5 V ECL Low Voltage 2:8 Differential Fanout Buffer

Description

The MC100E310 is a low voltage, low skew 2:8 differential ECL fanout buffer designed with clock distribution in mind. The device features fully differential clock paths to minimize both device and system skew. The E310 offers two selectable clock inputs to allow for redundant or test clocks to be incorporated into the system clock trees.

The lowest TPD delay time results from terminating only one output pair, and the greatest TPD delay time results from terminating all the output pairs. This shift is about 10–20 pS in TPD. The skew between any two output pairs within a device is typically about 25 nS. If other output pairs are not terminated, the lowest TPD delay time results from both output pairs and the skew is typically 25 nS. When all outputs are terminated, the greatest TPD (delay time) occurs and all outputs display about the same 10–20 ps increase in TPD, so the relative skew between any two output pairs remains about 25 ns.

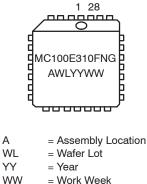
For more information on using PECL, designers should refer to ON Semiconductor Application Note <u>AN1406/D</u>.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series Contains Temperature Compensation.

Features

- Dual Differential Fanout Buffers
- 200 ps Part-to-Part Skew
- 50 ps Output-to-Output Skew
- 28-lead PLCC Packaging
- Q Output will Default LOW with Inputs Open or at V_{EE}
- PECL Mode Operating Range: V_{CC} = 4.2 V to 5.7 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input 50 kΩ Pulldown Resistors
- ESD Protection:
 - ♦ > 2 kV Human Body Model
 - ♦ > 200 V Machine Model
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free) (For Additional Information, see Application Note <u>AND8003/D</u>)
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 212 Devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

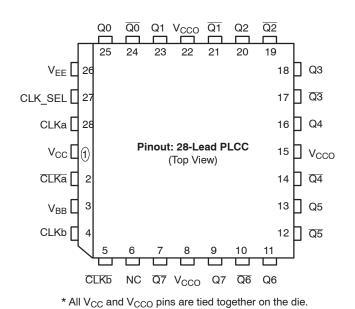

ON Semiconductor®

www.onsemi.com

PLCC-28 FN SUFFIX CASE 776-02

MARKING DIAGRAM*

= Pb-Free Package


G

ORDERING INFORMATION

Device	Package	Shipping†
MC100E310FNG	PLCC-28 (Pb-Free)	37 Units / Tube
MC100E310FNR2G	PLCC-28 (Pb-Free)	500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>.

Q2 CLKa Q3 CLKa Q3 CLKb Q4 CLKb Q4 CLK_SEL Q5 Q5 Q6 Q6 Q7 Q7 V_{BB} .

Q0

Q0

Q1

Q1

Q2

Warning: All V_CC, V_CCO, and V_EE pins must be externally

connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagram and Pinout Assignment

Table 1. PIN DESCRIPTION

PIN	Function
CLKa, CLKb;	ECL Differential Input Pairs
CLKa, CLKb	ECL Differential Input Pairs
Q0:7; Q0:7	ECL Differential Outputs
CLK_SEL	ECL Input Clock Select
V _{BB}	Reference Voltage Output
V _{CC} , V _{CCO}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

Table 2. FUNCTION TABLE

PIN	Function
0	CLKa Selected
1	CLKb Selected

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	PLCC-28 PLCC-28	63.5 43.5	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

		−40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{EE}	Power Supply Current		55	60		55	60		65	70	mA
V _{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3255	3380	3190	3260	3380	mV
VIH	Input HIGH Voltage (Single-Ended)	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
V_{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.7		4.6	2.7		4.6	2.7		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

Table 4. 100E SERIES PECL DC CHARACTERISTICS (V_{CCx} = 5.0 V; V_{EE} = 0 V (Note 1))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

Table 5. 100E SERIES NECL DC CHARACTERISTICS ($V_{CCx} = 0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 1))

			–40°C 25°C						85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
I _{EE}	Power Supply Current		55	60		55	60		65	70	mA	
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-950	-880	-1025	-950	-880	mV	
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1745	-1620	-1810	-1740	-1620	mV	
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV	
V_{IL}	Input LOW Voltage (Single-Ended)	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV	
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V	
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	-2.3		-0.4	-2.3		-0.4	-2.3		-0.4	V	
I _{IH}	Input HIGH Current			150			150			150	μA	
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V. 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

			–40°C 25°C								
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency	700	900		700	900		700	900		MHz
t _{PLH} t _{PHL}	Propagation Delay to Output IN (differential) (Note 2) IN (single-ended) (Note 3)	525 500		725 750	550 550		750 800	575 600		775 850	ps
t _{skew}	Within-Device Skew (Note 4) Part-to-Part Skew (Diff)			75 250			50 200			50 200	ps
t _{JITTER}	Random Clock Jitter (RMS)		< 1			< 1			< 1		ps
V_{PP}	Input Voltage Swing (Differential Configuration)	500			500			500			mV
t _r /t _f	Output Rise/Fall Time (20%-80%)	200		600	200		600	200		600	ps

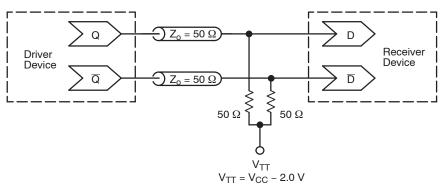
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

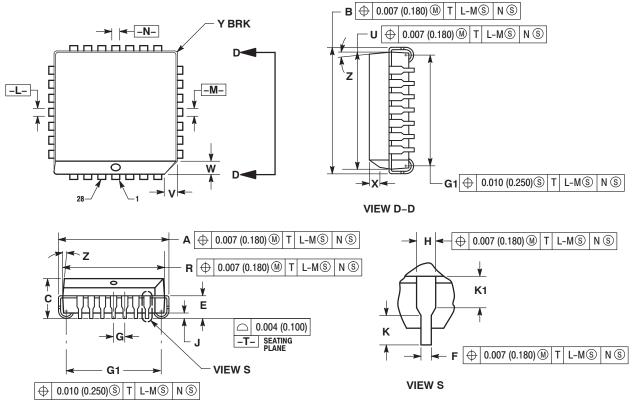
1. V_{EE} can vary -0.46 V / +0.8 V.

 The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals. See *Definitions and Testing of ECLinPS AC Parameters* in Chapter 1 (page 1–12) of the ON Semiconductor High Performance ECL Data Book (DL140/D).

3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.

4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.




Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices)

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	_	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

28 LEAD PLLC **FN SUFFIX** CASE 776-02 **ISSUE F**

NOTES:

- OIES: 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE. 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE. 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD ET ASUL AL WARDLE MOLD FLASUL
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR PURDES CATE PURDES AND INTEELED BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	IETERS
DIM	MIN	MIN MAX		MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
С	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.021	0.33	0.53
G	0.050	BSC	1.27	BSC
Η	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Y		0.020		0.50
Z	2 °	10°	2 °	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, "trypical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative