

Precision, Low Power, Micropower Dual Operational Amplifier

OP290

FEATURES

Single-/Dual-Supply Operation, 1.6 V to 36 V, ±0.8 V to ±18 V True Single-Supply Operation; Input and Output Voltage Ranges Include Ground Low Supply Current (Per Amplifier), 20 μA Max High Output Drive, 5 mA Min Low Input Offset Voltage, 200 μV Max High Open-Loop Gain, 700 V/mV Min Outstanding PSRR, 5.6 μV/V Max Industry Standard 8-Lead Dual Pinout Available in Die Form

GENERAL DESCRIPTION

The OP290 is a high performance micropower dual op amp that operates from a single supply of 1.6 V to 36 V or from dual supplies of ± 0.8 V to ± 18 V. Input voltage range includes the negative rail allowing the OP290 to accommodate input signals down to ground in single-supply operation. The OP290's output swing also includes ground when operating from a single supply, enabling "zero-in, zero-out" operation.

The OP290 draws less than 20 μ A of quiescent supply current per amplifier, while able to deliver over 5 mA of output current to a load. Input offset voltage is below 200 μ V eliminating the need for external nulling. Gain exceeds 700,000 and common-mode rejection is better than 100 dB. The power supply rejection ratio of under 5.6 pV/V minimizes offset voltage changes experienced in battery-powered systems. The low offset voltage and high gain offered by the OP290 bring precision performance to micropower applications. The minimal voltage and current requirements of the OP290 suit it for battery- and solar-powered applications, such as portable instruments, remote sensors, and satellites. For a single op amp, see the OP90; for a quad, see the OP490.

16-Lead SOL (S-Suffix)

EPOXY MINI-DIP (P-Suffix) 8-Lead HERMETIC DIP (Z-Suffix)

Figure 1. Simplified Schematic (one of two amplifiers is shown)

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002

OP290–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 1.5$ V to ± 15 V, $T_A = 25^{\circ}$ C, unless otherwise noted.)

			()P290H	3	()P290F			OP2900	3	
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
INPUT OFFSET	TAGE											
	V _{OS}			50	200		75	300		125	500	μV
INPUT OFFSET CUR	rent 1 _{0s}	$V_{CM} = 0 V$		0.1	3		0.1	5		0.1	5	nA
INPUT BIAS CURRE	103	VCM UV		0.1	9		0.1	<u> </u>		0.1	5	
	I _B	$V_{CM} = 0 V$		4.0	15		4.0	20		4.0	25	nA
LARGE-SIGNAL	A _{VO}	$V_{\rm S} = \pm 15 \rm V, V_{\rm O} = \pm 10 \rm V$		1000		500	1000		400	(00		
VOLTAGE GAIN		$R_{\rm L} = 100 \text{ k}\Omega$ $R_{\rm L} = 10 \text{ k}\Omega$	700 350	1200 600		500 250	1000 500		400 200	600 400		
		$R_L = 10 \text{ K}_2$ $R_L = 2 \text{ k}\Omega$	125	250		100	200		100	200		V/mV
		V^{-} = 5V, V– = 0 V,										
		$1 V < V_0 < 4 V$										
		$R_{\rm L} = 100 \text{ k}\Omega$ $R_{\rm L} = 10 \text{ k}\Omega$	200 100	$\begin{array}{c} 400 \\ 180 \end{array}$		125 75	300 140		100 70	250 140		
INPUT VOLTAGE R		$R_L = 10 R_{22}$	100	160			140		10	140		
INFUT VOLTAGE N	IVR	V + = 5 V, V - = 0 V	0/4			0/4			0/4			v
		$V_S = \pm 5 V^1$	-15/13.	5		-15/13	.5		-15/13	.5		
OUTPUT VOLTAGE	SWING											
	Vo	$V_s = \pm 5 V$										
		$R_{\rm L} = 10 \ \rm k\Omega$ $R_{\rm I} = 2 \ \rm k\Omega$	$\pm 13.5 \pm 10.5 \pm$			$\pm 13.5 \pm 10.5 $				$^{\pm 14.2}_{\pm 11.5}$	V	
	V _{OH}	$K_L = 2 KS2$ V+ = 5 V, V- = 0 V	40	4.2		4.0	4.2		4.0	±11.5 4.2		v
	, OH	V + = 5 V, V - = 0 V		1.2		1.0	1.2		1.0	1.2		
	V _{OL}	$R_L = 10 kn$	10	50		10	50		10	50		μV
COMMON-MODE	CMR	V + = 5 V, V - = 0 V		ttS		80	100		80	100		dB
REJECTION		$0 V < V_{CM} < 4 V$	100	100			100		0.0	100		
		$V_{\rm S} = \pm 15 \text{ V},$ -15 V < $V_{\rm CM}$ < 13.5 V	100	120		90	120		90	120		
POWER SUPPLY	PSRR			10	5.6		10	5.6		3.2	10	μV/V
REJECTION RATIO	loiut			10	5.0		10	5.0		5.2	10	
SUPPLY CURRENT	I _{SY}	$V_{\rm S} = \pm 1.5 \rm V$		19	30		19	30		19	30	μA
(All Amplifiers)		$V_{\rm S}$ = ±15 V		25	40		25	40		25	40	
CAPACITIVE LOAD		$A_{V} = +1$		650			650			650		PF
STABILITY		No Oscillations										
INPUT NOISE VOLT												
	e _{np-p}	$f_0 = 0.1 \text{ Hz to } 10 \text{ Hz}$ $V_s = \pm 15 \text{ V}$		3			3			3		µV _{p-p}
INPUT RESISTANCE		VS - ±15 V										
DIFFERENTIAL-MOD	ERIN	$V_s = \pm 15 V$		30			30			30		MΩ
INPUT RESISTANCE	R _{INCM}	$V_8 = \pm 15 V$		20			20			20		GΩ
COMMON-MODE	- INCM	13 _13 1		20			20			20		
SLEW RATE	SR	$A_{V} = +1$	5	12		5	12		5	12		V/ms
		$V_{\rm S} = \pm 15 \text{ V}$										
GAIN BANDWIDTH	GBWP	$V_{s} = +15 V$		20			20			20		kHz
PRODUCT		$V_{\rm S} = \pm 15 \text{ V}$										
CHANNEL			1.00	1 = 0		1.00	1.50		100	1.50		
SEPARATION ²	CS	$ f_{O} = 10 \text{ Hz} $ $ V_{O} = 20 \text{ Vp-p} $	120	150		120	150		120	150		dB
		$V_0 = 20 V_0 - p$ $V_s = \pm 15 V^2$										

NOTES

¹Guaranteed by CMR test.

²Guaranteed but not 100% tested.

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 1.5$ V to ± 15 V, $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted.)

				OP29)A	
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT OFFSET VOLTAGE	Vos			80	500	μV
AVERAGE INPUT OFFSET VOLTAGE DRIFT	TCV _{os}	V _S = 15 V		03	3	μV/°C
INPUT OFFSET CURRENT	I _{OS}	VCM = 0 V		0.1	5	nA
INPUT BIAS CURRENT	I _B	VCM = 0 V		4.2	20	nA
LARGE-SIGNAL VOLTAGE GAIN	A _{VO}	$\begin{split} V_{\rm S} &= 15 \ V, V_{\rm O} = \pm 10 \ V \\ R_{\rm L} &= 100 \ k\Omega \\ R_{\rm L} &= 10 \ k\Omega \\ R_{\rm L} &= 2 \ k\Omega \\ V+ &= 5 \ V, V- = 0 \ V, \\ 1 \ V < V_{\rm O} < 4 \ V \\ R_{\rm L} &= 100 \ k\Omega \\ R_{\rm L} &= 10 \ k\Omega \end{split}$	225 125 50 100 50	400 240 110 200 110		V/mV
INPUT VOLTAGE RANGE*	IVR	V + = 5 V, V - = 0 V $V_S = \pm 15 V^*$	0/3.5 -15/1	3.5		V
OUTPUT VOLTAGE SWING	Vo	$V_{S} = \pm 15 V$ $R_{L} = 10 k\Omega$ $R_{L} = 2 k\Omega$ $V + = 5 V, V - = 0 V$	±13 ±10	$^{\pm 14.1}_{\pm 11}$		V
	V _{OH} V _{OL}	$R_{L} = 2 k\Omega$ $V + = 5 V, V - = 0 V$ $R_{L} = 10 k\Omega$		10	100	V µV
COMMON-MODE REJECTION	CMR	$V+ = 5 V, V- = 0 V, 0 V < V_{CM} < 13.5 V$ $V_{S} = \pm 15 V, -15 V < V_{CM} < 13.5 V$	80 90	105 115		dB
POWER SUPPLY REJECTION RATIO	PSRR			3.2	10	μV/V
SUPPLY CURRENT (All Amplifiers)	IsY	$V_{S} = \pm 1.5 V$ $V_{S} = \pm 15 V$		30 38	50 60	μΑ

NOTES

*Guaranteed by CMR test.

Specifications subject to change without notice.

				OP290H	3	OP290F			OP290G			
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
INPUT OFFSET VO	LTAGE											
	Vos			70	400		115	600		200	750	μV
)FFS <mark>E</mark> T											
VOLTAGE DRIFT	TOU						0.6	_				11/06
	TCV _{OS}	$V_S = \pm 15 V$		0.3	3		0.6	5		1.2		μV/°C
INPUT OFFSET OU	RRENT	$\mathbf{V} = 0 \mathbf{V}$		01	2		0.1	5		0.1	7	-
	I _{OS}	$V_{CM} = 0 V$		01	3		0.1	2		0.1	1	nA
INPUT BIAS CURR	ENT I _B	$V_{CM} = 0 V$		4.2	t5		4.2	20		4.2	25	nA
LARGE-SIGNAL	A _{VO}	$V_{\rm S} = \pm 5 \text{ V}, V_{\rm O} = \pm 0 \text{ V}$		1.2	1.5		1.2	20		1.2	23	V/mV
VOLTAGE GAIN	AVO	$R_{\rm L} = 100 \ \rm k\Omega$	500	800		350	700		300	600		V/III V
VOLTINOL OTHIN		$R_L = 10 \text{ k}\Omega$	250	400		175	350		150	250		
		$R_L = 2 k\Omega$	100	200		75	150		75	125		
		$V_{+} = 5 V, V_{-} = 0 V,$	100	200			150			125		
		$1 V < V_0 < 4 V$										
		$R_{\rm L} = 100 \text{ k}\Omega$	150	280		100	220		80	160		
		$R_L = 10 \text{ k}\Omega$	75	140		50	110		40	90		
INPUT VOLTACE	RANGE*											
	IVR	V + = 5 V, V - = 0 V	0/3.5			0/3.5			0/3.5			V
		$V_{\rm S} = +15 {\rm V}^*$	-15/13	5.5		-15/13	3.5		-15/13	.5		
OUTPUT VOLTAGI	SWING											
	Vo	$V_{8} = \pm 15 V$										
	Ū	$R_L = 10 \text{ k}\Omega$	±13	± 14		±13	± 14		±13	± 14		V
		$R_L = 2 k\Omega$	±10	± 11		±10	± 11		±10	± 11		
	V _{OH}	$V^{+} = 5 V, V^{-} = 0 V$										
		$R_L = 2 k\Omega$	3.9	4.1		3.9	4.1		3.9	4.1		V
	VOL	V + = 5 V, V - = 0 V										
		$R_L = 10 \ k\Omega$		10	100		10	100		10	100	μV
COMMON-MODE	CMR	V + = 5 V, V - = 0 V,	85	105		80	100		80	100		dB
REJECTION		$0 V < V_{CM} < 3.5 V$										
		$V_{S} = \pm 15 V$										
		$-15 \text{ V} < \text{V}_{\text{CM}} < 13.5 \text{ V}$	95	115		90	110		90	110		
POWER SUPPLY REJECTION RATIO	PSRR			3.2	7.5		5.6	10		5.6	15	μV/V
SUPPLY CURRENT	I _{SY}	$V_{\rm S} = \pm 1.5 \rm V$		24	50		24	50		24	50	μA
(All Amplifiers)		$V_{s} = \pm 15 V$		31	60		31	60		31	60	l •

