hitex s

DEVELOPMENTTOOLS

ShieldBuddy TC275 User Manual

Basic information on the ShieldBuddy TC275 development
board

Connectors, board layout, component placement, power options,
programming

Released

User Manual
4269.40100, 2.8, 2015-05

User Manual

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

Edition 2015-05

Published by:

Hitex (U.K.) Limited.

University Of Warwick Science Park, Coventry, CV4 7EZ, UK
© 2019 Hitex (U.K.) Limited.

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the product, Hitex (UK) Ltd. hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of
any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Hitex Office (www.hitex.co.uk).

hitex s

DEVFLOPMENT TOOLS
CONFIDENTIAL

ShieldBuddy TC275 Development Platform

Aurix 32-Bit Triple Core

Document Change History

Date Version Changed By Change Description

8/8/2014 0.1 M Beach First version

9/8/2014 0.2 M Beach Revised top view

20/2/2015 0.3 M Beach/D Greenhill Revised for Rev B HW

9/4/2015 0.8 M Beach Added board test

16/9/2015 0.9 M Beach Corrected P33.6

8/11/2016 1.0 M Beach Added IDE extensions

29/11/2016 1.1 M Beach Added new connector diagram
9/1/2017 1.2 M Beach Changed Fast_digitalWrite()
13/1/2017 1.3 M Beach Added Wire changes

23/1/2017 1.4 M Beach Added EEPROM support.

13/2/2017 1.5 M Beach Added improved SPI support (v1.30)
27/02/2017 1.6 M Beach Added I12C channel on pins 16 and 17
2/3/2017 17 M Beach ﬁl;jr(;?;/j new analogWrite and TriLib DSP
20/3/2017 1.8 M Beach Added Ethernet bootloader
28/3/2017 1.9 M Beach Added support for DC step TC275
24/4/2017 2.0 M Beach Added Tone() functions. Updated CAN
8/5/2017 2.1 M Beach Added PWM measurement functions
16/6/2017 2.2 M Beach Sorected 12C pin naming for
24/7/2017 2.3 M Beach Added inverted PWM measurement
06/10/2017 2.4 M Beach Add Eclipse IDE debug setup
12/2/2018 2.5 M Beach Updates for RevC hardware
07/09/2018 2.6 M Beach Added clarification of SPI channels
17/10/2018 2.7 M Beach/I Lyall Added serial port parity

14/01/2019 2.8 M Beach Added General Timer enable/disable

Released

2.8, 2015-05

hitex . ShieldBuddy TC275 Development Platform

Aurix 32-Bit Triple Core
DEVFLOPMENT TOOLS
CONFIDENTIAL

We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.

Please send your comments (including a reference to this document) to: |Z|
comments@bhitex.co.uk

Released 4 2.8, 2015-05

mailto:comments@hitex.co.uk

hitex s ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFEFLOPMENTTOOLS

CONFIDENTIAL

Table of Contents

—_ ek ke
ouhwiv=

3.1

Released

Getting Started ... e 9
What Are The ShieldBuddy TC275 TOOIS? ...cccuiiiiieiii et eee ettt s e e saee e snee e s saeeesnneeens 9
Getting Started With The TC275 TOOICNIN «.....oiiiiiiiiie et 9
Using The ShieldBuddy TC275... ..o ettt e et e e et e e s nee e sbee e emneeenees 10
USING The ECHPSE IDE ... e e e e e e e e e ebe e e e nanes 10
Debugging Programs Using Eclipse PLS UDE Debug Perspectiveccocccveiieeiieeeniee e 12
LG LY (1] oo o =1 o PO T PRSP PTPPRRPPPPPRPN 16
ShieldBuddy TC275 Extensions To The Arduino IDEcccccmniminiiminsmnssmnss s ssssssssseenns 17
How is the ShieldBuddy Different To Other ArduiNOS?coiiiiieiiieiie e 17
TC275 Processor ArChItECIUIEocuuiiiiei e 17
SIIAI POIS ..ttt h e s bt e a et e e r e e e be e s b e e e be e e nee e abe e e nareean 19
Multicore Programming EXIENSIONSccoiueiiiiiiiiie et 19
ArduinO IDE EXIENSIONS ...ttt et e st e e s et e e e e abe e e e e naneas 19
Inter-Core COMMUNICATIONSeiiiieiiiie ettt e e e et e ee e st e e e ee e e smteeenneeesnseeenneeesnneeenees 20
Inter-Core Communications EXAMPIEooiuiiiiiieiie e 20
Using Interrupts To Coordinate and Communicate Between Cores.cccccceeeevcieeeeecciieeecccviee e 22
Timers/Ticks/delay(), millis(), MICrOS() EIC.eeuiiiiiie e 23
L@ = OSSR 24
L0701 = 12 PR U PRSP P PPRTOPPRTRI 24
Direct Fast Access To The System Timer0c..ooiiioiieiie e 24
Managing the Multicore MemOry Mapc.eeoiieiiiie e et sane e 25
Peripheral ANd 10 EXIENSIONSviiiiiieiiie ettt e b e s 27
Faster digitalRead & digitalWIEeii i 27
attachiNterrupt() FUNCHONcoi et e s be e e saneeen 27
Enabling and Disabling INTEITUPESccoiueiiiiie e 27
ADC REAA RESOIULION ...ttt ettt et e e e e e et e e e ee e e eneeeeeeeesnseeenseeeaneeeeseeenneens 27
e T N DO 00 01T 7o o - TSP URR 28
aNalogWrite() & ANAIOGOUL ... et e e s e e s e e e e anneee s 29
T AV I =T [T =Y o Lo SRRSO 29
CUSLOM PWM FrEOQUENCIES ...ceiitiiitieiiete ettt ettt ettt ettt ettt sae e st e s be e sabe e sneeeebeeesbeeesaneeaas 29
Fast Update Of AnalogOut() FUNCHONcoiiiiiiieiii e e 29
DACO anNd DACT PINS ..eeiiiieietieeiiee ettt ettt a ettt e b e e st e e abe e e sab e e sbe e e sabe e ebeeeenbeeebeeesaneeeanes 29
(07 YA O PROUPTSURTOPPRR 30
CAN FUNCHONS USAQE ... iiitiiiiiiie ittt ettt b et sa e st e e s b et e sabe e s beeesaeeesbeeesaneeaas 30
Receiving any message regardless of Message ID........coouiiiiiiiiiiiiiien e 31
[2C/Wire PiNS & BAUGIALEcueeeieieeiiiie ettt et e et e e et e e saee e s e e e ae e e smeeeenneeesneeeenneeeenneeennes 32
g e @Y IS U o] oo o (S 33
Resetting The ShieladBUAAYoouiiiiieiie e e e et e e e e st e e e nneeeemeeeenees 33
ST I T o] o o o SO 33
DY = 10] o S 33
ST o I o= 13 a1 e SRS 34
ST o I 1 o F= 1o o 1] 2 PP SUPRRN 34
AUriX DSP FUNCHON LIBIarycooeiiiie ettt ne e s 35
Ethernet BootLoader/In Application Ethernet Flash Programmer...........cccooooiiiee 35
L@ Y=Y oSSR 35
Setting The NetWOrk AQArESSES.oiiuiiiiiii ettt st b e st e e ae e e sbee e sbe e e saneeens 35
(0o 101 iTo [N TqTaTo T I AT TE] od U RUR TSR 36
(0] aTo T g 1= =T o 4 (o =T =T RSP RR 36
Sending Programs To The ShieldBuddyc..eoiiiiiiiii e 37
TONE() FUNCHONS ...ttt ettt ettt e ettt e e e st e e e e st e e e e st e e e e e nbeeeeennbeeeeennneas 37
PWM Measurement FUNCHONSoiiiiiie et 37
Using The PWM Measurement FUNCHONSc.ooiiiiiiiiiie e 38
General PUrpose TimMer INTEITUPES.oo ittt ettt sae e s saneeea 39
Hardware Release Notes HW ReVISIiON B ... ssssssssssssssssseanas 40
ShieldBuddy RevB KNOWNn ProbIEmMSoiiiiiiiiiii ettt 40

S 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFEFLOPMENTTOOLS

CONFIDENTIAL

3.2 CICB1508 (Safety VErSION ONIY) ..c...eiiiieiii ettt e e ae e e ae e e sbee e snneeens 40
3.3 RV | o U 40
4 Arduino-Based Connector Details........ccoceirrmiimmmisninsmsinsesssssssssms s s sasssssssssms s ssss s sms snsmsssssnees 41
4.1 BOAIA LAYOUL ...ttt e e bt e e e b e e e e be et e e e b e e e e e s be e e e s e bee e e s aneeeeeaan 41
4.2 CoNNECLOr Pin AlIOCALIONeeiiiiee ittt e e s e e e e snn e e sne e e saneenn 42
4.3 TC275 ASCLIN to ShieldBuddy connector MapPingccooeeeiieeerreesiieeeseee e sree e e 44
5 Powering The ShieldBuddy.........ccccoimiimmmimmisnisisnnsss s s s s s s s sssssssassssans 47
5.1 SElECtADIE OPLIONS ...ttt st b e nr e e s e naneen 47
5.2 Restoring an ShieldBuddy with a completely erased FLASH. ..o 47
6 Underside Component Placement.........cccccriimiiesmismnissmisssssssssss s sssssssssssssss s sassssssssasassnsans 48
7 Top Side Component Placement ... s s s s sss ssssssnsase s 50
8 Y o o T=T 3 o [T o7 51
8.1 BasSiC BOArd TS ... ueiiiiiiiiiii et b e e ne e s be e naneena 51
Released 6 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFEFLOPMENTTOOLS

CONFIDENTIAL

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Released

L0724 T (01 (=T g aE U =N o T | SR 17
TC275 PEIIPNEIAIS ...ttt e b e s b e e s st e e s ane e e sr e e nnne s 18
TC275 RAMS ...ttt h e s a et e s b et e ea b e e s b et e R e e e s R e R e e e s ar e e ne e ar e e nee s 25
Top View Of SHI@ldBUAAYooiieieei e e 41
=T g To=Te I (@ N O7o 141 o 1=Te] (o] PP U PRSPPI 43
T @ 7e] 10 [Te7 (o] TP T PRSP P PPRRPPPPPRI 43
TC275 to Arduino ConNECLOr MapPiNg ...cceoeeerrieiieieriee et see et e s anee e sre e nneees 46
TC275 to Arduino EXT 10 Connector Mapping cee ueeeaeeerieeaieeeeieeeieeeseeessieeeseeeeseeeesaeeeseeeesneens 46
Bottom view of Shi€ldBUAAYccueiiiiiiiie ettt et e st e e rae e e e be e e snneeens 48
Component LOCAtioN — TOP SIAE......iiiiieiiieie ettt st e e ae e e sneeeebee e snneens 50

7 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFEFLOPMENTTOOLS

CONFIDENTIAL

List of Tables

Table 1] o I A F= T 41T USSR 34
Table 2 Pins available for tone() FUNCHONoo i e e 37
Table 3 Pins available for PWM measurement fUNCLONSoociiiiiiiiiei e 37
Table 4 ASCLIN to ShieldBuddy cONNECOr MapPiNgccoceeerieeeiieesiiee e sree st 44
Table 5 Arduino To ShieldBuddy To TC275 MapPPingcceeeiueeereeenieeiieee e siee e sree s e e sneees 44

Released 8 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFLOPMENTTOOLS

CONFIDENTIAL

1 Getting Started
1.1 What Are The ShieldBuddy TC275 Tools?

The main ShieldBuddy toolchain is the Eclipse-based “FreeEntryToolchain” from Hightec/PLS/ Infineon. This is
a full C/C++ development environment with source-level debugger. The familiar Arduino IDE is also available
for the ShieldBuddy. Both IDEs are based on the Infineon iLLD libraries and allow the usual Arduino C++- like
Processing language to be used with the familiar Arduino 10 funcitions e.g. digitalWrite(), analogRead(),
Serial.print() etc.. These functions are implemented for all three TC275 cores and can be used without
restriction.

Given the awesome power of the TC275 we expect most users to program it in C in Eclipse, using the iLLD API
directly or working with the underlying SFRs. The neat thing about the ShieldBuddy is that it lets you access the
massive power of the TC275 without knowing anything about the bits and bytes of the peripherals!

1.2 Getting Started With The TC275 Toolchain
If you have never used an Arduino-style board before then " seich novosa | Arduino 1611 [EET = |

is a good idea to have a look at www.arduino.cc to find out [fi ea Seeteh Took Hee
what it is all about! Although the ShieldBuddy contains QO HEE uox
three powerful 32-bit, 200MHz processors, it can be used
in exactly the same way as an ordinary Arduino Uno. The
same Arduino IDE can be used but with an add-on to
allow triple core operation. To use the ShieldBuddy you it

W|” need: // put your setup code for core 0 here, to run omnce:

sketch_novOSa §

(i) a PC with Windows Vista or later .

(i) The Aurix free toolchain with Eclipse, C/C++ compiler
and UDE debugger from PLS:

http://free-entry-toolchain.hightec-rt.com/

void setupl{) {
// put your setup code for core 1 here, to run omnce:

Follow the instructions given as you will need a free

licence file which will be automatically emailed to you. !
You will need to copy it to : C:\HIGHTEC\licenses. veis loopli) { I P
(ii) The standard 1.8.0 Arduino IDE installed from: !
http://arduino.cc/download.php?f=/arduino-1.8.0- :
windows.exe e s # —_—
Make sure you install this in the default directory! ' i

void loopz i)

/¢ put your mzin code for coze 2 here, to rum repeatedly:

If you do not have admin rights on your PC then use this
version: 1
https://downloads.arduino.cc/arduino-1.8.0-windows.zip

Released 9 2.8, 2015-05

http://www.arduino.cc/
http://free-entry-toolchain.hightec-rt.com/
http://arduino.cc/download.php?f=/arduino-1.8.0-windows.exe
http://arduino.cc/download.php?f=/arduino-1.8.0-windows.exe
https://downloads.arduino.cc/arduino-1.8.0-windows.zip

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

(iv) The Arduino development environment add-in for Eclipse and the standard Arduino IDE:

http://www.hitex.co.uk/fileadmin/uk-files/downloads/ShieldBuddy/ShieldBuddyMulticore| DE.zip

Unzip this to a temporary directory using the zip password “ShieldBuddy”. Run the installer and use the
password “ShieldBuddy” to copy the IDE onto your PC.

Install these in the order Aurix freetoolchain, Arduino IDE, ShieldBuddy IDE. We hope to combine these into a
single installer in the near future to make the installation quicker.

1.3 Using The ShieldBuddy TC275

Once all of the above packages have been installed, use the ShieldBuddy just like any other Arduino except that
you have three processors to play with rather than just one. Processor core 0 will run setup() and loop() with
processor cores 1 and 2 running setupi()/setup2() and loop1()/loop2(). There are no special measures required
to write triple-core programs but make sure that that you do not try to use the same peripheral with two different
cores at the same time. Whilst nothing nasty will happen, your programs will probably just not work properly!
Each core is basically identical except that cores 1 and 2 are about 20% faster than core 0, having an extra
pipeline stage. They all can use the same Arduino Processing language functions. When choosing which
ShieldBuddy to use in the Arduino IDE, if you have a board with a CA-step processor (SAK-TC275TP-64
F200W CA EES A), choose “ShieldBuddy TC275”. If you have a DC-step board (SAK-TC275TP-64 F200N
DC), choose “ShieldBuddy TC275_ Dx”.

Remember to press the reset button on the ShieldBuddy to make it run the new program.

1.4 Using The Eclipse IDE

If you want to use the Eclipse environment, start the toolchain with the 5‘?@ icon. When prompted, open the
workspace at:

£l Workcgace Launcher

C:\HitexX\AURDuinolDE\Eclipse

- [hvese

The default project is AURduinoMulticoreUser:

Arduino-style sketches are stored in the Sketches directory. The default sketch
“Empty.cpp” is a simple program that uses all three cores. You can overwrite the
statements we used with your own.

To get your programs into the ShieldBuddy, use the PLS UDE debugger

Open the workspace (ShieldBuddy with TC275 DC step processor):
“C:\HitexX\AURduinolIDE\Eclipse\AurduinoMulticoreUser\.ude\ShieldBuddyWorkspace_27xD.wsx”
Or (ShieldBuddy with TC275 CA step processor) :

“C:\HitexX\AURduinolIDE\Eclipse\AurduinoMulticoreUser\.ude\ShieldBuddyWorkspace_27xC.wsx”

Released 10 2.8, 2015-05

http://www.hitex.co.uk/fileadmin/uk-files/downloads/ShieldBuddy/ShieldBuddyMulticoreIDE.zip

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

The program will automatically load. You can run it by clicking the icon and stop it with the bt icon. To

reset the program, use the ® icon. You can find more information on using the Eclipse tools and the PLS UDE
debugger in the guide supplied with the FreeToolChain.

Released 11 2.8, 2015-05

hitex_ ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DFVFLOPMFENT TOOLS

CONFIDENTIAL

1.5 Debugging Programs Using Eclipse PLS UDE Debug Perspective

Unfortunately some configuring is required to use the UDE perspective for debugging under Eclipse. This is
performed as follows. Please note that this will depend on whether you have a TC275 CA or DC step on your

ShieldBuddy.

Create a new Debug Target to suit your Aurix version. Here we will do the TC275 DC first.

. S CfC++ - ,Aurduic:Mu H ser/Sketches/Boz JE(o . .__ For Des

File Edit Source Refactor MNavigate Search Project E-m Window Help
Nrul@| 8~®%~m = @D R CtrieFIl | - (%8 47
. 1%-\, Debug Fi1
[Project Explorer 53 =S ¥ = 0 [€ E
0 AurduinaMulticore Rtan S tang 4
4 (% AurduinoMulticoreUser - 4.9.1.0 - iROM - [ac Run As L i
i il Includes Run Configurations...
b = aurix .
b G iROM Debug History »
& g Sketches Debug As 3
|| includes.opt Debug Configurations...
| @ makefile.defs
[makefile.nit Toggle Breakpoint

| @ makefiletargets Toggle Line Breakpoint

LI JLLD_Lib_Make

L iLLD_Lib_Make_TC27xC

Toggle Method Breakpoint once:

Toggle Watchpoint
Skip All Breakpoints
Rernove All Breakpoints

Breakpoint Types &
External Tools » 275 RewChn)
Sv.=.'r"1a]..AS'C.;;r g;‘u;Efﬁ(;H;{g’ -lgﬁuggﬂgr.ggm' n)); serial

SerialAsC.print("\n\rPress any key to \n\rproc

Then create a new debug configuration with L

{3 Debug Configurations

Create, manage, and run configurations ; @
P ‘onfigure launch settings iato
¥

< - Press the Duplicste’ butten to capy the selected canfiguration

. | % - Pressthe Delete’ button o remove the selected configuration.

T - Press the ‘Fite’ button 1o configure itering options.

DSFPDA Application
© Eclipse Appiication

- E e view an existing canfiguration by selecting it

Hardware Debugging
Appiet [h perspecirve setfings from the Perspectives preference page.

T Jniz Plug-in Test
@ Launch Greup

[E] Mwe Workdlow

& 056 Framework

T, Remote Java Application
Universal Debiug Engine

Fifter matched 16 of 17 items

@ et Close

Released 12 2.8, 2015-05

hitex_ ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFEFLOPMENTTOOLS
CONFIDENTIAL

Here we are setting up for the TC275 DC step. The C/C++ Application will be as shown — you will need to

browse for this.

Create,

and run ¢

Dax|B3-

Mame: AuvrduinoMulticorelUser iROM TC275 DC Step

;_pre filter text |

[E] C/C++ Application
[E] C/C++ Attach to Application
[&] C/C++ Postmortem Debugger
[E] C/C++ Remote Application
& DSF PDA Application
& Eclipse Application
[©] GDB Hardware Debugging
] Java Applet
[31 Java Application
Ju JUnit
J4 JUnit Plug-in Test
= Launch Group
MWE Workflow
@ 05Gi Framework
E Remote Java Application
a #* Universal Debug Engine
#2 AurduinoMulticorelser iROP

A 11 *
Filter matched 17 of 18 items

E] Mairx UDE Startup‘l E_) Source‘l | Common.]l

C/C++ Application:
CihHitex\ AURduinolDE\Eclipseh AurduinoMulticoreUserROM\AurduinoMulticoreUser.elf

Variables...] lSearch Plojed:...] [Browse...]

Browse...

Project:

AurduinoMulticorelser

Build (if required) before launching

Build cenfiguration: |IRGM -]

(71 Enable auto build (7 Disable auto build

@ Use workspace settings Configure Workspace Settings...

[7] Connect process input & output to a terminal,

Apply Revert

@

Debug I [Close

Released

13

2.8, 2015-05

hitex s

DFVFLOPMENT
CONFIDENTIAL

TOOLS

ShieldBuddy TC275 Development Platform

Aurix 32-Bit Triple Core

Under the “UDE Startup” tab, you need to specify the UDE workspace file to use. This is predefined in
“C:\HitexX\AURduinolDE\Eclipse\AurduinoMulticoreUser\.ude”. The Target Configuration file is predefined in
C:\Hitex\AURduinoIDE\Eclipse\AurduinoMulticoreUser\.ude\.target”. You will need to browse for both of these

files.

(] Debug Configurations

Create, and run

L 4ls

NCEX 8-

MWame: AurduinoMulticoreUser iROM TC275 DC Step

“type filter text

[€] C/C++ Application

[E] C/C++ Attach to Application

[E] C/C++ Postmorterm Debugger

[E] ©/C++ Remote Application

& DSF PDA Application

2 Eclipse Application

[T] GDB Hardware Debugging

Java Applet

[T Java Application

Ju JUnit

J4 JUnit Plug-in Test

= Launch Group

MWE Workflow

4 05Gi Framework

@ Remote Java Application

4 ¥ Universal Debug Engine

AurduinoMulticoreUser iROP
& AurduincMulticoreUser iROP

4 . | 3

Filter matched 18 of 19 items

[l Main [UDE Startup "% Saurce| (] Commaon|

Select UDE Workspace File:
‘ShieldBuddyWaorkspace_27xD.wsx
UDE Workspace File Status Message:

Browse Workspace

New Workspace

Select UDE Target Cenfiguration File:
‘ShieldBuddy_TC27xD.cfg
UDE Target Configuration File Status Message:

Import Workspace

Export Werkspace

1

Browse Configuration

Select UDE Diagnostic Output File:

Create Configuration
Export Configuration

Browse Output File

Apply Revert

@

Now click the Apply button. You can run the debugger directly from here using “Debug”...
Help
G~r B0 -%-e
52 [Debug Aurduino!

of VT188 escape sequences */
Vi L

...or you can do it from the Debug icon in Eclipse.

Search Project Run Window Help
v QE-e-d-0r H-%-0-Q-®y-FEEEH 0o
r #4 1 AurduinoMulticoreUser iROM TC275 CA Step
7% 2 AurduinoMulticorellser iROM TC275 DC Step

"= B | |g BoardEOLtest.cpp 2

iROM - [ac /* Allow use of VT18@ esca

#include "vt1ee.h" Debug As 3

Debug Configurations..,

Organize Favorites...

sint8 const Hell[] = "Helll

/* Simple Board Test Sketch */

char rxdata;

“woid setup() {

Released 14

2.8, 2015-05

hitex s

DEVFEFLOPMENTTOOLS

ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

CONFIDENTIAL

The UDE debug perspective should now open...

Fulactor Mavgite Debug Shew Yews Ioch Conly Micio Sesen

O | [BoardkOUets

oo w8

T T T R e T o 0 [treae oz
.k R et || o [Frwe (3 % @MY v e Gr - GARROAUFODEREOOW S ME 0¥
[| 8 HighTee BHC/Ces

o B G corestaueduinglom

(P UDE Prrspectie |

27aC. vsx 0N “Ecliosen

Lticorelzert
Coml CA-\bargefiShvaldBuakdy. TCITSC. g

Corel insctive Lounching AurduinoMul_.C275 CA Step

If you are using a TC275 CA step board then you n
as we did for the DC step.

Create a new Debug Target ...

eed to define a debug configuration for this in the same way

++ - Aurc ketches/BoardEOLtest.cpp - High
. File Edit Source Refactor Mavigate Search Project |Run | Window Help
Nrdba@ ®-% -G = Qg9 A’ ChERL L e
' - | %, Debug Fii |
[Project Explorer 53 BE® =8 |@-
10 AurduinoMulticare Renisiang 4
4[5 AurduinoMulticoreUser - 4.9.1.0 - iROM - [ac Run As L
b Includes Run Configurations...
b= aurix
b G iROM Debug History »
I > Sketches Debug As 3
|7] includes.opt Debug Configurations...
| & makefile.defs
[makefile.init @ Toggle Breakpoint
[& makefiletargets Toggle Line Breakpoint
| T‘J iLLD_Lib_Make Toggle Method Breakpoint R
L0 QLLD_Lib_Make TC27xC -
Toggle Watchpoint
Skip All Breakpoints
Remowve All Breakpoints
' Breakpoint Types »
External Tools » (275 RevCin),
SerialASC.print(F(ShieldBuddyVersion)): Serial

Released

SerialAsC.print("\n\rPress any key to \n\rproc

15 2.8, 2015-05

hitex_ ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFLOPMENT TOOLS

CONFIDENTIAL

Then create a new debug configuration with L.

_—

B Gobug Configurations.

ﬁu Create, manage, and run configurations “ﬁ"
|

X E B~ | Mame= Iicaroliser REOM TEITS CA Stop |
ypefiterke’ ¥ Msin UDE Startup B Source [Common|

E]. C/Ce+-Application Select UDE Workspace He:

T CAC-~ datech to Applaatian i S - : e

/e s purmeton ey ||| S Wikapsce 2T | Browse wWorspace |

E] CC-~ Remote Apphication UDE Werkspace File Status Message: New Workspeze |

& DSFP0& Application e e

& Ecipse Application | Impert Workspace |

T GDE Hardware Dekugging e

[T fava Spplet

T fava Application Select UDF Target Canfiguration =ile:
T Rnit

B T Ko Bigin Test “ShieldBuddy_TE213C.cly Brerwse Configaration |
i e Tes

e - Lourch Group UDE Target Configursticn Fie Stemus Message: [Creste Confign |

MWE Warkdlow 3
F o5 Framensik [Erport Configurmian |
L, Remote j2va Apolicatica
£ B el Debg Enigrie Select UDE Disgnostic Qutput Files
ot AunduinabulticareUses iRO1 | | Browse Qutput Fie. |
A AurduinabullicoreUser R0

I b P —

Filter malched 18 of 19 iterns.

[icd] Debug Close |

Now click the Apply button. You can run the debugger directly from here using “Debug”...

LA R Bk

G- B-HO-%-a

52 [Dehug Aurduino!

of VT188 escape seguences */

Vi T

...or you can do it from the Debug icon in Eclipse.

Search Project Run Window Help
% BETErdr-@r o0 -G-@e-[AENH G
P #% 1 AurduinoMulticoreUser iROM TC275 CA Step i
#A 2 AurduinoMulticoreUser iROM TC275 DC Step

=g [£] BoardEOLtest.cpp 2

iROM - [ac /* Allow use of VT1@@ esca

#include "vt180.h" Bebog fis 4

Debug Configurations..,

O F ites..,
sint8 const Hell[] = "Helll o

/* Simple Board Test Sketch */

char rxdata;

~void setup() {

You can now use the UDE debug perspective in the usual; Eclipse manner!

1.6 Getting Help

If you need help, there is a new on-line forum at http://ShieldBuddy.boards.net/.
This hardware user manual with the pinouts is at http://www.hitex.co.uk/index.php?id=3650.

Released 16 2.8, 2015-05

http://aurduino.boards.net/
http://www.hitex.co.uk/index.php?id=3650

hitex s

DEVFLOPMENT TOOLS
CONFIDENTIAL

2

2.1

ShieldBuddy TC275 Development Platform

Aurix 32-Bit Triple Core

How is the ShieldBuddy Different To Other Arduinos?

Most Arduino-style boards use AVR or ARM/Cortex processors which are fine for basic messing about with
micros - these chips are everywhere in consumer gadgets and devices. The ShieldBuddy is different, having
the mighty Infineon Aurix TC275 processor. These are normally only to be found in state of the art engine
management systems, ABS systems and industrial motor drives in your favourite German automobile. They
rarely make it out into the daylight of the normal hobbyist/maker world and to date have only been known to a
select few at Bosch, BMW, Audi, Daimler-Benz etc..

ShieldBuddy TC275 Extensions To The Arduino IDE

The standard Arduino IDE can be used, provided that the ShieldBuddy add-in has been installed. Programs
can be written in exactly the same way as on an ordinary Arduino. However to make best use of the multicore
TC275 processor, there are some special macros and functions available.

2.2

TC275 Processor Architecture

Unlike the AVR, SAMS etc. used on normal Arduinos, the TC275 has three near-identical 200MHz 32-bit CPU
cores on a shared bus, each with their own local RAM but sharing a common FLASH ROM. The peripherals
(timers, port pins, Ethernet, serial ports etc.) are also shared, with each core having full access to any

peripheral.
System Peripheral Bus (SPB) R
FPU v | FPU v | LMU

PMI DMI PMI DMI

32 KB Code TC1.6P 32 KB Code TC1.6P 32 KB
RAM CPU1 120 KB RAM RAM CPU2 120 KB RAM RAM

Lockstep
M'S [ws] [ms] [ws] [s]
TT SRI Cross Bar InterconnecJ T(XBarfSRI) ﬁ .
I I J J ==
s FPU ws Ls ITLs1 Ls] Abbreviations:
PMI DMI PFlash: Program Flash o
PFlashi DFlash: Data Flash (EEPROM)

KB Cod TC1.6E DFlash Pgliﬂsgo 2 f\lASB % : SRI Slave Interface

24 KB ode CPUO 112 KB RAM 384 KB © SRl Master Interface

Lockstep
M PMUO
SRI Cross Bar Interconnect (XBar_SRI)
Y =
(SFl) 64 channels
OCDS
[S] WS <« L1 Debug
1 [Interface/JTAG
System Peripheral Bus (SPB) M
To The Peripherals
Figure 1 TC275 Internal Layout

Released

17

2.8, 2015-05

hitex s ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFLOPMENT TOOLS
CONFIDENTIAL

The TC275 CPU core design has a basic 5ns cycle time which means you can get typically around 150 to 200
32-bit instructions per microsecond. This is seriously fast when you consider that the Arduino Uno’s
Atmega328P only manages around sixteen 8-bit instructions/us! In addition, there is a floating point unit on
each core so using floating point variables does not slow things down significantly.

To the CPU cores & memory

PN
MultiCAN+ [—
(4 Nodes, 256 MO) [\—
4 SENT
ASC + LIN :i: (— (10 Channels)
4 FlexRay 3 STM
QSP' i :> (2 Channels) :i: Sytem Timers
CAPCOMO Ports (— Interrupt
GTM — (CCUS0, CCUSH) Router
Timer Block v
2 G— BCU
PSI5
MscC Ai <:: (3 Channels)
| |——] | DS-ADCx
IOM 2
EtherMAC (——)| PsiEs T w0
48 + 12
12C)) GPT12 FCE (—N V(AIZ(;)X TR
x=0-
System Peripheral Bus (SPB)
_

Figure2 TC275 Peripherals

With so much computing horsepower available, the TC275 can manage a huge range of peripherals. Besides
commonplace peripherals like CAN, ADC, 12C, Ethernet, SPI etc. the TC275 has possibly the most powerful
signal measurement and generation block to be found on any microcontroller (GTM) plus a an advanced super-
fast delta-sigma analog to digital converter.

The Generic Timer Module (GTM) is the main source of pulse generation and measurement functions
containing over 200 10 channels. It is designed primarily for automotive powertrain control and electric motor
drives. Unlike conventional timer blocks, time-processing units, CAPCOM units etc. it can work in both the time
and angle domains without restriction. This is particularly useful for mechanical control systems, switch-
reluctance motor commutation, crankshaft synchronisation etc.

Under the bonnet the GTM has around 3000 SFRs but fortunately you do not need to know any of these to
realize useful functions! It is enormously powerful and the culmination of 25 years of meeting the needs of high-
end automotive control systems. However it can and indeed has been successfully applied to more general
industrial applications, particularly in the field of motor control where is can drive up to 4 three-phase motors.
The Arduino analogWrite() function makes use of it in a simple way to generate PWM. It can also flash a LED.
There is a second timer block (GPT12) can be used for encoder interfaces. Usefully most port pins can
generate direct interrupts.

With 176 pins required to get these peripherals out and only 100 pins on the Arduino Due form factor, some
functions have had to be limited. The 32 ADC channels have been limited to 12 and the 48 potential PWM
channels are also limited to 12, although more channels can be found on the double row expansion connector, if
needed.

Released 18 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFEFLOPMENT TOOLS

CONFIDENTIAL

2.3 Serial Ports

The Arduino has the Serial class for sending data to the UART which ultimately ends up as a COM port on the
host PC. The ShieldBuddy has 4 potential hardware serial ports so there are now 4 Serial classes. The default
Serial class that is directed to the Arduino IDE Serial Monitor tool becomes SerialASC on the ShieldBuddy.
Thus Serial.begin(9600) becomes SerialASC.begin(9600) and Serial.print(“Hi”) becomes Serial ASC.print(“Hi”)
and so on.

The serial channels are allocated as per:

SerialASC Arduino FDTI USB-COM micro USB

Seriall RX1/TX1 Arduino J403 pins 17/16
Serial0 RXO0/TX0 Arduino J403 pins 15/14
Serial RX/TX Arduino default J402 pins DO/D1

Any of the serial channels can be used from any core but it is not a good idea to access the same serial port
from more than one core at the same time — see the later section on multicore programming.

The ShieldBuddy supports the following parity types:

SERIAL_8NT
SERIAL_8N2
SERIAL_8E1
SERIAL_8E2
SERIAL_801
SERIAL_802

For example:
SerialASC.begin (9600, SERIAL 8El);

For even parirty. The default is SERIAL_8NT1.

B o i G T PR
2.4 Multicore Programming Extensions | eemr

241 Arduino IDE Extensions -]
The standard Arduino IDE has been extended to allow the e e elimers oo

all 3 cores to be used. Anybody used to the default
Arduino sketch might notice though that in addition to the
familiar setup() and loop(), there is now a setup1(), loop1() o
and setup2(), loop2(). These new functions are for CPU e e e e e
cores 1 and 2 respectively. So while Core0 can be used
as on any ordinary Arduino, the lucky programmer can now ||’
run three applications simultaneously. \

oid setupl() {
put your setup code for core 1 here, to run cnce:

Core0 can be regarded as the master core in the context of ||,
the Arduino as it has to launch the other two cores and ot Toogtl) |

then do all the initialisation of the Arduino 10, timer tick (for ¢/ put your rain code ccre 1 hers, ©o Tun rapeatedly:
millis() and micros() and delay()). Thus setupi() and
setup2() are reached before setup()!

void setup2() {
Although all three cores are notionally the same, in fact fi i ot e e S b s e
cores1 and 2 are about 25% faster than core0 as they ;
have an extra pipeline stage. Thus it is usually best to put veid Tecp2l) |
any heavyweight number crunching tasks on these cores. el e

Released 19

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

Writing for a multicore processor can be a bit mind-bending at first! The first thing to realise is that there is only
one ROM and the Arduino IDE just compiles source code. It has no idea (and does not need to know) which
core a particular function will run on. It is only when the program runs that this becomes fixed. Any function
called from setup and loop() will run on core0; any called from setup1() and loop1() will execute on core1 and so
on. Thus is perfectly possible for the same function you wrote to execute simultaneously on all three cores. As
there is only one image of this function in the FLASH, the internal bus structure of the Aurix allows all three
cores to access the same instructions at the same addresses (worst case) at exactly the same time. Note that if
this extreme case happens, there will be a slight loss of performance.

Sharing of functions between cores is easy, provided that they do not make use of the peripherals! Whilst there
are three cores, there are only two ADCs. If all three cores want to access the same result register, there is no
particular problem with this. However if you want a timer to generate an interrupt and call a shared function,
then that function might need to know which core it is currently running on! This is easy to do as there is a
macro defined to return the core number.

if (GetCpuCorelID() == 2)
{
/* We must be running on core 2! */

}

Fortunately it is rare to have to do this but it is used extensively in the ShieldBuddy to Arduino translation layer.

2.4.2 Inter-Core Communications

One of the aims of the AURIX multicore design is to avoid the awkward programming issues that can arise in
multicore processors and make the system architect’s job easier. The three independent cores exist within a
single memory space (0x00000000 — OxFFFFFFFF), so they are all able to access any address without
restriction. This includes all the peripherals and importantly all FLASH and RAM areas.

Having a consistent global address space when accessing RAM can considerably ease the passing of data
between cores using shared structures. Supporting high performance when doing this is achieved by the
implementation of a crossbar bus system to connect the cores, memories and DMA systems. Of course there
are protection mechanisms that can generate traps for such accesses if the application requires it, as they may
indicate a program malfunction which would need to be handled in an orderly manner.

The upshot of this is that the programmer does not need to worry about cores accessing the same memory
location (i.e. variable) at the same time. In some multicore processors this would cause an exception and is
regarded as an error. Certainly if you are new to multicore programming, this makes life much easier. Of
course there could be a contention at the lowest level and this can result in extra cycles being inserted but given
the speed of the CPU, this is unlikely to be an issue with Arduino-style applications.

With an application split across three cores, the immediate problem is how to synchronise operations. As the
Aurix design allows RAM locations to be accessed by any core at any time, this is no problem. In the simplest
case, global variables can be used to allow one core to send a signal to another. Here is an example.

2.4.2.1 Inter-Core Communications Example

We want to use the SerialASC.print() function to allow each core to send a message to the Arduino Serial
Monitor — something like “Hello From Core 07, “Hello From Core 1” etc..

If we do nothing clever and just allow each core’s Loop() to write to the SerialASC, we get a complete jumble of
characters. This is because each core will write to the transmit buffer at random times. The Aurix does not care
that 3 cores are trying to use the same serial port and nothing nasty like an exception will happen. All the
characters are in there from all the cores but not necessarily in the right order.

Released 20 2.8, 2015-05

hitex s

DEVFEFLOPMENTTOOLS

ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

CONFIDENTIAL

What we need to do is make sure that each core waits in turn for the other cores to finish writing to the serial

port. This is quite easy using some global variables.
can happen that don’t occur in single core.

However with true multicore programming, weird things

An obvious approach to solving this is to have a global variable that tells everybody whether the SerialASC port

is being used. However this does not work where we

are trying to prevent a single resource (e.g. serial port)

being simultaneously accessed from two cores. It can work where we simply want to pass variables between

cores though. The problem is that other cores can do
anything at any time relative to each other. If Cores1
and 2 both execute the check of the SerialASCInUse
flag at around the same time, they will both see it as
‘0’ and then both set it to “1’. In practice it is when
Core2 checks the flag in the few instructions between
Core1 checking it for ‘0’ and then setting it to ‘1’, that
we get into trouble. They will then both attempt to
write to the Serial ASC port, with the result that
garbage gets sent to the terminal.

To solve this tricky problem, we need a means of
checking the SerialASCInUse flag for ‘0’ and setting it
to ‘1’ in a single Aurix instruction. This means that
there would be no gap within which another core
could get it. This is catered for by the uint32
Htx_LockResource(uint32 *ResourcePtr) function.
This sets the flag at address ResourcePtr
automatically to Hix_RESOURCE_BUSY =1 and
returns the previous flag state.

The ShieldBuddy serial port classes have been
extended by adding a “PortlnUse” variable so that
multicore support is now built in. Using the
Htx_LockResource() function, we can ensure that no
two cores will try to access the SerialASC at the
same time.

Hello from Core
Hello from Core
Hello from Core

Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core
Hello from Core

(=T S T e R e N R S R e e N = T B == T X

Hello from Core
Hello fr

4 [

[¥] Autoscrall Carriagereturn » | 9600baud - |

Released

skeich_oct31a §

setupl) { |
{/ put your setup code for core 0 here, to run once:
SerialkSC.begin(9800);

i)

void loop() { !
/¢ put your main code for core 0O here, to run repeatedly: i
delay(5); tzke it 1 iike this core is doing Somethi "
while (Htx LockResource{&SerizlRSC. PortInUse) = Htx RESOURCE_BUSY) { 7| |
SerialASC.print ("Hello from Core 0A\mM\Z™);

Htx UnlockResource|LiSerialRSC.DortInUse);

}

void setupli) {

// put your setup code for core 1 hers, to run oncas

void loopll) {

// put your main code for core 1 here, to run repeatedly: |

(21); it look like usefull *
(Htx LockResource {£SeriallASC.PortInUse) = Htx RESCURCE BUSY) [;
SerialASC._print ("Hello from Core l\n\r");

Htx UnlockResource(sSerial®SC.PortInUse);

i

void setup2() {

/f put your setup code for core 2 here, to run once: I
|
1
[
void loop2{) {
// put your main code for core Z here, to run repeatedly:

(2515 . o like usefu I
(Htx_LockResource (&5eriallSC.PortInUse) = Hox RESOURCE BUSY) [7 |

SerialASC.print ("Hello from Core ZA\n\r™);

whi

Hex UnlockBesource |sSerialBSC DortIntlse) ; m

' e "

ShieldBuddyTC n COM30

This is rather inefficient way of getting cores to work
together as the cores spend a lot of time hanging around
in while() loops. Another way is to get one core to create
an interrupt in another core to tell it to do something.

21 2.8, 2015-05

hitex s

DEVFLOPMENT TOOLS
CONFIDENTIAL

ShieldBuddy TC275 Development Platform

Aurix 32-Bit Triple Core

2.4.2.2 Using Interrupts To Coordinate and Communicate Between Cores.

The Arduino language has been extended to allow you to trigger an interrupt in another core. This means that
core 0 can trigger an interrupt in say core 1. That interrupt might tell Core 0 that a resource is now free or
perhaps tell it to go and read a global variable that core0 has just updated.

/* Create an interrupt in core 1 */

CreateCorelInterrupt (CorelIntService);

Here Core1IntService is a function written by the user that Core 1 will execute when Core 0 requests it to do so.

Here is an example of coordinating the three
cores to use the SerialASC port again. Now the
print to the Serial ASC port only takes place when
(in this example) core0 requests it.

Note: if you want to create periodic interrupts in

one core rather than between cores, please see
section 2.17.

Released

r—
€9 sketch_novOla | Arduino 16.11

P

File' Edit Sketch Tools Help

sketch_novOla §

void CoreOIntServiece (woid)

roid CorellIntService {(vold)

vold CoreZIntService (vold)

void setup() {
// put your setup code for core 0 heze,

SerialASC._begin(9600);
CreateCorelInterrupt (CorefIntService);
CrezsteCorelInterrupt (CorellntService);
|| CresteCorezInterrupt(Core2IncService);
veid loopi) |

// put your main code for core 0 here,

InterruptCoreli);

delay (500} ;

InterruptCoreli);

delay (500} ;

InterruptCoreZi);
delay (500} ;

SerialASC print {"\nkrHelle from Core ™):

SerialASC print {"\nkrHelle from Core ™):

SerialASC print {"\nkrHelle from Core ™):

SerialASC print (GetCpuCoreID()); |

SerialASC print (GetCpuCoreID());

m

SerialASC print (GetCpuCoreID());

to run once:

to run repeatedly:

ShieldBuddy

22

2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

There are three CreateCoreXlnterrupt() functions available, one for each core. The parameter passed is the
address of the function that you want to run in the other core:

/* Create an interrupt in core 0 */
CreateCorelOInterrupt (Core0IntService);

/* Create an interrupt in core 1 */
CreateCorellInterrupt (CorelIntService);

/* Create an interrupt in core 2 */
CreateCore2Interrupt (Core2IntService) ;

These can be used with any core (i.e. in setup(), setup1() and setup2()). Thus any core can run an interrupt
fuction in any other core. To trigger the interrupt to happen, the InterruptCoreX() function is used.

/* Trigger interrupt in Core(now! */
InterruptCoreO () ;

/* Trigger interrupt in Corel now! */
InterruptCorel () ;

/* Trigger interrupt in Core2 now! */
InterruptCore2 () ;

243 Timers/Ticks/delay(), millis(), micros() Etc.

The TC275 STMO (system timer 0) is used to as a basis for all the Arduino timing functions such as delay(),
millis(), micros() etc. This is based on a 10ns tick time. In addition, the user can create his own timer-based
interrupts in core 0 using the CreateTimerlnterrupt() function.

This is used as per:

void STMO inttest (void)

{ digitalWrite (2, ToggleVar0O "= 1);
}

void setup() {

/* 10ns per bit count */
CreateTimerInterrupt (ContinuousTimerInterrupt, 10000, STMO inttest);

Here the user wants his function “STMO_inttest() to run every 100us forever. The time is specified in units of
10ns so 100us =10000 * 0.01us. For 50us, the value would be 5000. This can be used for making simple task
schedulers.

If the STMO_inittest() is only intended to run once but in 100us from now, this would be used:

/* Run STMO inttest once, 100us in the future */
CreateTimerInterrupt (OneShotTimerInterrupt, 10000, STMO inttest);

The maximum time period that can be set is about 42 seconds. The minimum practical time period is around
20us. If you want something faster then you will need to use another method!

For cores 1 and 2, there are further timer interrupt creation functions, using STM1 and STM2. There are two
timer interrupts per core allowed using this method (other methods allow more!).

Released 23 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

2.4.3.1 Core1

The CreateTimerlnterrupt0_Core1() function and CreateTimerinterrupti_Core1() allow two independent
interrupt functions to be called freely in the same way as with core0Q’s CreateTimerInterrupt(). These use STM1.

For example:

void STM1 inttestO (void)

{
digitalWrite (3, ToggleVarl 7= 1);
}

void STM1 inttestl (void)
{

digitalWrite (4, ToggleVar2 *= 1);
}

/* Make STM1 inttestO() function run every 100us */
CreateTimerInterrupt0 Corel (ContinuousTimerInterrupt, 10000, STM1 inttestO);

/* Make STM1 inttestl() function run every 50us */
CreateTimerInterruptl Corel (ContinuousTimerInterrupt, 5000, STMl inttestl);

2.4.3.2 Core?2

For Core?2 there are similar functions to core 1 but which are now based on STM2:

void STM2 inttestO (void)
{

digitalWrite (5, ToggleVar3 "= 1);
}

void STM2 inttestl (void)
{

digitalWrite (6, ToggleVar4d "= 1);
}

/* Make STM2 inttestO() function run every 100us */
CreateTimerInterrupt(0 Core2 (ContinuousTimerInterrupt, 10000, STM2 inttestO);

/* Make STM2 inttestl() function run every 50us */
CreateTimerInterruptl Core2(ContinuousTimerInterrupt, 5000, STM2 inttestl);

2.4.3.3 Direct Fast Access To The System Timer0

To read the current value of the STMO, upon which all the timing functions are based, use the
GetCurrentNanoSecs() function. This returns the current timer value in steps of 10ns.

TimeSnapshot0 = GetCurrentNanoSecs () ;
for(i = 0; i < 500; i++)
{1

TimeSnapshotl = GetCurrentNanoSecs () ;
/* Time in units of 10ns */
ExecutionTime = TimeSnapshotl - TimeSnapshotO;

Released 24 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

244 Managing the Multicore Memory Map

The Arduino IDE gives no clue as to where anything goes or even what memory is available. If you are not
bothered about execution speed or are only using Core 0, then variables can be declared just as in any other
Arduino board. However if you are using Cores1 & 2, having some idea how the physical memory is arranged
inside the TC275 can make a huge difference to the maximum performance that can be obtained.

Core2SRAM | — @ o e e e e e e e e e e e

0x50000000 (08PR2) —:
Core1SRAM | __ __ __ __ __ __ __ _ _ I
0x60000000 (DSPR1) : :
Core 0 SRAM [_ _ ' |
0x70000000 (DSPRO) _: : :
I I [
| | |
LMU SRAM | I I
0xB0000000 | _ (-MURAW | | I
_____ | —_———
:-Core 0SRAM I _ | lcore 1 SRAM I lcore 2 SRAM L

0xD0000000 (DSPRO) | | (DSPR1) I | (DSPR2) |

L o — — Lk o e e e ko e e

Figure3 TC275 RAMs

A global variable declared in the usual way will end up in the Core 0 SRAM (“DPSR0”).

uint3Z myglobalvariable = 0;

m

void setup() {

f{ put your setup code for core 0 here, to run once:

I}

If this is only used by Core0 then the access time will be very fast. This is because each of the RAMs appears
at two addresses in the memory map. Core0’s DSPR RAM appears to be at 0xD0000000 where it is
considered to be local and is directly on CoreQ’s local internal bus. It is also visible to the other cores at
0x70000000 so that they can read and write it freely. The penalty is that the access will be via a bus system
that all cores can access (the SRI) which unfortunately is much slower and can be influenced by other traffic
between cores. Thus all the cores have local RAM that is visible to the other cores, albeit at reduced speed.

There is a fourth RAM area (“LMU”) which is not tied directly to any core and which all cores have fast access
to. This is useful for shared variables that are heavily used by all cores.

Released 25 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFEFLOPMENT TOOLS

CONFIDENTIAL

As cores 1 & 2 are the fast cores, it makes sense to put their variables into their local RAMs but as standard, the
Ardunio IDE has no support for this. For the ShieldBuddy, a series of ready-made macros are available that
allow you to put variables into any of these SRAM areas easily.

Using these macros for core 1 and 2 data
will give a significant increase in

performance and is highly recommended. uint32 CorelFastVar = 0;
End0fInitialised CPULl Variables

Start0fInitialised CPUl Varisbles

Start0fInitialised CPFUZ_Varizbles

uint3Z CoreiZFastVar = 0;
EndCfInitialised CPUZ_Variables

m

StartOfInitialised LMURam Varizskles
uint3Z LmuFastVar = 0;

EndC0fInitialised IMURam Varizbles

uint3Z CorelFastVar = 0;

void setupl) {

0

ff put your setup code for core 0 here, to rum once:

The complete set of macros for putting variables in specific RAMs is:

/* LMU uninitialised data */

StartOfUninitialised LMURam Variables

/* Put your LMU RAM fast access variables that have no initial values here e.g. uint32 LMU var; */
EndOfUninitialised LMURam Variables

/* LMU uninitialised data */

StartOfInitialised LMURam Variables

/* Put your LMU RAM fast access variables that have an initial value here e.g. uint32 LMU var init = 1;
*/

EndOfInitialised LMURam Variables

/* CPUl Uninitialised Data */

StartOfUninitialised CPUl Variables

/* Put your CPUl fast access variables that have no initial values here e.g. uint32 CPUl var; */
EndOfUninitialised CPUl Variables

/* CPULl Initialised Data */

StartOfInitialised CPUl Variables

/* Put your CPUl fast access variables that have an initial value here e.g. uint32 CPUl var init = 1;
*/

EndOfInitialised CPUl Variables

/* CPU2 Uninitialised Data */

StartOfUninitialised CPU2 Variables

/* Put your CPU2 fast access variables that have no initial values here e.g. uint32 CPU2 var; */
EndOfUninitialised CPU2 Variables

/* CPU2 Initialised Data */

StartOfInitialised CPU2 Variables

/* Put your CPU2 fast access variables that have an initial value here e.g. uint32 CPU2 var init = 1;
*/

EndOfInitialised CPU2 Variables

Released 26 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

25 Peripheral And 10 Extensions

2.5.1 Faster digitalRead & digitalWrite

These functions are identical to the Arduino versions but to some extent suffer from limited performance due to
the overhead of the Arduino hardware abstraction layer.

Example of writing to Pin 2.

digitalWrite (2,HIGH); // 160ns, 6.25MHz core 0, 120ns corel/2
digitalWrite (2,LOW) ;

The maximum pin toggling rate is 6.25MHz on core 0 and 8.3MHz on cores 1 &2
To allow a more direct access to the IO pins, the Fast_digitalWrite() is provided.

Fast digitalWrite(2, LOW); // 30ns, 25MHz Corel/2, 40ns, core0
Fast digitalWrite (2, HIGH);

The run time is shorter, allowing the pin to be toggled at up to 25MHz when using cores 1 and 2.

The Fast_digitalRead(2) is a faster equivalent to digitalRead(2).

2.5.2 attachinterrupt() Function

The Arduino attachinterrupt() function is supported with some minor differences. The following pins are able to
create interrupts:

2,3, 15, 18, 20, 52
The mode parameter supports only values of RISING, FALLING, CHANGE.

ASC and QSPI are still available from functions called from these interrupts but timer functions created from the
CreateTimerlInterrupt() function are not.

2.5.3 Enabling and Disabling Interrupts

It is possible to disable all interrupts using:
noInterrupts();
This will also stop the delay() and other timer-related functions. Interrupts can be re-enabled using:

interrupts () ;

254 ADC Read Resolution

The default resolution for ADC conversion results is 10 bits, like on an ordinary Arduino. On the ShieldBuddy
you can set 8-bit or 12-bit conversions if required, using the analogReadResolution () function.

/* Set default VADC resolution 10 bits */
analogReadResolution (10u);

To set 12-bits of resolution,:

analogReadResolution (12u);

Released 27 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

To set 8-bits:

analogReadResolution (8u);

2.5.5 Fast ADC Conversions

The normal Arduino means of reading an analog channel is “analogRead(channel_no). This allows up to
around 450ksamples/sec. If the analog channel is fixed, then it is possible to access the channel result directly
and get up to around 600ksamples/sec. This requires the use of the ReadADx() functions. There are 12 of
these, one for each ShieldBuddy analog channel.

Example of Read ADx():

VADC result[i] ReadADO(); // Read A0 directly
VADC result[i] = ReadADl(); // Read Al directly

Released 28 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

2.5.6 analogWrite() & AnalogOut

2.5.6.1 PWM Frequency

Like the Arduino, the ShieldBuddy uses PWM to generate analog voltages. The PWM frequency is only around
1kHz on the Arduino. The ShieldBuddy frequency is 390kHz when using 8-bit resolution. Whilst this is great for
AC waveform generation, audio applications etc., it can be too high for some power devices used for things like
motor control.

The useArduinoPwmFreq() function will set the PWM frequency to 1.5kHz so that motor shields etc. should
work without problems.

2.5.6.2 Custom PWM Frequencies

It is also possible to set any PWM frequency using the useCustomPwmFreq() function:

/* Use 4000Hz carrier */
useCustomPwmFreq (4000) ;

The maximum frequency that may be set is 390kHz. The minimum is 6Hz.

If you want to change the PWM frequency after calling analogWrite(x,y), use the following functions:

AnalogOut 2 Reset(); // Allow analog channel 2 to be altered
useCustomPwmFreq (3900); // Change to 3900Hz carrier

analogWrite (2, 128); // Write 50% duty ratio at 3900Hz carrier

2.5.6.3 Fast Update Of AnalogOut() Function

In situations where the duty ratio has to be updated very frequently, it is often better to update just the duty ratio
register in the PWM system for the particular channel in use rather than using the normal analogWrite(). This
can be done using macros like:

AnalogOut 2 DutyRatio = 128;

The value used must be within the range allowed by the resolution you are using. For the default 8-bit, this is 0-
255; for 10-bit this is 0-1023 and so on.

For this to work, you must have used the normal analogWrite(x, y) for that channel at least once e,g.

analogWrite (2, 128);

2.5.6.4 DACO and DAC1 pins

These Arduino pins are specifically for accurate digital to analog conversion. They have a fixed 14-bit resolution
(0-16383) and a 6.1kHz PWM frequency.

analogWrite (DAQO, 8192); // Set 2.5V on DACO pin
analogWrite (DAQ1l, 4096); // Set 1.25V on DAC1 pin

Released 29 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

2.6 CAN

Controller Area Network is supported via the CANRX/CANTX pins, J406 (double row connector) pins 23 and 22
plus J406 pin53 and J405 DACO. These are CANO, CAN1 and CAN3 modules respectively. 11 and 29-bit
message IDs can be used. A total of 16 message objects (or more simply, messages) can be used. This is a
subset of the TC275’s real capability and is limited for the sake of simplicity.

There are three CAN channels on the ShieldBuddy, CANO, CAN1 and CAN3. These are located as follows:

Name TC275 Port ShieldBuddy Pin
CANO RX P20.7 pin CANRX
CANO TX P20.8 pin CANTX
CAN1 RX P14.1 J406 pin23
CAN1 TX P14.0 J406 pin22
CAN3 RX P20.9 J405 DACO
CAN3 TX P20.10 J406 pin53

Some prior knowledge of CAN is required to use these functions!

2.6.1 CAN Functions Usage

First the CAN module(s) must be initialised with the required Baudrate:
/*** Core O ***/

void setup() {
// put your setup code for core 0 here, to run once:

CANO Init (250000);
CAN1 Init(250000);

Next the messages to be sent or received via CAN must be set up. Here we will setup a transmit message on
CANO and receive it on CAN1 (we have connected two CAN modules together):

Transmit Message

/* Parameters CAN ID, Acceptance mask, data length, */
/* 11 or 29 bit ID, Message object to use */
CANO TxInit(0x100, Ox7FFFFFFFUL, 8, 11, 0);

Receive Message

/* Parameters CAN ID, Acceptance mask, data length, */
/* 11 or 29 bit ID, Message object to use */
CANlinInit(OXIOO, Ox7FFFFFFFUL, 8, 11, 1);

Here we are setting up a message object in the CANO module (CANRX/CANTX pins) to send 8 bytes with a
message ID of 0x100, using 11-bit identifiers. We will be using message object0 for the transmit message.
There are a total of 16 message objects available in the ShieldBuddy CAN driver and it is up to the user to make
sure that each transmit and receive object has an unique message object number! In our example, if we set up
another message (receive or transmit) we will use object 2, as 0 and 1 are already in use.

Released 30 2.8, 2015-05

hitex s

DEVFEFLOPMENTTOOLS

ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

CONFIDENTIAL

To send the message on CANO with 8 bytes of data consisting of 0x12340000 (lower 4 bytes) and 0x9abc000

(upper 4 bytes) with message ID 0x100:

/* Parameters CAN ID, 32 bits low data,
0x9%9abc0000, 8);

CANO_ SendMessage (0x100, 0x12340000,

To receive the message on CAN1:

32 bits high data, data length */

/* Parameters CAN ID, address of structure to hold returned data, data length */

RxStatus = CANl ReceiveMessage (0x100,

&msgl, 8);

For the receive message function, we must provide a structure into which the receive function can place the
received data. The predefined structure type “IfxMultican” can be used for this:

IfxMultican Message msgl;

The data received can be accessed in:

LowerData =
UpperData

msgl.data[0];
msgl.datal[l];

The receive function also returns a status value which can help in the event of a message reception failure. The

predefined type “IfxMultican_Status” can be used:

IfxMultican Status RxStatus;

The return values are any one of:

IfxMultican Status ok
IfxMultican Status notInitialised
IfxMultican Status wrongParam
IfxMultican Status wrongPin
IfxMultican Status busHeavy
IfxMultican Status busOff
IfxMultican Status notSentBusy
IfxMultican Status receiveEmpty
IfxMultican Status messagelost
IfxMultican Status newData

IfxMultican Status newDataButOneLost =

0x00000000,
0x00000001,

= 0x00000002,

0x00000004,

= 0x00000008,

0x00000010,
0x00000020,
0x00000040,

= 0x00000080,

0x00000100,
IfxMultican Status messagelLost |
IfxMultican Status newData

Please note that the CAN receive function does not need to know which message object in the CAN module is

being used — it works it out from the message ID passed to it.

However this relies on any message ID only

being used once, which is a basic requirement of the CAN specification anyway. If the CAN receive functions
are run but there is no message waiting then they will return value of 0x40. When this is data, they will return a

value of 0x100.

2.6.1.1

Receiving any message regardless of message ID

If you want to receive all messages on the CAN bus into a single message object, the acceptance mask
parameter in the CANx_RxInit() function needs to be set to zero.

/* Receive all message IDs up t0 OxFFF */
CAN1_RxInit(0x200, 0x7FFFFO00UL, 8, 11, 1);

Now the CAN message ID can be anything from 1 to OxFFF so you can enter any otherwise unused and valid
11 or 29-bit ID. Here we used 0x200. To receive the messages, use:

RxStatus = CANl ReceiveMessage (0x200,

Released

&msgl, 8);

31 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

2.7 I2C/Wire Pins & Baudrate

The ShieldBuddy’s default I2Cperipheral is on pins 20 (SDA) and 21 (SCL). Currently only the master mode is
supported. There are two new functions available compared with the Arduino. Before calling the Wire.begin(),
the pins to be used for the 12C can be specified, along with the Baudrate. The default pins are 20 and 21 but an
alternative set are at pins 6 (SDA) and 7 (SCL) as these are used on some shields. A further set are on pins
SDA1 and SCLA1.

Wire.setWirePins (UsePins 20 21); // Default pins for Arduino Due/MEGA SCL1/SDAl
Or:

Wire.setWirePins (UsePins 6 7); // Pins 6 & 7

Or:

Wire.setWirePins (UsePins SDAl SCL1l); // SDAl, SCL1

Wire.begin(); // join i2c bus (address optional for master)

The default Baudrate is 100kbit/s but this can be changed to up to 400kbit/s

Wire.setWireBaudrate (400000) ; // Set high speed mode

Wire.begin(); // join i12c bus (address optional for master)

Only one set of pins can be used with the Wire library at once. If you need two 12C channels then the second
one will have to use the software-driven 12C library. To do this, the SoftwareWire.h must be included at the top
of the file, for example:

// Use SW I2C port on any two pins
#include <SoftwareWire.h>

// Create Software I2C on pin6 (SDA) pin 7 (SCL)
SoftwareWire SwWire(6, 7, 0, 0); /* No pullups, no clock stretch */

It can then be used just like the normal 12C ports except that the Baudrate is fixed at around 100kbit/s.

Released 32 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

2.8 EEPROM Support

The Arduino EEPROM functions are available but their use is slightly different to when on an Arduino Uno,
MEGA, Due etc. This is because the TC275 has DFLASH rather than EEPROM. This has a similar number of
write cycles (125k) but due to the 8kbyte sector size, the mechanism for writing is different. There are 8kbytes
of emulated EEPROM available to you. Most of the features of the EEPROM system are described at:

https://www.arduino.cc/en/Reference/EEPROM

Note: The total DFLASH size if 384kbyte and if you want to use it with very large data sets then do not use the
Arduino-style EEPROM functions!

Date can be written to and read from the emulated EEPROM one byte at a time. If the EEPROM is to be used
in an application, it is recommended that the EEPROM manager is initialised before any read or write
operations.

/* Initialise EEPROM system */
if (EEPROM.eeprom initialise() == EEPROM Not Initialised)
{
/* EEPROM is bad */
while (1) { ; }
}

It is not mandatory to do this but if there is a failure in the EEPROM then it will not be reported. It is also the
case that the first read or write will initialise the EEPROM manager but please note that the first such operation
will take several milliseconds and if there is a failure in the EEPROM, you will not know about it.

EEPROM data can be read freely. EEPROM writes can be done freely as in fact the data is captured in a RAM
buffer. Once all the writes required by the application are completed, the eeprom_update() function must be
used to program the data into the underlying DFLASH.

/* Write buffer to DFLASH */
EEPROM.eeprom update () ;

This should not be confused with the EEPROM.update() function. This only stops data being written into the
RAM buffer if the same data is already there.

2.9 Resetting The ShieldBuddy

It is possible to reset the ShieldBuddy by executing the Reset_TC275() function. This causes a TC275 system
reset which puts the CPUs into the reset state.

2.10 SPI Support
2.10.1 Default Spi

The SPl is similar to that on the Arduino Uno and MEGA and can be used in much the same way. The default
slave select is pin10 with alternative one being on pin4. These can be used in the same way as on the Arduino.

Spi.begin // Use default slave select on pl0

();
Spi.begin(10); // Use default slave select on pl0
Spi.begin(4); // Use slave select on p4 (used by SD cards)
Spi.begin(5); // Use slave select on p5 (used by TFT shields)

Released 33 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

2.10.2 Spi Channel 1
There is a second independent Spi channel on p12 (MISO), p11(MOSI) and p13 (SCK) which also uses p10 as
the slave select. To use this Spi channel:

Spi.begin (BOARD SPI SSO_S1); // Use Spil with slave select on pl0

To use this SPI channel:

Spi.transfer (BOARD SPI SsS0 _S1, data);

2.10.3 Spi Channel 2

There is a further Spi channel on p50 (MISO), p51 (MOSI) and p52 (SCK) which currently implemented as a
bit-bashed Spi. This is intended for use with special shields like the Industrial Shield range from Boot & Work.
Two possible slave selects are supported, pin53 and pin10.

Spi.begin (BOARD SOFT SPI SS2); // Use slave select on p53
Spi.begin (BOARD SOFT SPI SS0); // Use slave select on plO

To use these channels:

Spi.transfer (BOARD SOFT SPI SS2), data);
Spi.transfer (BOARD SOFT SPI SsS0), data);

Note that the latter cannot be used at the same time as any other Spi channel that has p10 as the slave select.
This Spi channel runs at about 3mbit/s so a typical 8-bit transfer takes around 2.9us.

Table 1 SPI Names
SPI Name Comment Used Pins

. . MISO = P201.1, MOSI =
BOARD_SPI_SS0 Pin10 is default CS on SPI Ch0 P201 4 SCK = P201.3

MISO = p12, MOSI = p11

BOARD_SPI_SS0_S1 Really pin 10 but this means use it with SPI Ch 1

SCK = p13
BOARD_SOFT SPI_SSO0 | Bit bashed SPI only p10 chip select “S”éio==pggo’ MOSI = p51
BOARD_SOFT SPI_SS2 | Bit bashed SPI only p53 chip select “S”éio==pggo’ MOSI = p51

MISO = P201.1, MOSI =

BOARD_SPI_SS1 Used for SD Cards on SPI Ch0 P201.4 SCK = P201.3

Released 34 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

2.11 Aurix DSP Function Library

The Aurix has a number of built-in DSP-like functions such as saturated maths, Q-arithmetic, circular buffer
types etc. These are often used in applications such as:

Complex Arithmetic
Vector Arithmetic

FIR Filters

lIR Filters

Adaptive Filters

Fast Fourier Transforms
Discrete Cosine Transform
Mathematical functions
Matrix operations
Statistical functions

To allow these to be implemented easily and efficiently, Infineon have released the “TriLib” library. This consists
of assembler-coded routines that are highly optimized for minimum run time and are designed to be callable
directly from C and C++ programs (including the Arduino IDE). They are not floating point. For such
operations, the on-board floating point units are directly used by the compiler, so nothing special needs to be
done. It should be borne in mind though that the free Aurix GCC toolchain used with the ShieldBuddy does not
have the highly optimised runtime libraries supplied with the full version so some functions are slower than
might be expected.

It is recommend to use the DSP TriLib functions on cores 1 or 2 as these are around 20% faster than core0 due
to the more sophisticated pipeline. There are no special steps to take when using them.

2.12 Ethernet BootLoader/In Application Ethernet Flash Programmer

It is possible to program the TC275 PFLASH via an Ethernet shield using TFTP. There are a number of ways to
do this which are described below.

2.12.1 Overview

TFTP is a simple file transfer protocol which is often used to boot diskless and embedded systems. It uses UDP
and requires a conventional TCP/IP network setup. The booloader is not 100% robust and if transmission and
programming is interrupted, it is possible for the ShieldBuddy to be left with an incomplete or damaged
application in its Pflash. If this happens, you will have to reprogram it directly from the Arduino IDE or the UDE
debugger via USB.

2.12.2 Setting The Network Addresses

The default IP address "192.168.3.177" will need to be changed to suit your local network environment, as will
the IP addresses given in \aurix\systemiinclude\net.h. Edit this file as required.

/* Gateway Address */

#define GWIPO 192
#define GWIP1 168
#define GWIP2 3
#define GWIP3 1

/* Subnet Mask */

#define MASKO 255
#define MASKI1 255
#define MASK2 255
#define MASK3 0

Released 35 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

/* MAC Address */

#define MACO 0x12
#define MAC1 0x34
#define MAC2 0x45
#define MAC3 0x78
#define MAC4 0x9A
#define MACS 0xBC

/* IP Address */

#define IPO 192
#define IP1 168
#define IP2 3

#define IP3 177

2.12.3 Configuring The SPI

The Ethernet bootloader use a bit-based SPI to eliminate the need for interrupts running during PFlash
programming. This can be conifigured to use any 4 Arduino pins but the most commonly used ones for
Ethernet are given in net.h. Please note that the SPI pins on the 6-way ICP (P201) connector are not normally
assigned Arduino pin numbers but on the ShieldBuddy, they are pins 61, 62 and 63.

/*** Bit Bashed SPI for TFTP Download ***/

/* Pin definitions for ICP SPI port */
#define SCK pin 62
#define MISO pin 61
#define MOSI pin 63
#define TFTP_SS 10

These can be changed as required.

2.13 Using The Bootloader

The EnterBootLoader() function will wait for 10 seconds for TFTP transmission from the PC to begin. If nothing
is received it times out and exits. If data is received, it is programmed into the TC275 Pflash. If the data stream
is interrupted before completion, it waits for transmission to restart without timing out. This is because the
Pflash is likely to be in a corrupted state and the TC275 continues to execute the Bootloader which is running
from the PSPRO RAM. If the TC275 is reset in this state, it will not restart and you will have to reprogram it via
the Arduino IDE or the UDE debugger.

The Bootloader can be used in two ways:

(i) Program the “BootLoaderTest” sketch into the ShieldBuddy and then at some later time, send it the real
application via Ethernet and TFTP.

(i) Build sketches/applications with a call to the Bootloader included in them:
// Call the bootloader to program itself back into Flash
// Ends with a TC275 reset if programming was successful otherwise it returns

// after 10 seconds.
EnterBootLoader ();

Released 36 2.8, 2015-05

hitex s ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFLOPMENT TOOLS
CONFIDENTIAL

2.14 Sending Programs To The ShieldBuddy

The Bootloader expects to receive a binary image of the new ShieldBuddy program. At the moment this not
possible from directly from the Arduino IDE. Note that CPU1 & 2 cannot be used during the programming
process and the bootloader will disable them until the final reset occurs.

First of all, use the Arduino IDE to program the BootLoaderTest sketch into the ShieldBuddy in the normal way
and then reset the board. The binary image of this sketch can be created with the HEX2BIN tool from the same
AurduinoUpload.hex file that the Arduino IDE would normally send to the ShieldBuddy via USB:

C:\Hitex\AURduinoIDE\Tools\hex2bin c:\HIGHTEC\AurduinoUpload.hex
The binary file is then sent to the ShieldBuddy using TFTP.EXE:
C:\Hitex\AURduinoIDE\Tools\tftp -i 192.168.3.177 put C:\HIGHTEC\AurduinoUpload.bin

These lines can be combined into a batchfile containing:

C:\Hitex\AURduinoIDE\Tools\hex2bin C:\HIGHTEC\AurduinoUpload.hex
C:\Hitex\AURduinoIDE\Tools\tftp -i 192.168.3.177 put C:\HIGHTEC\AurduinoUpload.bin

Now run the batchfile:
C:\Hitex\AURduinoIDE\Tools\SendAppTftp.bat
The user LED (pin13) on the board will flash until the TFTP connection is made at which point it stops. When

the programming is completed, the TC275 will be reset and the bootloader will restart. You should see the LED
flashing again.

2.15 Tone() Functions

The standard Tone functions are implemented, as per the Arduino. The only difference is that the range of
tones is from 0.232Hz to 100MHz. The duration can be up to 65.5 seconds.

Not all ShieldBuddy pins can be used for the Tone functions. The following pins may be used:

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
18 19 20 21 22 28 30 31
32 34 39 41 42 43 47 49
51 52
Table 2 Pins available for tone() function
2.16 PWM Measurement Functions

The TC275 GTM TIM modules can be used to make PWM period and duty cycle measurements automatically
and without interrupts. The PWM frequency must be in the range of 5.96Hz to 10MHz. The following

ShieldBuddy pins can be used for this purpose:

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 17 18 19 20
21 24 25 27 28 29 31 33 35 37
38 39 44 45 46
Table 3 Pins available for PWM measurement functions
Released 37 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

2.16.1 Using The PWM Measurement Functions

The PWM measurement system must first be initialized for the pin you want to use, here on pin 8. This is for a
normal positive-going PWM signal:

// Initialise PWM measurement
Init TIM TPWM(8, TIM TPWM RISINGEDGE); // Use pin 8, rising edges

For an inverted PWM signal on pin9 for example:

Init TIM TPWM(9, TIM TPWM FALLINGEDGE); // Use pin 9, falling edges

The function used to make the measurement is “MeasurePwm()”. This has parameters as per:

MeasurePwm (uint8 pin, uint32 *Period, uint32 *Duration, float *DutyRatio);

It expects to receive the address of the variable into which you want the new data to be inserted, e.g.

MeasurePwm (8, &PWM Period(O, &PWM DurationO, &DutyRatioO);

Where the parameters have previously been declared as:

uint32 PWM PeriodO;
uint32 PWM DurationO;
float DutyRatioO;

The PWM period and duration are returned as integers scaled in units of 10ns. Thus a period of 1ms will result
in PWM_Period0 being 100000. The duty ratio is returned as floating point value in the range of 0-1. Please
note that if there is just a ‘1’ or ‘0’ applied to the pin i.e. no PWM is present, the MeasurePwm(() function will not
update the parameters passed to it. To allow you to check for this condition, it returns either
“NoPwmMeasurementData” or “PwmMeasurementData” from the typdef MeasurePwmReturnType:

typedef enum { NoPwmMeasurementData, PwmMeasurementData } MeasurePwmReturnType;
For example:
if (MeasurePwm (8, &PWM PeriodO, &PWM Duration0O, &DutyRatioO) == PwmMeasurementData)

{
// New PWM data available - parameters passed will be updated

}

else

{
// New PWM data available - parameters passed are not updated
}
To measure just the duty ratio of a PWM signal, you can use:
DutyRatio0 = MeasureDutyRatio(8);

To measure just the frequency of a PWM signal (or in fact any signal), you can use:

FrequencyO = MeasureFrequency(8);

Released 38 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

217 General Purpose Timer Interrupts

There are nine general purpose timers available (based on the ATOMs in the GTM) that can be used to call an
user-defined function from a periodic interrupts. The longest time is about 170 seconds and the shortest is
around 1us. The units of time are by default based on 0.02us per count (50MHz).
Example
We want call this function every 100us using timer 2:
void UserTimer2Handler (int 1)
{
digitalWrite (13, !digitalRead(13));
}
First, set the name of the function to be called:

// Set user handlers
TimerChannelConfig[2] .user inthandler = UserTimer2Handler;

Then initialize the Timer 2 channel:

// Initialise general timer channels
InitialiseTimerChannel (2);

Finally, set the period of the interrupt, in units of 0.02us:

// Set period of timers
SetTimerChannelPeriod (2, 5000);

The function UserTimer2Handler() will now be called every 100us.
You can temporarily disable a timer channel using:
DisableTimerChannelInt (2) ;

And restart it with:

EnableTimerChannelInt (2);

Released 39 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

3 Hardware Release Notes HW Revision B
3.1 ShieldBuddy RevB Known Problems

The ShieldBuddy Revision B has a number of functional characteristics, listed below.

1. Itwillonly run at 5V. It is possible to get 3V3 operation but this requires the changing of a voltage
regulator and the changing of some resistors

3.2 CIC61508 (Safety version only)

The CIC61508 is programmed with the VANIA3.2 firmware release.

3.3 VIN Pin

The VIN pin on the ShieldBuddy power connector strip allows access to the 9-12V input from the power jack
socket. This may be used to power shields that require a higher voltage e.g. the DC motor shield. In this case,
please note that the maximum continuous current that can be drawn through this pin is 1.5A due to the 0.5mm
track used..

Released 40 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

4 Arduino-Based Connector Details

The ShieldBuddy is based on the Arduino Due (SAM3X) form factor. Where possible, the pin functionality of the
Due has been implemented using an equivalent Aurix peripheral.

4.1 Board Layout
PWMH PWML COMMUNICATION
D17 D8 D7 DO
(Y01 J3062 J303
- af DO XXX Iy x1
m o . @: 388 oo
m G . . ; paseeme N 1 o0
S S oz Samsom oo g | S e
| o MMM S imnnm phd
e = w2l (=
1. by = = Y i o0
VIR g 8 = == 30 o0
- = E = _.E E E mmmm ' = RI; o0
E= E - E = g = = E =mmm ml o= § o0
MmN EE T gy £ S == I ®o
'!E WIE- - cmﬁ = = g g::ﬂl P
L [l | . E 0 nowm o @
S . s msg ° oe
o TLE = = ol : m
| Lol e (T T’mﬁ [T nt :
el LW 1 . i
: E. L L == @ o0
wor @ i
ey @ HEl HeG0G000 HEG00000 Eooooo0e .{
A0 A5 All
POWER ADCL ADCH

Figure4 Top view of ShieldBuddy

Released 41 2.8, 2015-05

hitex s

DEVFLOPMENT TOOLS
CONFIDENTIAL

ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

4.2 Connector Pin Allocation
PWML
e
B2 3 {(PWMT) 3
B2 4 PWNE) 7
P02 3 {(PWMS) A
Pl 4 (SS1/PWMY) | .
P02 1 (PWMI) :1
B2 0 (PWhI2) 3
P15 .2 (0 =
Pl5 3 (B30 1
LeW-108-01-G-5
COMMUNICATION
14403
P1S 4 (SCLO-3) 2
P15 5 (SDAD-3) :
P30 3 (FoaD2) é
20 0 (TAD2) 5
P33 8 (F3D1) 1
P33 © (T} 3
P15 1 (B3I 2
P15 0 (T} 1
SEW-108-01-G-5
ADCH
1405
SARS 7 &m® P20 8 (CANTX0) .
SARS 6 &m P20 7 (CANRXO0) .
SARS 5 &m P33 11 (DAC1) .
SARS5 4& P20 9 and P33 10 (DACO) .
P23 4 ¥ & SAR0O O (AD11) 4
P23 5 & SARO | (AD10) %
P22 2 & SARO 2 (AD9) 5
P33 6 & SARO 3 (ADS) "

Released

PWMH
1441
P13 1 (SCL1) 10
P13 2 (SDAI) 3
A
AREFO<) (AREF) g
GHD) | P10 2 (SECE) E
PI0 1 (MISO) 2
P10 3 (WOET) -t
P10 5 (SS5O0PWRIL0) 3
PO2 7 (P 5
PO2 & (PWAIE) 1
SEW-110-01-G-5
ADCL
7404
P20 6 & SAR2 4 (AD7) 8
P23 3 & SAR2 5 (ADG) 7
P10 7 m& SAR3 0 (ADS) i
P10 0 m& SAR3 1 (AD4) .
P23 2 & SAR4 4 (AD3) 4
P23 1 & SAR4 5 (AD2) o5
P32 4 & SAR46 (ADI) 5
P32 3 & SAR4 7 (ADO) 1
POWER
+IV3 VDD
A N
7502
]_ r——
\ (IOREF} |
5 (MASTER RESET) PORST
4 R521
5 F 1
6 iy
x ; ‘»Ea'
g
SSW-108-01-G-5
=)
42 2.8, 2015-05

hitex s

DEVFLOPMENT TOOLS
CONFIDENTIAL

ShieldBuddy TC275 Development Platform

Aurix 32-Bit Triple Core

P21 2 & P33 13

VDD VDD
1406
vl 2
P14 1 (PIN23) s 1 (PIN22) P14 0
P00 0 (PIND5) (PIN24) P15 6
P00 1 (PIN27) o % (PIN26) P00 8
P00 2 (PIN29) 9 10 (PIN28) P00 9
P00 3 @ (PIN31) 1 D (PIN30) P00 10
POO 4 (PIN33 13 14 (PIN32) POO 11
P00 5 (PIN33) 5 16 (PIN34) P00 12
P00 6 (PIN37) 1:;, 13 (PIN36) P33 2
POO 7 (PIN39) 19 20 (PIN38) P33 1
PI1 9 (PIN41) 51 (PIN40) P33 0
P11 11 (PIN43) ;; 2;1 (PIN42) P11 10
P11 2 (PIN45) 55 26 (PIN44) P33 3
P11 6 (PIN47) o 33 (PIN46) P11 3
P21 0 (PIN49) ;5 3 (PIN48) PIN48
p33 12 &PI13 3 = & P02 8 (PIN51) 31 (PIN30) P33 4
p33 7 & P20 10m & P11 12 (CANTX/IO) ;; 34 [(ASCZRX/ASC3TX) p33 5 &m PIS §& P10 8
35 36
‘ SSW-118-01-G-D ‘
GND GND
Figure5 Extended 10 Connector
VDD
Pl
P201
P2 1 (MISO3) 1 3
P2 3 {SPCET) 3 1 MOSI3) B2 0
PORST (MASTER EESET) 5 5
TSM-103-01-L-DV_dnf
D
Figure 6 SPI Connector

Released

43

2.8, 2015-05

hitex s

DEVFLOPMENT TOOLS
CONFIDENTIAL

ShieldBuddy TC275 Development Platform

Aurix 32-Bit Triple Core

4.3 TC275 ASCLIN to ShieldBuddy connector mapping

Table 4 ASCLIN to ShieldBuddy connector mapping
TC275 Port Pin ASCLIN Board Marking Comment
P15.0 ASCH1 TX0 Serial0
P15.1 ASCH1 RX0
P33.9 ASC2 TX1 Seriall
P33.8 ASC2 RX1
P20.0 ASC3 TX2 Serial2
P20.3 ASC3 RX2
P15.2 ASCO TX Serial
P15.3 ASCO RX

SerialASC - Available via

P15.7 ASC3 TX USB
pP32.2 ASC3 RX

Table 5 Arduino To ShieldBuddy To TC275 Mapping
Arduino Signal Name ShieldBuddy Connector TC275T Pin Assignment

Name

Analog pin 0 ADCL.1 SAR4.7/P32.3
Analog pin 1 ADCL.2 SAR4.6/P32.4
Analog pin 2 ADCL.3 SAR4.5/P32.1
Analog pin 3 ADCL.4 SAR4.4/P23.2
Analog pin 4 ADCL.5 SAR3.0/P10.7
Analog pin 5 ADCL.6 SAR3.1/P10.0
Analog pin 6 ADCL.7 SAR2.5/P23.3
Analog pin 7 ADCL.8 SAR2.4/P20.6
Analog pin 8 ADCH.1 SAR0.3/P33.6
Analog pin 9 ADCH.2 SAR0.2/P22.2
Analog pin 10 ADCH.3 SAR0.1/P23.5
Analog pin 11 ADCH.4 SAR0.0/P23.4
Analog pin 12/DACO ADCH.5 SARS5.4/P20.9/P33.10
Analog pin 13/DAC1 ADCH.6 SAR5.5/P33.11
Analog pin 14/CAN RX ADCH.7 SAR5.6/P20.7 CANO RX
Analog pin 15/CAN TX ADCH.8 SARS5.7/P20.8 CANO TX
Digital pin 4 (PWM/SS) PWML.5 P10.4
Analog Reference AREF PWMH.8 AREF
Digital pin 0 (RX0) PWML.1 P15.3
Digital pin 1 (TX0) PWML.2 P15.2
Digital pin 2 (PWM) PWML.3 P2.0
Digital pin 3 (PWM) PWML.4 P2.1
Digital pin 5 (PWM) PWML.6 P2.3
Digital pin 6 (PWM) PWML.7 P2.4
Digital pin 7 (PWM) PWML.8 P2.5
Digital pin 8 (PWM) PWMH.1 P2.6
Digital pin 9 (PWM) PWMH.2 P2.7
Digital pin 10 (PWM/SS) PWMH.3 P10.5
Digital pin 11 (PWM/MOSI) PWMH.4 P10.3
Digital pin 12 (PWM/MISO) PWMH.5 P10.1
Digital pin 13 (PWM/SPCK) PWMH.6 P10.2

Released

44

2.8, 2015-05

hitex s

DEVFLOPMENT TOOLS
CONFIDENTIAL

ShieldBuddy TC275 Development Platform

Aurix 32-Bit Triple Core

Arduino Signal Name

ShieldBuddy Connector
Name

TC275T Pin Assignment

Digital pin 14 (TX3)

COMMUNICATION.8

P15.0 ASC1 RX TXCAN2

Digital pin 15 (RX3)

COMMUNICATION.7

P15.1 ASC1 RX RXCAN2

Digital pin 16 (TX2)

COMMUNICATION.6

P33.9 ASC2 TX

Digital pin 17 (RX2)

COMMUNICATION.5

P33.8 ASC2 RX

Digital pin 18 (TX1)

COMMUNICATION.4

P20.0 ASC3 TX

Digital pin 19 (RX1)

COMMUNICATION.3

P20.3 ASC3 RX

Digital pin 20 (SDA) COMMUNICATION.2 P15.4

Digital pin 21 (SCL) COMMUNICATION.1 P15.5

Digital pin 22 Xl0.3 P14.0

Digital pin 23 Xl0.4 P14.1

Digital pin 24 X10.5 P15.6

Digital pin 25 X10.6 P00.0

Digital pin 26 X10.7 P00.8

Digital pin 27 Xl0.8 P00.1

Digital pin 28 XI0.9 P00.9

Digital pin 29 X10.10 P00.2

Digital pin 30 X10.11 P00.10

Digital pin 31 X10.12 P00.3

Digital pin 32 X10.13 P00.11

Digital pin 33 X10.14 P00.4

Digital pin 34 X10.15 P00.12

Digital pin 35 X10.16 P00.5

Digital pin 36 X10.17 P33.2

Digital pin 37 X10.18 P00.6

Digital pin 38 X10.19 P33.1

Digital pin 39 X10.20 P00.7

Digital pin 40 X10.21 P33.2

Digital pin 41 X10.22 P11.9

Digital pin 42 X10.23 P11.10

Digital pin 43 X10.24 P11.11

Digital pin 44 (PWM) X10.25 P33.3

Digital pin 45 (PWM) X10.26 P11.2

Digital pin 46 (PWM) X10.27 P11.3

Digital pin 47 X10.28 P11.6

Digital pin 48 X10.29 P21.3 (B-step) P21.1 (A-step) via link
Digital pin 49 X10.30 P21.0

