 | _    | 2.72  |  |  |
| b    | 0.61 | _    | 0.88  |  |  |
| b1   | 1.14 | _    | 1.70  |  |  |
| С    | 0.49 | _    | 0.70  |  |  |
| c2   | 1.23 | _    | 1.32  |  |  |
| D    | 8.95 | _    | 9.35  |  |  |
| е    | 2.40 | _    | 2.70  |  |  |
| e1   | 4.95 | _    | 5.15  |  |  |
| Е    | 10   | _    | 10.40 |  |  |
| L    | 13   | _    | 14    |  |  |
| L1   | 3.50 | _    | 3.93  |  |  |
| L2   | 1.27 | _    | 1.40  |  |  |

STI6N90K5 Revision history

# 5 Revision history

Table 11: Document revision history

| Date        | Revision | Changes        |
|-------------|----------|----------------|
| 02-Nov-2016 | 1        | First release. |

### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved