Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product Information in this Catalog

Product information in this catalog is as of January 2021. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for generalpurpose and standard use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN has the line-up of the products intended for use in automotive electronic equipment, telecommunications infrastructure and industrial equipment, or medical devices classified as GHTF Classes A to C (Japan Classes I to III). Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

- (1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)
- (2) Traffic signal equipment
- (3) Disaster prevention equipment, crime prevention equipment
- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, dataprocessing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability.

- (1) Aerospace equipment (artificial satellite, rocket, etc.)
- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *²

- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)
- (5) Undersea equipment (submarine repeating equipment, underwater work equipment, etc.)
- (6) Military equipment
- (7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

*Notes:

- There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
- Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.

TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

MULTILAYER CERAMIC CAPACITORS

PARTS NUMBER

JMK	3 1	6 🛆	ΒJ	1 0 6	М	L	—	Т	\triangle
123	4	5	6	$\overline{\mathcal{O}}$	8	9	10	1	12

 $\Delta =$ Blank space

End termination Plated

WAVE REFLOV

1Rated voltage

(

Code	Rated voltage[VDC]
Р	2.5
A	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630
Х	2000

2 Series name	
Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor

S	Cu Internal Electrodes (For High Frequency)					
④Dimension(L>	< W)					
Туре	Dimensions (L×W)[mm]	EIA (inch)				
021	0.25 × 0.125	008004				
042	0.4 × 0.2	01005				
063	0.6 × 0.3	0201				
105	1.0 × 0.5	0402				
	0.52×1.0 💥	0204				
107	1.6 × 0.8	0603				
107	0.8 × 1.6 💥	0306				
010	2.0 × 1.25	0805				
212	1.25× 2.0 💥	0508				
316	3.2 × 1.6	1206				
325	3.2 × 2.5	1210				
432	4.5 × 3.2	1812				

Note : XLW reverse type(WK) only

③End termination

Code

Κ

Dimension tole	erance			
Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6 ± 0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
А				0.45 ± 0.05
	212	2.0+0.15/-0.05	1.25+0.15/-0.05	0.85±0.10
				1.25+0.15/-0.05
	010	0.0.1.0.00	1.0.1.0.00	0.85±0.10
	316	3.2 ± 0.20	1.6 ± 0.20	1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
	063	0.6±0.09	0.3±0.09	0.3±0.09
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.45±0.05
в	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В				0.45 ± 0.05
	212	2.0+0.20/-0	1.25+0.20/-0	0.85±0.10
				1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
С	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
F	063	0.6 + 0.25/- 0	0.3 + 0.25/- 0	0.3 + 0.25/ - 0
E	105	1.0+0.30/-0	0.5+0.30/-0	0.5+0.30/-0
	•	Note of STANDARD EXTERN		∧= Blank spac

Note: cf. STANDARD EXTERNAL DIMENSIONS

 Δ = Blank space

⁽⁶⁾Temperature characteristics code

High die	lectric	type	(Excluding	Super	low	distortion	multilayer	ceramic	capacitor)	

Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code																			
	JIS	В	$-25 \sim + 85$	20	±10%	±10%	K																			
BJ	013	В	23.41.03	20	± 10%	±20%	М																			
БО	EIA	X5R	$-55 \sim + 85$	25	±15%	±10%	К																			
	EIA X5R	AJK	$-55 \sim + 85$	20	王15%	±20%	М																			
В7	EIA X7R		V7D	$-55 \sim +125$	25	±15%	±10%	К																		
		55.4 1 125	25	± 1370	±20%	М																				
C6	EIA X6S	YAS	$-55 \sim +105$	25	±22%	±10%	К																			
		-557-+105	25	±2270	±20%	М																				
C7	EIA		A 770	VTC	VTC	VTC	VIC	VIC	VIC	VIC	V70	V70	VIC	V76	V70	V76	V70	X7S	V76	V76	V76	$-55 \sim +125$	25	±22%	±10%	К
07		~/3	55.4 1125	25	1 22 %	±20%	М																			
LD(※)					55 1 05	05	1.150/	±10%	К																	
	EIA X5R		$-55 \sim + 85$	25	±15%	±20%	М																			

Note : XLD Low distortion high value multilaver ceramic capacitor

for General Electronic Equipment

Temperature o	ompensa	ating type	e				
Code	Appli	cable	Temperature	Ref. Temp.[°C]	Capacitance change	Capacitance	Tolerance
Obde	stan	dard	range[°C]		Capacitance change	tolerance	code
					±0.05pF	A	
						±0.1pF	В
CG	EIA	C0G	$-55 \sim +125$	25	0±30ppm∕°C	±0.25pF	С
						±0.5pF	D
						±5%	J
	110	UJ		20		±0.25pF	С
UJ	JIS	00	$-55 \sim +125$	20	−750±120ppm/°C	±0.5pF	D
	EIA	U2J]	25		±5%	J
	JIS	UK	$-55 \sim +125$	20	750 + 250 /20		0
UK	EIA	U2K	-55 ~ +125	25	-750 ± 250 ppm/°C	±0.25pF	С

6 Series code

•Super low distortion multilayer ceramic capacitor				
Code	Series code			
SD	Standard			

 Medium-High Voltage Multilayer Ceramic Capacitor 					
Code	Series code				
SD	Standard				

Nominal capacitance

Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	10,000pF
104	0.1 <i>µ</i> F
105	1.0 <i>µ</i> F
106	10 µ F
107	100 <i>µ</i> F

Note : R=Decimal point

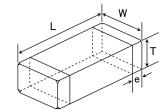
8 Capacitance tolerance

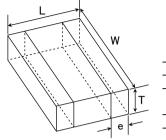
Code	Capacitance tolerance
A	±0.05pF
В	±0.1pF
С	±0.25pF
D	±0.5pF
F	±1pF
G	±2%
J	$\pm 5\%$
К	±10%
М	±20%
Z	+80/-20%

Code	Thickness[mm]
K	0.125
Н	0.13
E	0.18
С	0.0
D	0.2
Р	0.3
Т	0.5
К	0.45(107type or more)
V	0.5
W	0.5
A	0.8
D	0.85(212type or more)
F	1.15
G	1.25
L	1.6
Ν	1.9
Y	2.0 max
М	2.5

①Special code

Code	Special code
_	Standard


 Packaging 	
Code	Packaging
F	ϕ 178mm Taping (2mm pitch)
Т	ϕ 178mm Taping (4mm pitch)
Р	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)
P	325 type(Thickness code M)
R	ϕ 178mm Taping (2mm pitch)105type only
ĸ	(Thickness code E,H)
W	ϕ 178mm Taping(1mm pitch)021/042type only


12Internal code

Code	Internal code
\bigtriangleup	Standard

for General Electronic Equipment

STANDARD EXTERNAL DIMENSIONS

※ LW reverse type

		D	imension [mm]		
Type(EIA)	L	W	Т	*1	е
□MK021(008004)	0.25±0.013	0.125±0.013	0.125±0.013	К	0.0675 ± 0.0275
□VS021(008004)	0.25 ± 0.013	0.125 ± 0.013	0.125 ± 0.013	К	0.0675 ± 0.0275
□MK042(01005)	0.4±0.02	0.2±0.02	0.2±0.02	C D	0.1±0.03
□VS042(01005)	0.4±0.02	0.2±0.02	0.2±0.02	C	0.1±0.03
	0.120.02	0.2 _ 0.02	0.2 _ 0.02	P	0.1 - 0.00
□MK063(0201)	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	T	0.15 ± 0.05
			0.13±0.02	Н	
			0.18±0.02	Е	
□MK105(0402)	1.0 ± 0.05	0.5 ± 0.05	0.2±0.02	С	0.25 ± 0.10
			0.3 ± 0.03	Р	
			0.5 ± 0.05	V	
□VK105(0402)	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	W	0.25±0.10
□WK105(0204)※	0.52 ± 0.05	1.0 ± 0.05	0.3 ± 0.05	Р	0.18±0.08
	16+010	0.8 ± 0.10	0.45 ± 0.05	К	0.05 + 0.05
□MK107(0603)	1.6 ± 0.10	0.8±0.10	0.8±0.10	Α	0.35 ± 0.25
□WK107(0306)※	0.8±0.10	1.6±0.10	0.5 ± 0.05	V	0.25 ± 0.15
			0.45 ± 0.05	Κ	
□MK212(0805)	2.0 ± 0.10	1.25 ± 0.10	0.85±0.10	D	0.5 ± 0.25
			1.25±0.10	G	
□WK212(0508)※	1.25 ± 0.15	2.0±0.15	0.85±0.10	D	0.3±0.2
			0.85±0.10	D	
□MK316(1206)	3.2 ± 0.15	1.6 ± 0.15	1.15±0.10	F	0.5+0.35/-0.25
			1.6±0.20	L	
			0.85±0.10	D	
			1.15±0.10	F	
□MK325(1210)	3.2 ± 0.30	2.5 ± 0.20	1.9±0.20	Ν	0.6 ± 0.3
			1.9+0.1/-0.2	Y	
			2.5±0.20	М	
	451040	0.0 1.0 00	2.0+0/-0.30	Y	0.6±0.4
□MK432(1812)	4.5 ± 0.40	3.2 ± 0.30	2.5±0.20	М	0.9±0.6
Note : 💥. LW reverse type, >	k1.Thickness cod	e			

STANDARD QUANTITY

т		Dim	ension	Standard q	uantity[pcs]	
Туре	EIA (inch)	[mm]	Code	Paper tape	Embossed tap	
021	008004	0.125	К	-	50000	
042	01005	0.2	С		40000	
042	01005	0.2	D		40000	
063	0201	0.3	Р	15000	_	
003	0201	0.3	Т	15000		
		0.13	Н	-	20000	
		0.18	E	-	15000	
	0402	0.2	C	20000	-	
105	0402	0.3	Р	15000	-	
		0.5	V			
		0.0	W	10000	-	
	0204 💥	0.30	Р			
0603	0603	0.45	К	4000	_	
107		0.8	A	4000		
	0306 💥	0.50	V	-	4000	
		0.45	К	4000	_	
212	0805	0.85	D	4000		
212		1.25	G	-	3000	
	0508 💥	0.85	D	4000	-	
		0.85	D	4000	-	
316	1206	1.15	F	-	3000	
		1.6	L	_	2000	
		0.85	D			
		1.15	F		2000	
325	1210	1.9	Ν		2000	
	2.0 max		Y			
		2.5	М	-	1000	
432	1812	2.0 max	Y	-	1000	
402	1012	2.5	М	-	500	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

CERAMIC CAPACITORS

Multilayer Ceramic Capacitors for High Frequency Applications (1GHz+)

021TYPE

[Temperature Characteristic CG : CG/C0G($-55 \sim +125^{\circ}$ C)] 0.125mm thickness(K)

Dest number 1		Rated voltage		erature	Capacitance		Q (at 1GHz)	HTLT	Thickness ^{*3} [mm]	Soldering
Part number 1	Part number 2	[V]	charact	teristics	[F]	Capacitance tolerance	(at TGHZ) (min)	Rated voltage x %	Thickness [mm]	R:Reflow W:Wave
TVS021 CG0R2[]K-W			CG	C0G	0.2 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R3[K-W			CG	C0G	0.3 p	$\pm 0.05 pF$, $\pm 0.1 pF$, $\pm 0.25 pF$	260	200	0.125 ± 0.013	R
TVS021 CG0R4[K-W		-	CG	COG	0.4 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R5[K-W		-	CG	COG	0.5 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R6[K-W TVS021 CG0R7[K-W		-	CG CG	C0G C0G	0.6 p 0.7 p	±0.05pF, ±0.1pF, ±0.25pF ±0.05pF, ±0.1pF, ±0.25pF	260 260	200	0.125±0.013 0.125±0.013	R
TVS021 CGR75[K-W			CG	COG	0.7 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R8[K-W			CG	COG	0.8 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R9[K-W			CG	C0G	0.9 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG010[]K-W			CG	C0G	1 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG1R1[K-W			CG	COG	1.1 p	$\pm 0.05 pF$, $\pm 0.1 pF$, $\pm 0.25 pF$	260	200	0.125 ± 0.013	R
TVS021 CG1R2[K-W			CG	C0G	1.2 p	$\pm 0.05 pF$, $\pm 0.1 pF$, $\pm 0.25 pF$	250	200	0.125 ± 0.013	R
TVS021 CG1R3[K-W		-	CG	COG	1.3 p	±0.05pF, ±0.1pF, ±0.25pF	230	200	0.125±0.013	R
TVS021 CG1R4[K-W		-	CG	COG	1.4 p	±0.05pF, ±0.1pF, ±0.25pF	220	200	0.125±0.013	R
TVS021 CG1R5[]K-W TVS021 CG1R6[]K-W		-	CG CG	C0G C0G	1.5 p 1.6 p	$\pm 0.05 \text{pF}, \pm 0.1 \text{pF}, \pm 0.25 \text{pF}$	210 190	200	0.125 ± 0.013	R
TVS021 CG1R0[K-W		-	CG	COG	1.0 p	±0.05pF, ±0.1pF, ±0.25pF ±0.05pF, ±0.1pF, ±0.25pF	190	200	0.125±0.013 0.125±0.013	R
TVS021 CG1R8[K-W			CG	COG	1.8 p	±0.05pF, ±0.1pF, ±0.25pF	180	200	0.125±0.013	R
TVS021 CG1R9[K-W			CG	COG	1.9 p	±0.05pF, ±0.1pF, ±0.25pF	170	200	0.125±0.013	R
TVS021 CG020[]K-W			CG	C0G	2 p	±0.05pF, ±0.1pF, ±0.25pF	160	200	0.125±0.013	R
TVS021 CG2R1[K-W			CG	COG	2.1 p	±0.05pF, ±0.1pF, ±0.25pF	160	200	0.125 ± 0.013	R
TVS021 CG2R2[]K-W			CG	C0G	2.2 p	$\pm 0.05 pF$, $\pm 0.1 pF$, $\pm 0.25 pF$	150	200	0.125 ± 0.013	R
TVS021 CG2R3[K-W		4	CG	COG	2.3 p	±0.05pF, ±0.1pF, ±0.25pF	150	200	0.125±0.013	R
TVS021 CG2R4[K-W		4	CG	COG	2.4 p	±0.05pF, ±0.1pF, ±0.25pF	140	200	0.125±0.013	R
TVS021 CG2R5[K-W		25	CG	COG	2.5 p	$\pm 0.05 \text{pF}, \pm 0.1 \text{pF}, \pm 0.25 \text{pF}$	140	200	0.125 ± 0.013	R
TVS021 CG2R6[]K-W TVS021 CG2R7[]K-W		20	CG CG	C0G C0G	2.6 p 2.7 p	$\pm 0.05 pF$, $\pm 0.1 pF$, $\pm 0.25 pF$ $\pm 0.05 pF$, $\pm 0.1 pF$, $\pm 0.25 pF$	130 130	200	0.125±0.013 0.125±0.013	R
TVS021 CG2R7[]K-W		1	CG	COG	2.7 p 2.8 p	±0.05pF, ±0.1pF, ±0.25pF ±0.05pF, ±0.1pF, ±0.25pF	120	200	0.125±0.013	R
TVS021 CG2R9[K-W		1	CG	COG	2.0 p	±0.05pF, ±0.1pF, ±0.25pF	120	200	0.125±0.013	R
TVS021 CG030[]K-W			CG	COG	3 p	±0.1pF, ±0.25pF, ±0.5pF	120	200	0.125±0.013	R
TVS021 CG3R1[K-W]	CG	C0G	3.1 p	±0.1pF, ±0.25pF, ±0.5pF	110	200	0.125 ± 0.013	R
TVS021 CG3R2[K-W			CG	COG	3.2 p	±0.1pF, ±0.25pF, ±0.5pF	110	200	0.125 ± 0.013	R
TVS021 CG3R3[K-W			CG	COG	3.3 p	±0.1pF, ±0.25pF, ±0.5pF	110	200	0.125 ± 0.013	R
TVS021 CG3R4[K-W			CG	COG	3.4 p	±0.1pF, ±0.25pF, ±0.5pF	110	200	0.125 ± 0.013	R
TVS021 CG3R5[K-W		-	CG	COG	3.5 p	±0.1pF, ±0.25pF, ±0.5pF	100	200	0.125±0.013	R
TVS021 CG3R6[K-W		-	CG CG	C0G C0G	3.6 p	±0.1pF, ±0.25pF, ±0.5pF	100	200	0.125 ± 0.013	R
TVS021 CG3R7[K-W TVS021 CG3R8[K-W		-	CG	COG	3.7 p 3.8 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	100	200	0.125±0.013 0.125±0.013	R
TVS021 CG3R9[K-W			CG	COG	3.9 p	±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125±0.013	R
TVS021 CG040[]K-W			CG	COG	4 p	±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125±0.013	R
TVS021 CG4R1[K-W			CG	COG	4.1 p	±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125±0.013	R
TVS021 CG4R2[]K-W			CG	C0G	4.2 p	±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125 ± 0.013	R
TVS021 CG4R3[K-W			CG	C0G	4.3 p	±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125 ± 0.013	R
TVS021 CG4R4[K-W		-	CG	C0G	4.4 p	±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125 ± 0.013	R
TVS021 CG4R5[K-W			CG	COG	4.5 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG4R6[K-W		-	CG	COG	4.6 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125 ± 0.013	R
TVS021 CG4R7[]K-W TVS021 CG4R8[]K-W		-	CG CG	C0G C0G	4.7 p 4.8 p	$\pm 0.1 \text{pF}, \pm 0.25 \text{pF}, \pm 0.5 \text{pF}$	80 80	200	0.125±0.013 0.125±0.013	R
TVS021 CG4R9[K-W		-	CG	COG	4.6 p 4.9 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG050[]K-W			CG	COG	-1.0 p 5 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG5R1[K-W			CG	C0G	5.1 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
EVS021 CG5R2[]K-W			CG	C0G	5.2 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG5R3[K-W			CG	C0G	5.3 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125 ± 0.013	R
EVS021 CG5R4[K-W			CG	COG	5.4 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125 ± 0.013	R
EVS021 CG5R5[]K-W			CG	COG	5.5 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG5R6[K-W		4	CG	COG	5.6 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG5R7UK-W EVS021 CG5R8UK-W		4	CG CG	COG	5.7 p 5.8 p	$\pm 0.1 \text{pF}, \pm 0.25 \text{pF}, \pm 0.5 \text{pF}$ $\pm 0.1 \text{pF}, \pm 0.25 \text{pF}, \pm 0.5 \text{pF}$	70 70	200	0.125 ± 0.013 0.125 ± 0.013	R
EVS021 CG5R8[]K-W		1	CG	COG	5.8 p 5.9 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG060[]K-W		1	CG	COG	5.5 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG6R1[K-W		1	CG	COG	6.1 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG6R2[K-W]	CG	COG	6.2 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R3[K-W		1	CG	C0G	6.3 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125 ± 0.013	R
EVS021 CG6R4[K-W		4	CG	COG	6.4 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125 ± 0.013	R
EVS021 CG6R5[K-W		4	CG	COG	6.5 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R6[K-W		4	CG	COG	6.6 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125 ± 0.013	R
EVS021 CG6R7[]K-W EVS021 CG6R8[]K-W		4	CG CG	C0G C0G	6.7 p 6.8 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	60 60	200	0.125±0.013 0.125±0.013	R
EVS021 CG6R8[]K-W EVS021 CG6R9[]K-W		16	CG	COG	6.8 p 6.9 p	$\pm 0.1 \text{pF}, \pm 0.25 \text{pF}, \pm 0.5 \text{pF}$ $\pm 0.1 \text{pF}, \pm 0.25 \text{pF}, \pm 0.5 \text{pF}$	60	200	0.125±0.013 0.125±0.013	R
EVS021 CG0R9[]K-W		1	CG	COG	0.9 p 7 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R1[K-W		1	CG	COG	7.1 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R2[K-W]	CG	COG	7.2 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R3[K-W			CG	COG	7.3 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125 ± 0.013	R
EVS021 CG7R4[K-W		4	CG	COG	7.4 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125 ± 0.013	R
EVS021 CG7R5[K-W		4	CG	C0G	7.5 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125 ± 0.013	R
EVS021 CG7R6[K-W		4	CG	COG	7.6 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R7[K-W		4	CG	COG	7.7 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG7R8[K-W		4	CG	C0G	7.8 p	$\pm 0.1 \text{pF}, \pm 0.25 \text{pF}, \pm 0.5 \text{pF}$	50 50	200	0.125 ± 0.013	R
EVS021 CG7R9[]K-W EVS021 CG080[]K-W		4	CG CG	C0G C0G	7.9 p 8 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	50 50	200	0.125±0.013 0.125±0.013	R
EVS021 CG080UK-W EVS021 CG8R1UK-W		1	CG	COG	8 p 8.1 p	$\pm 0.1 \text{pF}, \pm 0.25 \text{pF}, \pm 0.5 \text{pF}$ $\pm 0.1 \text{pF}, \pm 0.25 \text{pF}, \pm 0.5 \text{pF}$	50	200	0.125±0.013 0.125±0.013	R
EVS021 CG8R1[]K-W		1	CG	COG	8.2 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
		1	CG	COG	8.3 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG8R3∏K–W					9.9 P					
EVS021 CG8R3[K-W EVS021 CG8R4[K-W]	CG	COG	8.4 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R

for General Electronic Equipment

PARTS NUMBER

Part number 1	Part number 2	Rated voltage [V]		erature eristics	Capacitance [F]	Capacitance tolerance	Q (at 1GHz) (min)	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Soldering R:Reflow W:Wave
EVS021 CG8R6[K-W			CG	C0G	8.6 p	±0.1pF. ±0.25pF. ±0.5pF	(min) 50	200	0.125±0.013	R R
EVS021 CG8R7[K-W			CG	COG	8.7 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R8[K-W			CG	COG	8.8 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R9[K-W			CG	COG	8.9 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG090[]K-W			CG	COG	9 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG9R1[K-W			CG	COG	9.1 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG9R2[]K-W			CG	COG	9.2 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG9R3[K-W		16	CG	COG	9.3 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG9R4[K-W			CG	COG	9.4 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG9R5[K-W			CG	COG	9.5 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG9R6[K-W			CG	COG	9.6 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG9R7[]K-W			CG	COG	9.7 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125 ± 0.013	R
EVS021 CG9R8[K-W			CG	COG	9.8 p	±0.1pF, ±0.25pF, ±0.5pF	40	200	0.125 ± 0.013	R
EVS021 CG9R9[K-W			CG	COG	9.9 p	±0.1pF, ±0.25pF, ±0.5pF	40	200	0.125 ± 0.013	R
EVS021 CG100[]K-W			CG	COG	10 p	±2%, ±5%	50	200	0.125 ± 0.013	R

042TYPE

[Temperature Characteristic CG : CG/C0G($-55 \sim +125^{\circ}$ C)] 0.2mm thickness(C)

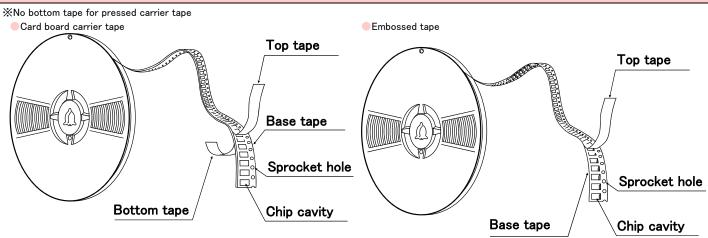
L'emperatare enarat	teristic CG : CG/C		125 0	/ 0.21		3(0)	0			California
Part number 1	Part number 2	Rated voltage [V]		erature teristics	Capacitance [F]	Capacitance tolerance	Q (at 1GHz) (min)	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Soldering R:Reflow W:Wave
TVS042 CG0R2[C-W		1	CG	C0G	0.2 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2±0.02	R
TVS042 CG0R3[C-W		1 1	CG	COG	0.3 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2±0.02	R
TVS042 CG0R4[C-W		1 1	CG	COG	0.0 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2±0.02	R
TVS042 CG0R5[]C-W		1 1	CG	COG	0.4 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2±0.02	R
TVS042 CG0R6[C-W			CG	COG	0.5 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2±0.02	R
TVS042 CG0R7[C-W			CG					200		R
				COG	0.7 p	±0.05pF, ±0.1pF, ±0.25pF	300		0.2±0.02	
TVS042 CGR75[C-W			CG	COG	0.75 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2±0.02	R
TVS042 CG0R8[C-W		4	CG	COG	0.8 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2±0.02	R
TVS042 CG0R9[C-W			CG	COG	0.9 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2 ± 0.02	R
TVS042 CG010 C-W			CG	COG	1 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2 ± 0.02	R
TVS042 CG1R1[C-W			CG	COG	1.1 p	$\pm 0.05 pF$, $\pm 0.1 pF$, $\pm 0.25 pF$	280	200	0.2±0.02	R
TVS042 CG1R2[]C-W			CG	COG	1.2 p	±0.05pF, ±0.1pF, ±0.25pF	270	200	0.2 ± 0.02	R
TVS042 CG1R3[C-W			CG	COG	1.3 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.2 ± 0.02	R
TVS042 CG1R4[C-W			CG	COG	1.4 p	±0.05pF, ±0.1pF, ±0.25pF	250	200	0.2 ± 0.02	R
TVS042 CG1R5[C-W]	CG	COG	1.5 p	±0.05pF, ±0.1pF, ±0.25pF	240	200	0.2±0.02	R
TVS042 CG1R6 C-W] [CG	COG	1.6 p	±0.05pF, ±0.1pF, ±0.25pF	230	200	0.2±0.02	R
TVS042 CG1R7 C-W		1 1	CG	COG	1.7 p	±0.05pF, ±0.1pF, ±0.25pF	220	200	0.2±0.02	R
TVS042 CG1R8[C-W		1	CG	COG	1.8 p	±0.05pF, ±0.1pF, ±0.25pF	210	200	0.2±0.02	R
TVS042 CG1R9[C-W		1	CG	COG	1.9 p	±0.05pF, ±0.1pF, ±0.25pF	200	200	0.2±0.02	R
TVS042 CG020[]C-W		1	CG	COG	1.5 p	±0.05pF, ±0.1pF, ±0.25pF	190	200	0.2±0.02	R
TVS042 CG2R1[]C-W		1 1	CG	COG	2.1 p	±0.05pF, ±0.1pF, ±0.25pF	185	200	0.2±0.02	R
		4	CG	COG	2.1 p 2.2 p		185	200	0.2±0.02 0.2±0.02	R
TVS042 CG2R2[]C-W		4				$\pm 0.05 \text{pF}, \pm 0.1 \text{pF}, \pm 0.25 \text{pF}$				
TVS042 CG2R3[]C-W		4 1	CG	COG	2.3 p	±0.05pF, ±0.1pF, ±0.25pF	175	200	0.2±0.02	R
TVS042 CG2R4[C-W		4 1	CG	COG	2.4 p	±0.05pF, ±0.1pF, ±0.25pF	170	200	0.2±0.02	R
TVS042 CG2R5[]C-W		4	CG	COG	2.5 p	±0.05pF, ±0.1pF, ±0.25pF	160	200	0.2 ± 0.02	R
TVS042 CG2R6[C-W			CG	COG	2.6 p	±0.05pF, ±0.1pF, ±0.25pF	155	200	0.2 ± 0.02	R
TVS042 CG2R7[]C-W		4	CG	COG	2.7 p	±0.05pF, ±0.1pF, ±0.25pF	150	200	0.2 ± 0.02	R
TVS042 CG2R8[C-W			CG	COG	2.8 p	±0.05pF, ±0.1pF, ±0.25pF	140	200	0.2 ± 0.02	R
TVS042 CG2R9[]C-W			CG	COG	2.9 p	±0.05pF, ±0.1pF, ±0.25pF	135	200	0.2±0.02	R
TVS042 CG030[]C-W			CG	COG	3 p	±0.05pF, ±0.1pF, ±0.25pF	130	200	0.2 ± 0.02	R
TVS042 CG3R1 C-W]	CG	COG	3.1 p	±0.1pF, ±0.25pF	125	200	0.2±0.02	R
TVS042 CG3R2[C-W		1	CG	COG	3.2 p	±0.1pF, ±0.25pF	125	200	0.2±0.02	R
TVS042 CG3R3 C-W		1 1	CG	C0G	3.3 p	±0.1pF, ±0.25pF	120	200	0.2±0.02	R
TVS042 CG3R4[C-W		1 1	CG	C0G	3.4 p	±0.1pF, ±0.25pF	120	200	0.2±0.02	R
TVS042 CG3R5∏C-W		25	CG	COG	3.5 p	±0.1pF, ±0.25pF	110	200	0.2±0.02	R
TVS042 CG3R6[C-W		1 1	CG	COG	3.6 p	±0.1pF, ±0.25pF	110	200	0.2±0.02	R
TVS042 CG3R7[]C-W		1 1	CG	COG	3.7 p	±0.1pF, ±0.25pF	110	200	0.2±0.02	R
TVS042 CG3R8[C-W		1 1	CG	COG	3.8 p	±0.1pF, ±0.25pF	100	200	0.2±0.02	R
TVS042 CG3R9[C-W		1 1	CG	COG	3.9 p	±0.1pF, ±0.25pF	100	200	0.2±0.02	R
TVS042 CG040[]C-W			CG	COG	3.5 p	±0.1pF, ±0.25pF	90	200	0.2±0.02	R
										R
TVS042 CG4R1[C-W			CG	COG	4.1 p	±0.1pF, ±0.25pF	90	200	0.2±0.02	
TVS042 CG4R2[]C-W		4	CG	C0G	4.2 p	±0.1pF, ±0.25pF	85	200	0.2 ± 0.02	R
TVS042 CG4R3[C-W			CG	C0G	4.3 p	±0.1pF, ±0.25pF	85	200	0.2 ± 0.02	R
TVS042 CG4R4[]C-W		4	CG	C0G	4.4 p	±0.1pF, ±0.25pF	85	200	0.2 ± 0.02	R
TVS042 CG4R5[C-W		4	CG	COG	4.5 p	±0.1pF, ±0.25pF	85	200	0.2 ± 0.02	R
TVS042 CG4R6[C-W		4 l	CG	COG	4.6 p	±0.1pF, ±0.25pF	85	200	0.2 ± 0.02	R
TVS042 CG4R7[C-W		1	CG	COG	4.7 p	±0.1pF, ±0.25pF	85	200	0.2 ± 0.02	R
TVS042 CG4R8[]C-W		i l	CG	C0G	4.8 p	±0.1pF, ±0.25pF	80	200	0.2 ± 0.02	R
TVS042 CG4R9[]C-W		j ĺ	CG	COG	4.9 p	±0.1pF, ±0.25pF	80	200	0.2 ± 0.02	R
TVS042 CG050[C-W		j í	CG	COG	5 p	±0.1pF, ±0.25pF	80	200	0.2±0.02	R
TVS042 CG5R1[C-W		j ľ	CG	COG	5.1 p	±0.1pF, ±0.25pF, ±0.5pF	75	200	0.2±0.02	R
TVS042 CG5R2[C-W		ן ן	CG	C0G	5.2 p	±0.1pF, ±0.25pF, ±0.5pF	75	200	0.2±0.02	R
TVS042 CG5R3[]C-W		1	CG	COG	5.3 p	±0.1pF, ±0.25pF, ±0.5pF	75	200	0.2±0.02	R
TVS042 CG5R4[]C-W		1	CG	COG	5.4 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.2±0.02	R
TVS042 CG5R5[]C-W		1	CG	COG	5.5 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.2±0.02	R
TVS042 CG5R6[]C-W		1 1	CG	COG	5.6 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.2±0.02	R
TVS042 CG5R7[]C-W		1 I	CG	COG	5.0 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.2±0.02	R
		4	CG				70	200		R
TVS042 CG5R8[C-W		4		COG	5.8 p	±0.1pF, ±0.25pF, ±0.5pF			0.2±0.02	
TVS042 CG5R9[C-W		4 1	CG	COG	5.9 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG060[]C-W		4	CG	COG	6 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG6R1[C-W		4	CG	COG	6.1 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2 ± 0.02	R
TVS042 CG6R2[]C-W		i l	CG	COG	6.2 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2 ± 0.02	R
TVS042 CG6R3[]C-W		j ĺ	CG	COG	6.3 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2 ± 0.02	R
TVS042 CG6R4[]C-W		j í	CG	C0G	6.4 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2 ± 0.02	R
TVS042 CG6R5[]C-W		ן ן	CG	C0G	6.5 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
		1 1	CG	C0G	6.6 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.2±0.02	R
TVS042 CG6R6[]C-W										
TVS042 CG6R6[]C-W		1 1	CG	COG	6.7 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.2 ± 0.02	R