Digital pin 50 (MISO) X10.31 P33.4+P21.2 + P33.13
Digital pin 51 (MOSI) X10.32 P33.12 + P13.3 + P2.8
Digital pin 52 (SCK) X10.33 P33.5+P15.8 + P10.8
Digital pin 53 (SS) X10.34 P33.7 + P20.10 + P11.12
SPI connector 1 MISO3 P22.1

SPI connector 2 +5V

SPI connector 3 SPCK3 P22.3

SPI connector 4 MOSI3 P22.0

SPI connector 5 RESET

SPI connector 6 GND

12C SDA1 PWMH.10 P13.1

12C SCL1 PWMH.9 P13.2

GND PWMH.7 GND

Released

45

2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFLOPMENTTOOLS

CONFIDENTIAL

SARS 7 =P20_8
SAR5 6 = P20 7
SAR3_5 = P33_11
SARS_4 = P20_9 = P33_10
P13_1 SCL1 O
P13_2 SDAT o]
_| arero o]
T no g GND O
Ol IOREF /VDD/ 5V ? |oy % z:gf a'lj;g 8
O| /PORST RESET (& |0 = "5~ S
O| +3.3v z »
O| vop viAREss21 |4 E;g—f iﬁf;:;wmm 8
O enp g PO2_6 PWMB O
0| GND — —
O] VINg.12v P02_5 PWM7 [?)
=1 aARd 7 ADO | PO2_4 PWMB lo]
d - 2| P02_3 PWM5 O
O SAR4_6 AD1 2| pio 4 ssiPwme |O
O SAR4_S AD2 3 g P02_1 PWM3 le}
8 giig—‘: igj < E|Po2o pwm2 o
O| SAR3 0 ADS 8 P12 X ©
O| SAR2_5 AD6 < Pla3 RX &l
Q| SAR2_4 AD7 § P15_0 TXDO O
— 3| P15_1 RXDO lo]
O] SARO0_3 ADS Z | P33_9 TXD1 O
O| sAR0_2 AD9 2| pas s rRxD1 le}
O| SARO_1 AD10 8 &) P200 TxD2 le]
0| SAR0_D AD11 > Z|p203 Rxp2 [e]
O| SAR5 4 DACO 5 % P15_5 SDAQ-3 O
O| sAR5.5 DACT |2 3| Pi5.4 SCLO3 |
Q| SAR5_6 CANRXO o —
|O] SAR5 7 CANTXO
[ONONORONONORORCNORO RO NG RO RO NONORONS EXT IO / J406
CO0OQCOOOCDOOoCLoCOOoOOOocOoon

Figure7 TC275 to Arduino Connector Mapping

GND O O] GND
ASC2RX,ASC3TX P33_5 P15_8 [0 O| CANTXIO P11_12, P20_10
PINSO P33 4,P21_2 O O| PIN52 PO2_8, P13_3

PIN48 PIN48 |O O PIN49 P21_0

PIN4E P11_3 |O O] PIN4T P11_6

PIN44 P33_3 |O O] PIN45 P11_2

PIN42 P11_10 |O O PIN43 P11_11

PIN4D P33_0 |O O| PIN41 P11_9

PIN38 P33_1 |O O PIN39 P0O_7

PIN38 P33_2 |O O PIN37 P0O_B

PIN34 P00_12 |O O PIN35 P00_5

PIN32 POO_11 |O O] PIN33 PO0_4

PIN30 POD_10 |O Of PIN31 P00_3

PIN28 POD_9 |O Of PIN29 P00_2

PIN26 PO0O_8 |O O] PIN27 PDO_1

PIN24 P15_6 |O O PIN25 P0O_D

PIN22 P14_0 |O O PIN23 P14_1

vDD/5v? |O.O| vDD/5v 2

m
o
(=}
=
&

Figure 8 TC275 to Arduino EXT IO Connector Mapping

Released 46 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

5 Powering The ShieldBuddy

The ShieldBuddy can be powered from USB or from 6V to 9V on the jack socket. The switch S501 allows the
power source to be selected. The jumper position towards the centre of the board selects USB power.

It is possible to power the board from just the USB however some shields require more current than can be
supplied via USB so in the case, the external power jack should be used.

When powered from the external jack, the CIC61508 has its own independent power regulator, as required by
the safety architecture. When using USB power, the CIC61508 shares is power supply with the Aurix. This is
the non-safety configuration, for development use only.

5.1 Selectable Options

R403
—

| S|

OR_dnf

P21 1

PIN43
F404

P21 3 —
| S|
OR

Note: Populate R403 with A step TC275.
Populate B404 with B step TC275.

5.2 Restoring an ShieldBuddy with a completely erased FLASH.

If the TC275 PFLASH becomes completely erased or if the bootmode headers are damaged, the device can no
longer be accessed via JTAG or DAP. The debugger will report “No Valid ABM On Target” and the FLASH
cannot be programmed, even though it might appear to have been. To overcome this, JP201 can be used to
temporarily enable the debug interface so that the PFLASH can be reprogrammed. To do this, follow the
procedure given below:

With the ShieldBuddy powered up:

Close the jumper JP201

Press the reset button

Remove the jumper on JP201

Attempt to start your Flash programming tool or debugger
The tool should now connect

Reprogram the PFLASH in the usual way

oakow~

Released 47 2.8, 2015-05

hitex s

DEVFLOPMENT TOOLS
CONFIDENTIAL

ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

6 Underside Component Placement
H0) 0000000 H0000000 HOs00s0see P Eﬂﬂiﬂﬂ
e
oo on L e =t
o m 0 @
e ms.:-géf Wamw; g vI- Eﬂ-[: =§
[N zﬂJﬁ3 psaz M ﬁ?-sus e o mi ‘"gl" 050+ g
ee EBmtihl §Ei s goas v By
- o0 Rsar:::: wnGis04 podel 0601 R = i!= — Inl“m "= |
Y gﬁmss-ﬂ‘g Srop2Em CSUMM W mC304 A
£ 3 pat] R20iEE RBI3EW i) -
c 00 - rzoomm FOlSEE 0502 ™ L com m
E : : ﬁ ﬁ 4269, 01.0626- pioipm oEE Ei:: [=] B EU'EU.IU oo
b= R4030°H CcElZE W uljm >
IF-" o0 S/ 42.559.01.- criomm csoslll om WM 1111
o0 - Euug.';:lwt:g. cou uk .EEJI:SDBII am ﬂﬂ' e D- ol %3%:::
CY :353 EEE_@Q W mcs20 sgggga.gg S s 110
TELH- - B2225230 , om =
e S ssdggggu[i] ln.! E.l =]
oo I i - 050
o0 ® = EMHE v
" |
e -
\. 0000000 E 00000 CON oo0sOOOR ®.
Figure9 Bottom view of ShieldBuddy
Released 48 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

Released 49 2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

7 Top Side Component Placement

m " geccccccccn soccccen mHescccco@eon
T = ® il u t
==, "al #E - o g | Wl oo
==t T _ ———————— %% I o
e = TER N oo
tEE g WE S = L o0
f= Eou 5 5 g E E T T olpEraoee
el T A E mmm T ‘. loe
=a @i ol = 5 g £: e
mS e S S = E o o @
e IE: g - . g £ g- E 'E H oo
| ol e T o @ ®
P 0oy = TG
° E. E: REER . SEN o0

m:_aue?. — ;2....... 31.94....... :n:....... .|{

Figure 10 Component Location — Top Side

Released 50 2.8, 2015-05

hitex_ ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVFEFLOPMENTTOOLS

CONFIDENTIAL
8 Appendices
8.1 Basic Board Test

If you think your ShieldBuddy has been damaged, please run this simple test to see if the CPU is still OK.
Note: It is assumed that Infineon DAS v4.6 or later is already installed on your PC.

Go to “C:\Hitex\AURduinolDE\Tools\EOL _Test”

New folder
= Mame : Date modified Type Size
. Memtool 09/04/2015 10:10 File folder
7| Aurduino_Template_5.hex 09/04,/2015 08:01 HEX File 374 KB
¢+ BoardEOLtest.cpp 09,/04,2015 09:01 C++ Source 2KB
memtoolinp.bat 09/04,/2015 09:15 Windows Batch File 1KB
programAurduine.bat 09/04/2015 09:46 Windows Batch File 1KB

Connect the ShieldBuddy to the USB port on your PC. Make sure that the jumper by the power jack socket is in
the “USB” position.

Wait for DAS to detect the ShieldBuddy — this takes about 15 seconds. Run the batch file
“programShieldBuddy.bat”.

The Memtool programming tool will start and program the ShieldBuddy_Template_5.hex hexfile into the TC275
FLASH.

File Target Device Log Help
===

-

Execute Memtool Command
File: —

C:5Projectshauriz\Aurduinotdurduing_Templat Curtent FLASH/OTF Devica : ~| W Enable
2 MBuyte OnChip Program FLASH
1 e | - Remove Al Erase
B aavagal Frogram
Verify

Operation :

JErasE Sector

Result: S Protect... ' Protect

[| 8 o |
Progress (fiex

ll—.. E. - Infa . Setup ...

~To

| Cancel]

Help Esit

Released 51 2.8, 2015-05

hitex s

DEVFEFLOPMENTTOOLS

ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

CONFIDENTIAL

Now start a terminal emulation program (e.g. putty, MTTY, Hyperterm etc.) and use the following serial

parameters:
AD9600 Properties (2] = |
Conmnect To | Settings |
|
[COM 196 Properties . Gl
Port Settings I
Bitz per second:]BSDD -
Data bits: |8 T
Paiity: |None i
Stop bits; |1 -
Fow control: |None -
Restore Defaults
[=—
ok | caneel | e |

The COM port created by the ShieldBuddy will vary from PC to PC. You can find it in the Windows Control
Panel - Device Manager under Ports (COM & LPT). Here itis COM196. Note it is usually the second virtual
comport that is the active one. Make sure your terminal program is using this comport!

.

-En Device Manager

File Action View Help
e T HE| &
a = MBEACHO2

: -:@ Batteries

»-M Computer

=g Disk drives

Bl Display adapters

-5 DVD/CD-ROM drives

b 5@‘ Human Interface Devices

g IDE ATA/ATAPI controllers

- @ IEEE1394 Bus host controllers

5 Imaging devices

bR Keyboards

}E!, Mice and other peinting devices

lu Monitors

¥ Network adapters

b - Other devices

b JEE Portable Devices

a Y5 Ports (COM & LPT)

7 Infineon DAS JDS COM (COML195)
i 7' Infineon DAS JDS COM (COMI196)
b D Processors

b -% Sound, video and game controllers

o

M| System devices
» - @ Universal Serial Bus controllers

Released 52

2.8, 2015-05

hitex s

DEVFEFLOPMENTTOOLS

ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

CONFIDENTIAL

With the terminal program running, press the reset button on the ShieldBuddy. The following text should

appear:

File Edit View Call Transfer Help

N T

D& = 5|08 &

Test AURduino RevB
Press any key to
proceed with test..._

o .n]

Connected 00:01:26 |Auto detect [96008-N-1 [scrall [caps [NUM [Capture

Now press any alpha key — here it was ‘A’. The key you pressed will be printed into the terminal and the LED

on the ShieldBuddy pinD13 should start to flash.

Q ADIE00 - HyperTerminal

[=[E] =]

File Edit View Call Transfer Help

D& & 8 0B | &

Test AURduino RevB
Press any key to
proceed with test...
Received: A

LED will now flash...

[

4| [|

Connected 00:02:59 |Auto detect |9600 8-N-1 [scrolL [caPs [WOUM| [Capture [Print echc

V7

That completes a successful test.

Released

53

2.8, 2015-05

hitex] ShieldBuddy TC275 Development Platform
Aurix 32-Bit Triple Core

DEVELOPMENTTOOLS

CONFIDENTIAL

Released 54 2.8, 2015-05