NOTE

*Guaranteed by CMR test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage ±18 V
Differential Input Voltage \dots [(V–) – 20 V] to [(V+) + 20 V]
Common-Mode Input Voltage $[(V-) - 20 V]$ to $[(V+) + 20 V]$
Output Short-Circuit Duration Indefinite
Storage Temperature Range
P, S, Z Packages $\dots -65^{\circ}$ C to $+150^{\circ}$ C
Operating Temperature Range
OP290A55°C to +125°C
OP290E, OP290F, OP290G40°C to +85°C
Junction Temperature (T_j)
Lead Temperature Range (Soldering, 60 sec) 300°C

Package Type	$\theta_{jA}{}^2$	θ_{jC}	Unit
8-Lead Hermetic DIP (Z)	134	12	°C/W
8-Lead Plastic DIP (P)	96	37	°C/W
16-Lead SOL (S)	92	27	°C/W

NOTES

¹Absolute Maximum Ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^2\theta_{iA}$ is specified for worst-case mounting conditions, i.e., θ_{iA} is specified for device in socket for CERDIP and P-DIP packages; θ_{iA} is specified for device soldered to printed circuit board for SOL package.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP290 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Pac	Operating		
Cerdip 8-Lead	Plastic	Temperature Range	
OP290AZ*		MIL	
OP290EZ*		XIND	
OP290FZ*		XIND	
	OP290GP	XIND	
	OP290GS*	XIND	
	Cerdip 8-Lead OP290AZ* OP290EZ*	8-LeadPlasticOP290AZ* OP290EZ* OP290FZ*OP290GP	

*Not for new designs. Obsolete April 2002.

For military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/programs.milspec./default.asp

SMD Part Number	ADI Part Number
5962-89783012A*	OP290ARCMDA
5962-8978301PA*	OP290AZMDA

*Not for new designs. Obsolete April 2002.

TPC 1. Input Offset Voltage vs. Temperature

TPC 2. Input Offset Current vs. Temperature

TPC 3. Input Bias Current vs. Temperature

TPC 4. Supply Current vs. Temperature

TPC 7. Closed-Loop Gain vs. Frequency

TPC 5. Open-Loop Gain vs. Single-Supply Voltage

TPC 8. Ouput Voltage Swing vs. Load Resistance

TPC 6. Open-Loop Gain and Phase Shift vs. Frequency

TPC 9. Output Voltage Swing vs. Load Resistance

Typical Performance Characteristics-OP290

TPC 10. Power Supply Rejection vs. Frequency

TPC 11. Common-Mode Rejection vs. Frequency

TPC 13. Current Noise Density vs. Frequency

TPC 14. Small-Signal Transient Response

TPC 12. Noise Voltage Density vs. Frequency

TPC 15. Large-Signal Transient Response

Figure 2. Burn-In Circuit

APPLICATIONS INFORMATION BATTERY-POWERED APPLICATIONS

The OP290 can be operated on a minimum supply voltage of 1.6 V, or with dual supplies of 0.8 V, and draws only 19 pA of supply current. In many battery-powered circuits, the OP290 can be continuously operated for thousands of hours before requiring battery replacement, reducing equipment downtime and operating cost.

High-performance portable equipment and instruments frequently use lithium cells because of their long shelf-life, light weight, and high energy density relative to older primary cells. Most lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. The low supply voltage requirement of the OP290, combined with the flat discharge characteristic of the lithium cell, indicates that the OP290 can be operated over the entire useful life of the cell. Figure 1 shows the typical discharge characteristic of a 1 Ah lithium cell powering an OP290 with each amplifier, in turn, driving full output swing into a 100 k Ω load.

INPUT VOLTAGE PROTECTION

The OP290 uses a PNP input stage with protection resistors in series with the inverting and noninverting inputs. The high breakdown of the PNP transistors coupled with the protection resistors provide a large amount of input protection, allowing the inputs to be taken 20 V beyond either supply without damaging the amplifier.

SINGLE-SUPPLY OUTPUT VOLTAGE RANGE

In single-supply operation the OP290's input and output ranges include ground. This allows true "zero-in, zero-out" operation. The output stage provides an active pull-down to around 0.8 V above ground. Below this level, a load resistance of up to 1 MS2 to ground is required to pull the output down to zero.