for General Electronic Equipment

PARTS NUMBER

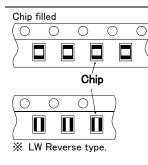
		Rated voltage	Tempe	erature	Capacitance	0 1 1 1	Q	HTLT	*2 5 7	Soldering
Part number 1	Part number 2	[V]		eristics	[F]	Capacitance tolerance	(at 1GHz) (min)	Rated voltage x %	Thickness ^{*3} [mm]	R:Reflow W:Wave
TVS042 CG6R9∏C−W			CG	C0G	6.9 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.2±0.02	R
TVS042 CG070∏C-W			CG	COG	7 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.2 ± 0.02	R
TVS042 CG7R1 C-W			CG	C0G	7.1 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.2±0.02	R
TVS042 CG7R2[C-W			CG	C0G	7.2 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.2±0.02	R
TVS042 CG7R3 C-W			CG	COG	7.3 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG7R4[C-W			CG	COG	7.4 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG7R5[]C-W		1	CG	COG	7.5 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG7R6[]C-W			CG	COG	7.6 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG7R7[]C-W			CG	COG	7.7 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG7R8[]C-W			CG	COG	7.8 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG7R9[]C-W			CG	COG	7.9 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG080[]C-W			CG	COG	8 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG8R1[]C-W		1	CG	COG	8.1 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2±0.02	R
TVS042 CG8R2[]C-W		1	CG	COG	8.2 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG8R3[C-W		1	CG	COG	8.3 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG8R4[]C-W		1	CG	COG	8.4 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG8R5[C-W		1	CG	COG	8.5 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG8R6[]C-W			CG	COG	8.6 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG8R7[]C-W			CG	COG	8.7 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG8R8 C-W		25	CG	COG	8.8 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG8R9[]C-W			CG	COG	8.9 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG090[]C-W			CG	COG	9 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2±0.02	R
TVS042 CG9R1[]C-W		1	CG	COG	9.1 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2±0.02	R
TVS042 CG9R2[]C-W		1	CG	COG	9.2 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2±0.02	R
TVS042 CG9R3[]C-W			CG	COG	9.3 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2±0.02	R
TVS042 CG9R4[]C-W			CG	COG	9.4 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
TVS042 CG9R5[]C-W			CG	COG	9.5 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
TVS042 CG9R6[]C-W			CG	COG	9.6 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
TVS042 CG9R7[]C-W			CG	COG	9.7 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2±0.02	R
TVS042 CG9R8[]C-W			CG	COG	9.8 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2±0.02	R
TVS042 CG9R9[]C-W			CG	COG	9.9 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2±0.02	R
TVS042 CG100[]C-W]	CG	COG	10 p	±2%, ±5%	45	200	0.2±0.02	R
TVS042 CG110JC-W]	CG	C0G	11 p	±5%	40	200	0.2±0.02	R
TVS042 CG120JC-W]	CG	C0G	12 p	±5%	40	200	0.2±0.02	R
TVS042 CG130JC-W]	CG	C0G	13 p	±5%	40	200	0.2±0.02	R
TVS042 CG150JC-W]	CG	C0G	15 p	±5%	40	200	0.2±0.02	R
TVS042 CG160JC-W		1	CG	COG	16 p	±5%	40	200	0.2±0.02	R
TVS042 CG180JC-W		1	CG	COG	18 p	±5%	40	200	0.2±0.02	R
TVS042 CG220JC-W		1	CG	COG	22 p	±5%	30	200	0.2±0.02	R

Multilayer Ceramic Capacitors

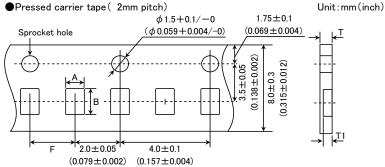

PACKAGING

①Minimum Quantity

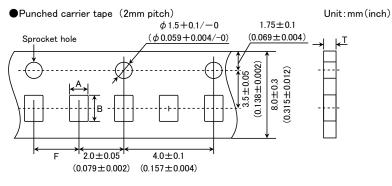
_ ()	Thick	ness	Standard o	uantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
□MK021(008004)	0.105	к		50000
□VS021(008004)	0.125	n	_	50000
MK042(01005)	0.2	C, D		40000
□VS042(01005)	0.2	С		40000
□MK063(0201)	0.3	P,T	15000	_
□WK105(0204) ※	0.3	Р	10000	-
	0.13	Н	_	20000
	0.18	E	_	15000
□MK105(0402)	0.2	С	20000	_
□MF105(0402)	0.3	Р	15000	-
	0.5	V	10000	-
□VK105(0402)	0.5	W	10000	-
DMK107(0603)	0.45	К	4000	-
□WK107(0306) ※	0.5	V	-	4000
□MF107(0603)	0.8	А	4000	-
□VS107(0603)	0.7	С	4000	-
□MJ107(0603)	0.8	А	3000	3000
□MK212(0805)	0.45	К	4000	
□WK212(0508) ※	0.85	D	4000	_
□MF212(0805)	1.25	G	-	3000
□VS212(0805)	0.85	D	4000	-
	0.85	D	4000	_
□MJ212(0805)	1.25	G	-	2000
	0.85	D	4000	-
□MK316(1206)	1.15	F	-	3000
□MF316(1206)	1.6	L	-	2000
	1.15	F	_	3000
□MJ316(1206)	1.6	L	-	2000
	0.85	D		
	1.15	F		
□MK325(1210)	1.9	Ν		2000
□MF325(1210)	2.0max.	Y	1	
	2.5	М	_	1000
	1.9	Ν	-	2000
□MJ325(1210)	2.5	М	-	500(T), 1000(P)
□MK432(1812)	2.5	М	_	500


Note : 💥 LW Reverse type.

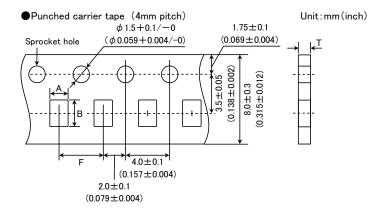
(2) Taping material


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

TAIYO YUDEN



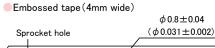
3 Representative taping dimensions



Type(EIA)	Chip	Cavity	Insertion Pitch	Tape Th	nickness		
Type(EIA)	А	В	F	Т	T1		
□MK063(0201)	0.37	0.67		0.45max.	0.42max.		
□WK105(0204) ※			2.0 ± 0.05	0.45max.	0.42max.		
□MK105(0402) (*1 C)	0.65	1.15	2.0 ± 0.05	0.4max.	0.3max.		
□MK105(0402) (*1 P)				0.45max.	0.42max.		
Note *1 Thickness, C:0.2mm ,P:0.3mm. ※ LW Reverse type.							

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	А	В	F	Т
□MK105 (0402)				
□MF105 (0402)	0.65	1.15	2.0 ± 0.05	0.8max.
□VK105 (0402)				

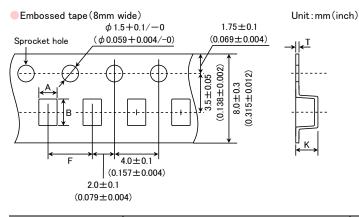
Unit:mm



Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness	
Type(LIA)	А	В	F	Т	
□MK107(0603)					
□WK107(0306) 💥	1.0	1.8		1.1max.	
□MF107(0603)			40104		
MK212(0805)	1.05	0.4	4.0±0.1		
□WK212(0508) 💥	1.00	1.65 2.4		1.1max.	
DMK316(1206)	2.0	3.6			
Note:Taping size might	be different depending on	the size of the product.	※ LW Reverse type.	Unit : mm	

 0.9 ± 0.05

Note: Taping size might be different depending on the size of the product. % LW Reverse type.

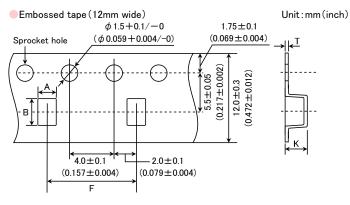


 (0.035 ± 0.002) ≯|≮^T (0.071 ± 0.001) 4.0±0.05 (0.157±0.002) 8±0.02 1.0 ± 0.02 2.0 ± 0.04 F (0.039 ± 0.001) (0.079 ± 0.002)

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness		
Type(EIA)	A	В	F	К	Т	
□MK021(008004)	0.135	0.27	101000			
□VS021(008004)	0.135	0.27		0.5max.	0.25max.	
MK042(01005)	0.00	0.40	1.0±0.02			
□VS042(01005)	0.23	0.43				

Unit:mm(inch)

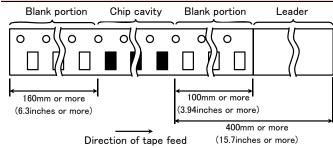
Unit:mm

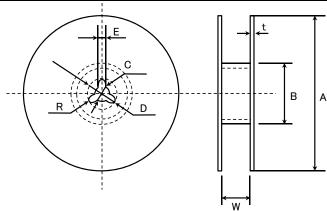


Ture (EIA)	Type(EIA) Chip Ca		Insertion Pitch	Tape Thickness	
Type(EIA)	А	в	F	К	Т
□MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1
□WK107(0306) ※	1.0	1.8		1.3max.	0.25 ± 0.1
□MK212(0805)	1.65	2.4			
□MF212(0805)	1.05	2.4			
□MK316(1206)	2.0	3.6	4.0±0.1	3.4max.	0.6max.
□MF316(1206)	2.0	5.0		3.4max.	0.0max.
□MK325(1210)	2.8	3.6			
□MF325(1210)	2.0	3.0			

Note: 💥 LW Reverse type.

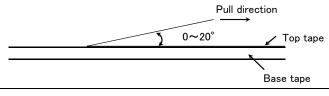
Unit:mm




Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness	
Type(EIA)	А	В	F	К	Т
□MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
□MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.
					11.5

Unit : mm

④Trailer and Leader


⑤Reel size

А	В	С	D	E	R
ϕ 178±2.0	<i>ф</i> 50min.	ϕ 13.0±0.2	<i>ф</i> 21.0±0.8	2.0 ± 0.5	1.0
	Т	W			
4mm wide tape	1.5max.	5±1.0			
8mm wide tape	2.5max.	10±1.5			
12mm wide tape	2.5max.	14±1.5	Unit : mm		

6 Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

c_mlcc_pack_e-E06R01

Multilayer Ceramic Capacitors

RELIABILITY DATA

1.Operating Te	mperature Range						
Temperature Compensating(Class1)	Temperature	Standard		−55 to +125°C			
	High Frequency Type	-33 10 4					
		High Permittivity (Class2)		Specification	Temperature Range		
				В	−25 to +85°C		
Specified				X5R	−55 to +85°C		
Value				X7R	−55 to +125°C		
	High Permittivity (Class2)			X6S	−55 to +105°C		
				X7S	−55 to +125°C		
			LD(🔆)	X5R	−55 to +85°C		
			Note: 🕅	LD Low distortion	high value multilayer ceramic capa	sitor	

2. Storage Con	ditions								
	Temperature	Standard		−55 to +125°C					
	Compensating(Class1)	High Frequency Type	-3310 -						
				Specification	Temperature Range				
				В	−25 to +85°C				
Specified			BJ	X5R	−55 to +85°C				
Value	High Bormittivity (Class?)	High Permittivity(Class2)		X7R	-55 to +125°C				
	Figh Fernituvity (Olassz)			X6S	-55 to +105°C				
				X7S	-55 to +125°C				
				X5R	−55 to +85°C				
				LD Low distortion	high value multilayer ceramic capac	itor			

3. Rated Voltage							
Temperature	Standard	50VDC, 25VDC, 16VDC					
Specified Value	Compensating(Class1)	High Frequency Type	50VDC, 25VDC, 16VDC				
	High Permittivity (Class2))	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC				

4. Withstanding	Voltage (Between terminal	s)				
	Temperature	Standard				
Specified Value	ied Compensating(Class1) High Frequency Type No breakdown or damage				gh Frequency Type No breakdown or damage	
	High Permittivity(Class2)					
- .	C			ass 1	Class 2	
Test Methods and	Applied voltage Rated		Rated v	Rated voltage × 3 Rated voltage × 2.5		
Remarks	Duration			1 to 5 sec.		
Remarks	Charge/discharge currer	nt		50mA max.		

5. Insulation Re	5. Insulation Resistance							
	Temperature	Standard	10000 MΩ min.					
Specified	Compensating(Class1)	High Frequency Type						
Value	High Permittivity (Class2) Note 1		C≦0.047 F : 10000 MΩ min. C>0.047 μ F : 500MΩ • μ F					
Test Methods and	Applied voltage : Rated voltage Duration : 60±5 sec.							
Remarks	Charge/discharge current : 50mA max.							

6. Capacitance	(Tolerance)						
				сп	0.2pF≦C≦5pF	: ±0.25pF	
		St	tandard		0.2pF≦C≦10pF	: ±0.5pF	
Specified	Temperature Compensating(Class1)				C>10pF	: ±5% or ±10%	
Value	Compensating (Class I)	High Fu		CG	0.2pF≦C≦2pF	: ±0.1pF	
		High Frequency Ty	equency Type	UG	C>2pF	: ±5%	
	High Permittivity (Class2))		±10%	or ±20%		
			Class 1		Cla	ass 2	
- .		Γ	Standard		High Frequency Type	C≦10µF	C>10 µ F
Test Mathada and	Preconditioning		None		ne	Thermal treatment (at	t 150°C for 1hr)Note 2
Methods and Remarks	Measuring frequency		1MHz±10%		1kHz±10%	120±10Hz	
Remarks	Measuring voltage Nte		0.5 to 5Vr		ōVrms	1 ± 0.2 Vrms	0.5±0.1Vrms
	Bias application					None	

Specified	Temperature Compensating(Class1)	Standard		$C \leq 30pF : Q \geq 400 + 20C$ $C \geq 30pF : Q \geq 1000$ (C:Nominal capacitance)			
Value	Compensating (Class I)	High Frequency Type		Refer	to detailed specification		
	High Permittivity (Class2) Note 1		1	BJ, B7, C6, C7:2.5% max.			
			(ss 1	Class 2	
			Standard		High Frequency Type	C≦10µF	C>10 µ F
	Preconditioning				one	Thermal treatment(at 150°C for 1hr)Note 2	
Test	Measuring frequency		1MHz±10	D%	1GHz	1kHz±10%	120±10Hz
Methods and	Measuring voltage Note	1		0.5 to 5Vrms		1±0.2Vrms	0.5±0.1Vrms
Remarks	Bias application					None	
	High Frequency Type Measuring equipment Measuring jig		4291A 16192A				

8. Temperature	e Characteristic (Without vo	ltage application)							
			Tem	perature Charad	teristic [ppm/°	C]	Toler	rance [ppm/°C]	
		Standard	C□ :	0	CG			G:±30	
	Temperature	Standard	U□ :	750	UJ. UK			J:±120	
	Compensating(Class1)			- 750	UJ, UK			K:±250	
		High Frequency Type	Tem	perature Charac	teristic [ppm/°	C]	Toler	rance [ppm/°C]	
		Thight requency Type	C□:	0	CG			G:±30	
Specified Value				Specification	Capacitance change		erence perature	Temperature Range	
			ВJ	В	±10%	2	20°C	−25 to +85°C	
			БĴ	X5R	±15%	2	25°C	−55 to +85°C	
	High Permittivity (Class2))	B7	X7R	±15%	2	25°C	−55 to +125°C	
		C6	XS	±22%	2	25°C	−55 to +105°C		
				X7S	±22%	2	25°C	−55 to +125°C	
				X5R	±15%	2	25°C	−55 to +85°C	
		Note : 🗦	KLD Low disto	ortion high value	multilay	/er cerami	ic capacitor		
Test Methods and Remarks	Class 1 Capacitance at 20°C and following equation. $\frac{(C_{85}-C_{20})}{C_{20} \times \Delta T} \times 1$ Class 2 Capacitance at each step equation.	$0^6(ppm/^{o}C)$ Δ shall be measured in the	T=65	librium, and the	temperature cha				
Remarks	Step	В		X5R、X7R、X	SS、X7S				
	1	Minimum op	erating te	1					
	2	20°C		25°C					
	3	Maximum ope	erating temperature						
	$\frac{(C-C_2)}{C_2} \times 1$	00 (%) C		tance in Step 1 tance in Step 2	or Step 3				

9. Deflection					
	Temperature	Standard	Appearance Capacitance change	: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.	
Specified Compensating(Class Value High Permittivity (C		High Frequency Type	Appearance : No abnormality Capacitance change : Within±0.5 pF		
		(Class2)	Appearance : No abnormality Capacitance change : Within ±12.5%		
		Multilayer Ceram	ic Capacitors		
		021, 042, 063, [※] 105 Type	The other types		
Test	Board	Glass epoxy-res	sin substrate	Board R-230 Warp	
Methods and	Thickness	0.8mm	1.6mm		
Remarks	Warp	1mn	า		
Komarks	Duration	10 se	:С.		
		*105 Type thickness, C: 0.2m	nm ,P: 0.3mm.	(Unit: mm)	
				Canacitance measurement shall be conducted	

Capacitance measurement shall be conducted with the board bent

10. Body Stren	gth		
0 10 1	Temperature	Standard	_
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.
Value	High Permittivity (Class2)		-
Test Methods and Remarks	High Frequency 105Type Applied force : 5N Duraton : 10 sec.	← A→ S	R0.5 Pressing jig Chip 0.6A A

11. Adhesive St	trength of Terminal Elec	trodes				
0	Temperature	Standard				
Specified Value	Compensating(Class1) High Frequency Typ	e No terminal separati	No terminal separation or its indication.		
	High Permittivity (Cl	ass2)				
Test		Multilayer Cerar	nic Capacitors			
Test Methods and		021, 042, 063 Type	105 Type or more			
Remarks	Applied force	2N	5N			
Remarks	Duration	30±5	sec.			

12. Solderability	/					
	Temperature	Standard				
Specified Value	Compensating(Class1)	High Frequency Type	At least 95%	6 of terminal electrode is covered	by new solder.	
Value	High Permittivity (Class2))				
T +	Eutectic s		older	Lead-free solder		
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu		
Remarks	Solder temperature	230±5°	С	245±3°C		
Remarks	Duration		4±1 sec.			

