

S2-D8D16

S2 Vibration Sensor

\$2,000.00

Aluminum

Digital Capacitive Accelerometer: ± 8g Digital Capacitive Accelerometer: ± 16g

Battery: 250 mAh Storage: 2 GB

S2-D8D16

The new S2 ("mini") vibration sensor comes equipped with two accelerometers in addition to the standard embedded sensor suite of a gyroscope, magnetometer, pressure, temperature, humidity, and light.

<u>Demo with an Engineer</u> <u>Visit our Help Center</u> <u>Contact Customer Success</u>

The primary accelerometer has an ±8g range which provides the greatest sensitivity and lowest noise available in our product suite. Its secondary ±16g accelerometer is useful for low power triggering and to help higher vibration levels. This model is ideal for vibration testing.

Product Features

• Standalone measurement system with sensors, storage & rechargeable battery

Convenient

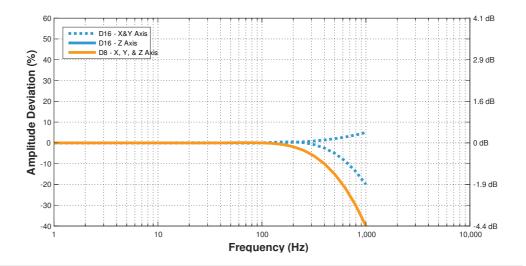
- Handheld form factor
- Setup in minutes over USB interface

• Multiple accelerometers for dynamic range

Adaptable

- Many additional embedded sensors into single system
- User-programmable wake-up conditions and sample rates
- Trusted in harsh environments by over 2,000 customers & the US Navy

Reliable


- Calibrated with NIST Traceable Accelerometer
- Storage capacity for billions of data points

Accelerometer Specifications

Accelerometer Type	Range	Sampling Rate	Bandwidth	Noise	Resolution
Digital Capacitive	± 8g	4,000 Hz	0 to 300 Hz	< 0.002 gRMS	0.00002 g
Digital Capacitive	± 16g	3,200 Hz	0 to 500 Hz	< 0.01 gRMS	0.004 g

Frequency Response Plot

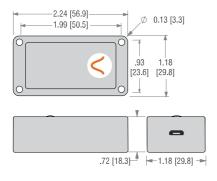
Additional Sensor Specifications

Sensor	Measurement Range	Resolution	Sampling Rate
Gyroscope	2000°/s	0.06 °/s	0 (off) to 200 Hz
Magnetometer	± 1300 μT	0.3 μΤ	0 (off) to 10 Hz
Temperature	-40 to 85 °C	0.01 °C	0 (off) to 10 Hz
Pressure	1 to 200 kPa	1.6 Pa	0 (off) to 10 Hz
Humidity	0 to 100 %RH	0.04% RH	0 (off) to 10 Hz
Light	0 to > 20 uV	<100 mlx	0 (off) to 4 Hz

Environmental Specifications

Parameter	Range	Notes
Operating Temperature	-10°C to 80°C (14°F to 176°F)	
Recommended Storage Temperature	15°C to 30°C (59°F to 86°F)	Recharging Temperature 0°C to 45°C (32°F to 113°F)
Humidity	0 to 95 %RH	Non-Condensing
Pressure	20 kPa to 110 kPa (2.9 psi to 16.0 psi)	Absolute Pressure
Shock Limit	>3,000 g	Refer to Shock Report (PDF)
No Electric Field Susceptibility	2 MHz to 18 GHz @ 200 V/m	Refer to EMI Test Report (PDF)
No Magnetic Field Susceptibility	30 Hz to 100 kHz	Refer to EMI Test Report (PDF)

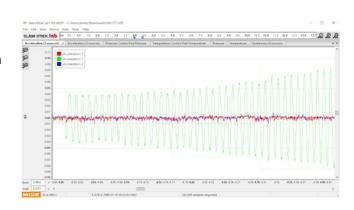
Battery & Storage Performance


Battery performance is heavily dependent upon the device configuration (sensor sample rates and triggers), battery age (including charging cycles), and temperature. The following table provides the battery life and storage capacity

of this device assuming it has a relatively new battery and it is at room temperature. When showing performance it assumes all sensors are on at the default sample rate with the main accelerometer sample rate driving performance. With triggers, it assumes the device is in trigger mode 99% of the time. Here are some additional resources: Measurement Settings, Battery Specifications, Battery Life Estimator Tool.

Sample Rate	Storage Capacity	Continuous Recording	Main Accel. Trigger	2nd Accel. Trigger	Periodic/Time Trigger
63 Hz	6 days	26 hours	18 days	24 days	62 days
250 Hz	5 days	26 hours	18 days	24 days	60 days
1,000 Hz	3 days	23 hours	18 days	23 days	57 days
4,000 Hz	19 hours	14 hours	16 days	20 days	41 days

Dimensions



Mechanical Specifications

Mass	40 grams
Case Material	Aluminum
Mounting - Screw	4-40 Bolts (70 in-oz)
Mounting - Tape (Double Sided)	3M 950 Tape
Length	56.9 mm (2.24")
Width	29.8 mm (1.18")
Thickness	15.0 mm (0.59")
Ingress Protection	IP 50 (Dust Protected)

Free Software Features

- Free Standalone Software Packages <u>Lab</u> Configuration, Quick Snapshot, Batch File Conversion <u>Analyzer</u> Analysis of enDAQ Sensor Data in MATLAB
- Configure Sensors for Measurement
- Export/Convert Data to CSV or MATLAB
- Analysis FFT PSD Spectogram Digital Filtering