13. Resistance	to Soldering		
	Temperature	Standard	Appearance: No abnormalityCapacitance change: Within ±2.5% or ±0.25pF, whichever is larger.Q: Initial valueInsulation resistance: Initial valueWithstanding voltage(between terminals) : No abnormality
Specified Value	Compensating(Class1)	High Frequency Type	Appearance : No abnormality Capacitance change : Within ±2.5% Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality
	High Permittivity(Class2) Note 1		Appearance : No abnormality Capacitance change : Within ±7.5% Dissipation factor : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals): No abnormality
			Class 1
		021, 042, 063 Type	
	Preconditioning		None
	Preheating	150°C, 1 to 2 min.	80 to 100°C, 2 to 5 min. 150 to 200°C, 2 to 5 min.
	Solder temp.		270±5°C
	Duration		3±0.5 sec.
Test	Recovery	6 to 24 hrs	s(Standard condition)Note 5
Methods and Remarks			Class 2
		021, 042、063 Type	е 105, 107, 212 Туре 316, 325, 432 Туре
	Preconditioning		Thermal treatment (at 150°C for 1 hr) Note 2
	Preheating	150°C, 1 to 2 min.	80 to 100°C, 2 to 5 min. 80 to 100°C, 5 to 10 min. 150 to 200°C, 2 to 5 min. 150 to 200°C, 5 to 10 min.
	Solder temp.		270±5°C
	Duration		3±0.5 sec.
	Recovery		24±2 hrs(Standard condition)Note 5

14. Temperatu	re Cycle (Thermal Shock)					
	Temperature	Standard	Capacitance change : N Q : I Insulation resistance : I	: No abnormality : Within $\pm 2.5\%$ or $\pm 0.25pF$, whichever is larger. : Initial value : Initial value (between terminals) : No abnormality		
Specified Value	Compensating(Class1)	High Frequency Type	Capacitance change : N Q : I Insulation resistance : I	e change : Within ±0.25pF : Initial value esistance : Initial value		
	High Permittivity(Class2) Note 1	Capacitance change : V Dissipation factor : In Insulation resistance : In	No abnormality Nithin ±7.5% nitial value nitial value petween terminals) : No	o abnormality	
			Class 1		Class 2	
	Preconditioning		None	Thermal treat	tment (at 150°C for 1 hr) Note 2	
Test Methods and Remarks	1 cycle	Step 1 2 3 4	Temperatur Minimum operating Normal temp Maximum operating Normal temp	g temperature perature g temperature	Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3	
	Number of cycles		5	times		1
	Recovery	6 to 24 hrs(Star	ndard condition)Note 5	24±2 hrs(S	tandard condition)Note 5	1

15. Humidity(Steady State)				
	Temperature Compensating(Class)	Standard	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. : C < 10pF : Q $\geq 200 + 10$ C $10 \leq C < 30$ pF : Q $\geq 275 + 2.5$ C C ≥ 30 pF:Q ≥ 350 (C : Nominal capacitance) : 1000 M Ω min.	
Specified Value		High Frequency Type	Appearance: No abnormalityCapacitance change: Within ±0.5pF,Insulation resistance: 1000 M Ω min.		
	High Permittivity(CI	ass2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormality : Within $\pm 12.5\%$: 5.0% max. : 50 M Ω μ F or 1000 M Ω whichever is smaller.	
		Cla	ass 1	Class 2	
		Standard	High Frequency Type	All items	
Test	Preconditioning	N	one	Thermal treatment(at 150°C for 1 hr) Note 2	
Methods and	Temperature	40±2°C	60±2°C	40±2°C	
Remarks	Humidity	90 to	95%RH	90 to 95%RH	
	Duration	500+2	4∕ —0 hrs	500+24/-0 hrs	
	Recovery	6 to 24 hrs(Standa	ard condition)Note 5	24±2 hrs(Standard condition)Note 5	

16. Humidity Lo	pading			
	Temperature	Standard	$\begin{array}{lll} \mbox{Appearance} & : \mbox{No abnormality} \\ \mbox{Capacitance change} & : \mbox{Within $\pm7.5\%$ or $\pm0.75p$F, whichever is larger.} \\ \mbox{Q} & : \mbox{C} < 30pF: \mbox{Q} \geq 100 + 10C/3 \\ \mbox{C} \geq 30pF: \mbox{Q} \geq 200 \ (C: \mbox{Nominal capacitance}) \\ \mbox{Insulation resistance} & : 500 \mbox{ M} \mbox{Q} \mbox{ min.} \end{array}$	
Specified Value	Compensating(Class1)	High Frequency Type C≥		: No abnormality : C≦2pF:Within ±0.4 pF C>2pF:Within ±0.75 pF (C:Nominal capacitance) : 500 MΩ min.
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormality : Within $\pm 12.5\%$: 5.0% max. : 25 M Ω μ F or 500 M Ω , whichever is smaller.
		C	lass 1	Class 2
		Standard	High Frequency Ty	pe All items
	Preconditioning	None		Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3
Test	Temperature	40±2°C	60±2°C	40±2°C
Methods and	Humidity	90 t	o 95%RH	90 to 95%RH
Remarks	Duration	500+	24/—0 hrs	500+24/-0 hrs
	Applied voltage	Rate	ed voltage	Rated voltage
	Charge/discharge current	50r	mA max.	50mA max.
	Recovery	6 to 24 hrs(Stan	dard condition)Note 5	24±2 hrs(Standard condition) Note 5

17. High Tempe	erature Loading						
	Temperature Compensating(Class1)	Appearance Capacitance change Q Insulation resistance		: No abnormality : Within $\pm 3\%$ or ± 0.3 pF, whichever is larger. : C < 10pF: Q $\geq 200 + 10$ C $10 \leq C < 30$ pF: Q $\geq 275 + 2.5$ C C ≥ 30 pF: Q ≥ 350 (C:Nominal capacitance) : 1000 M Ω min.			
Specified Value		High Frequency Type Insulation resistance		: No abnormality : Within $\pm 3\%$ or $\pm 0.3 pF$, whichever is larger. : 1000 M Ω min.			
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormality : Within $\pm 12.5\%$: 50 M Ω μ F or 1000 M Ω , whichever is smaller.			
		Clas	s 1		Class 2		
		Standard H	High Frequency Type	BJ, LD(涨)	C6	B7, C7	
	Preconditioning	Nor	ne	-	(Twice the rated volt 85°C, 105°C or 125°	age shall be applied for ℃)Note 3, 4	
Test	Temperature	Maximum operati	ng temperature	Max	imum operating tem	perature	
Methods and	Duration	1000+48	/ - 0 hrs		1000+48/−0 hr	S	
Remarks	Applied voltage	Rated voltage	×2 Note 4		Rated voltage $\times 2$ No	ote 4	
	Charge/discharge current	50mA	max.		50mA max.		
	Recovery	6 to 24hr(Standard	l condition)Note 5	24±2 k	nrs (Standard condit	ion)Note 5	
			Note:	₩LD Low distorti	on high value multil	ayer ceramic capacitor	

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

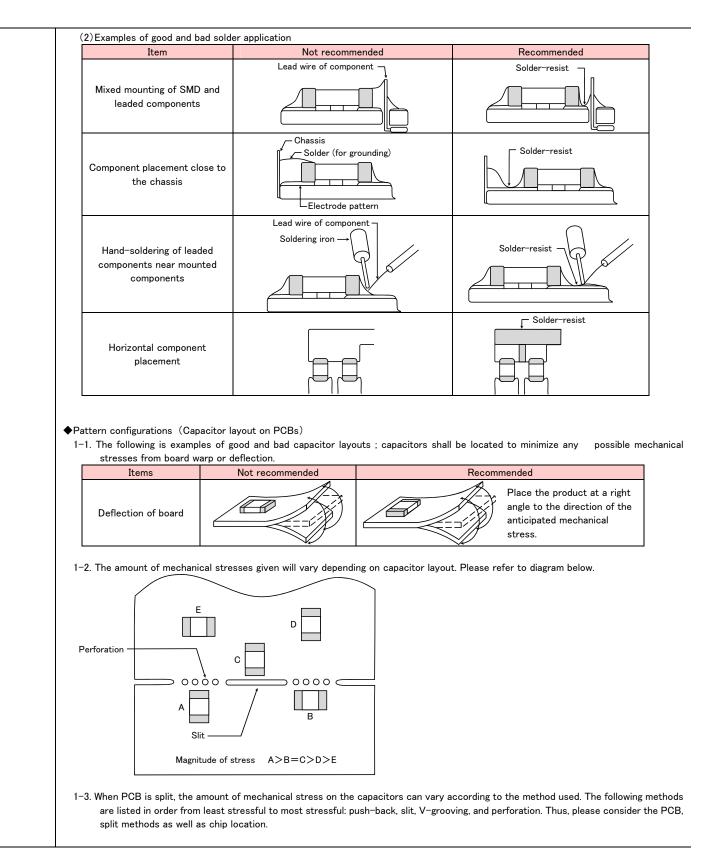
Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150+0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.

Note 3 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.

Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.

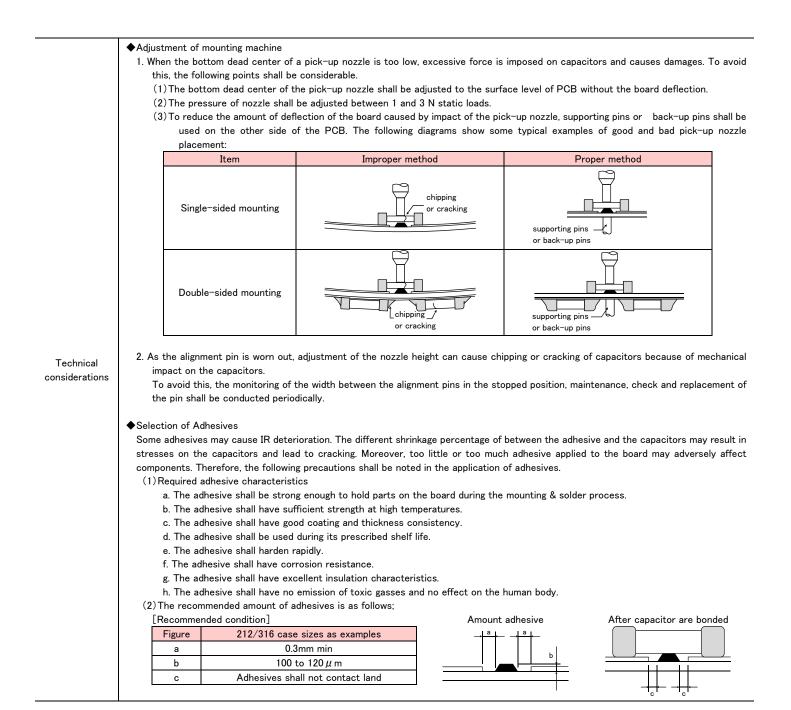
Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.

Temperature: $20 \pm 2^{\circ}$ C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".


Precautions on the use of Multilayer Ceramic Capacitors

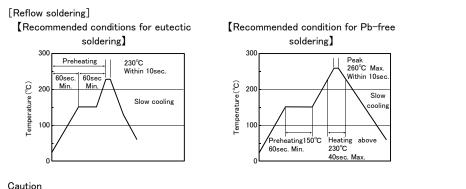
PRECAUTIONS

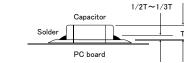
	◆Verification of operating environment, electrical rating and performance
	1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.
	Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.
Precautions	♦ Operating Voltage (Verification of Rated voltage)
	1. The operating voltage for capacitors must always be their rated voltage or less.
	If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
	For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
	2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.


. PCB Design	T										
	♦Pattern	config	gurations (Des	sign of Land-p	atterns)						
	1. When	n capa	citors are mo	unted on PCE	Bs, the amour	nt of solder u	sed (size of	fillet) can di	rectly affect	the capacitor	performan
	The	refore,	the following	items must be	carefully cor	sidered in the	design of lan	d patterns:			
	(1)	Excess	sive solder app	olied can cau	se mechanica	ıl stresses wh	nich lead to o	chip breaking	or cracking.	Therefore, pl	ease consi
		appr	opriate land-p	atterns for pr	oper amount o	of solder.					
Precautions	(2) When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated l										
	solder-resist.										
		-	gurations (Cap	-							/-
	After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PC										
	cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, lar pattern configurations and positions of capacitors shall be carefully considered to minimize stresses.										
	pattern	config	urations and p	ositions of ca	pacitors shall	be carefully c	onsidered to	minimize stre	sses.		
	♦Pattern	config	gurations (Des	sign of Land-p	atterns)						
		-	diagrams and t		-		ded land patt	erns to preve	nt excessive s	older amount	s.
	-		ended land dim	-							
			r Ceramic Cap	acitors : Reco	ommended lan	d dimensions			Land pattern		
		: mm)								and pattern	lder-resist
			Idering	010	216	205		_	Chip capacito	or of	ider resist
		уре	107	212	316	325		<u> </u>			
	Size	W	1.6 0.8	2.0 1.25	3.2 1.6	3.2 2.5		c /	↓ ↓		
		A	0.8 to 1.0	1.2.5 1.0 to 1.4	1.8 to 2.5	1.8 to 2.5	-	<u> </u>			
		B	0.5 to 1.0	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7		ŀ	\longrightarrow		
		C	0.5 to 0.8	0.0 to 1.0	1.2 to 1.6	1.8 to 2.5		I	B A	В	
		0	0.0 10 0.0	0.9 to 1.2	1.2 to 1.0	1.0 t0 2.5					
									Chip capacit	or	
										1 w	
Technical											
considerations	Reflow-soldering										
	Ту	/pe	021	042	063	105	107	212	316	325	432
	Size	L	0.25	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
	5120	W	0.125	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
	A		0.095~0.135	0.15~0.25	0.20~0.30	0.45~0.55	0.6~0.8	0.8~1.2	1.8~2.5	1.8~2.5	2.5~3.5
	E	3	0.085~0.125	0.10~0.20	0.20~0.30	0.40~0.50	0.6~0.8	0.8~1.2	1.0~1.5	1.0~1.5	1.5~1.8
	(2	0.110~0.150	0.15~0.30	0.25~0.40	0.45~0.55	0.6~0.8	0.9~1.6	1.2~2.0	1.8~3.2	2.3~3.5
	Note: Recommended land size might be different according to the allowance of the size of the product.										
	●LWDC: Recommended land dimensions for reflow-soldering										
	(unit: mm)										
	T	pe	105	107	212						
		L	0.52	0.8	1.25					w	
	Size	W	1.0	1.6	2.0						
		A	0.18~0.22	0.25~0.3	0.5~0.7						
	В		0.2~0.25	0.3~0.4	0.4~0.5						
	С		0.9~1.1	1.5~1.7	1.9~2.1				L		
									•		

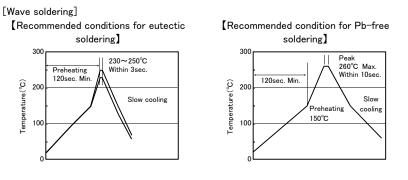
TAIYO YUDEN

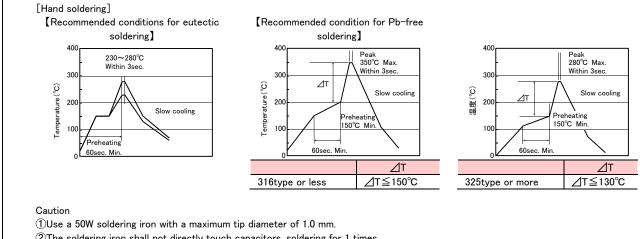
3. Mounting	
Precautions	 Adjustment of mounting machine When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. Maintenance and inspection of mounting machines shall be conducted periodically. Selection of Adhesives When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.




4. Soldering	
Precautions	 Selection of Flux Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used shall be less than or equal to 0.1 wt%(in Cl equivalent) of halogenated content. Flux having a strong acidity content shal not be applied. (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level. (3) When water-soluble flux is used, special care shall be taken to properly clean the boards. Soldering Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions. Sn-Zn solder paste can adversely affect MLCC reliability. Please contact us prior to usage of Sn-Zn solder.
Technical considerations	 Selection of Flux 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors. 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.

Soldering


- Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock
- Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 130°C
- Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.


(1) The ideal condition is to have solder mass(fillet) controlled to 1/2 to 1/3 of the thickness of a capacitor.

OBecause excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible. soldering for 2 times.

Caution

⁽¹⁾Wave soldering must not be applied to capacitors designated as for reflow soldering only. soldering for 1 times.

(2) The soldering iron shall not directly touch capacitors. soldering for 1 times.

5. Cleaning	
Precautions	 Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.
Technical considerations	 The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/2 or les Ultrasonic frequency : 40 kHz or less Ultrasonic washing period : 5 min. or less

6. Resin coating	and mold
Precautions	 With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors. The use of such resins, molding materials etc. is not recommended.

7. Handling	
Precautions	 Splitting of PCB When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. Board separation shall not be done manually, but by using the appropriate devices. Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. Please be careful that the mounted components do not come in contact with or bump against other boards or components.

	♦Storage			
Precautions	 To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature : Below 30°C Humidity : Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour. 			
Technical considerations	If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.			