In the region from ground to 0.8 V, the OP290 has voltage gain equal to the data sheet specification. Output current source capability is maintained over the entire voltage range including ground.

Figure 3. Channel Separation Test Circuit

APPLICATIONS TEMPERATURE TO 4–20 mA TRANSMITTER

A simple temperature to 4–20 mA transmitter is shown in Figure 5. After calibration, the transmitter is accurate to $+0.5^{\circ}$ C over the -50° C to $+150^{\circ}$ C temperature range. The transmitter operates from 8 V to 40 V with supply rejection better than 3 ppm/V. One half of the OP290 is used to buffer the V_{TEMP} pins while the other half regulates the output current to satisfy the current summation at its noninverting input.

$$I_{OUT} = \frac{V_{TEMP} (R6 + R7)}{R2 R10} - V_{SET} \left(\frac{R2 R6 R7}{R2 R10}\right)$$

Figure 4. Lithium Sulphur Dioxide Cell Discharge Characteristic with OP290 and 100 $k\Omega$ Loads

The change in output current with temperature is the derivative of the transfer function:

$$\frac{\Delta I_{OUT}}{\Delta T} = \frac{\frac{\Delta V_{TEMP}}{\Delta T} \left(R6 + R7 \right)}{R2 R10}$$

From the formulas, it can be seen that if the span trim is adjusted before the zero trim, the two trims are not interactive, which greatly simplifies the calibration procedure.

Calibration of the transmitter is simple. First, the slope of the output current versus temperature is calibrated by adjusting the span trim, R7. A couple of iterations may be required to be sure the slope is correct.

Once the span trim has been completed, the zero trim can be made. Remember that adjusting the offset trim will not affect the gain.

The offset trim can be set at any known temperature by adjusting $R_{\rm 5}$ until the output current equals:

$$I_{OUT} = \left(\frac{\Delta I_{FS}}{\Delta T_{OPERATING}}\right) \left(T_{AMBIENT} - T_{MIN}\right) + 4 mA$$

Table I shows the values of R6 required for various temperature ranges.

Table I.

Temperature Range	R6 (kΩ)
0°C to +70°C	10
-40° C to $+85^{\circ}$ C	6.2
–55°C to +150°C	3

VARIABLE SLEW RATE FILTER

The circuit shown in Figure 6 can be used to remove pulse noise from an input signal without limiting the response rate to a genuine signal. The nonlinear filter has use in applications where the input signal of interest is known to have physical limitations. An example of this is a transducer output where a change of temperature or pressure cannot exceed a certain rate due to physical limitations of the environment. The filter consists of a comparator which drives an integrator. The comparator compares the input voltage to the output voltage and forces the integrator output to equal the input voltage. A1 acts as a comparator with its output high or low. Diodes D1 and D2 clamp the voltage across R3 forcing a constant current to flow in or out of C2. R3, C2, and A2 form an integrator with A2's output slewing at a maximum rate of:

Maximum slew rate =
$$\frac{V_D}{R3 C2} \approx \frac{0.6 V}{R3 C2}$$

For an input voltage slewing at a rate under this maximum slew rate, the output simply follows the input with A1 operating in its linear region.

Figure 5. Temperature to 4-20 mA Transmitter

Figure 6. Variable Slew Rate Filter

LOW OVERHEAD VOLTAGE REFERENCE

Figure 7 shows a voltage reference that requires only 0.1 V of overhead voltage. As shown, the reference provides a stable 4.5 V output with a 4.6 V to 36 V supply. Output voltage drift is only 12 ppm/°C. Line regulation of the reference is under 5 HV/V with load regulation better than 10 μ V/mA with up to 50 mA of output current.

The REF-43 provides a stable 2.5 V which is multiplied by the OP290. The PNP output transistor enables the output voltage to approach the supply voltage.

Resistors R1 and R2 determine the output voltage.

$$V_{OUT} = 2.5 V \left(1 + \frac{R2}{R1} \right)$$

The 200 Ω variable resistor is used to trim the output voltage. For the lowest temperature drift, parallel resistors can be used in place of the variable resistor and taken out of the circuit as required to adjust the output voltage.

Figure 7. Low Overhead Voltage Reference

Revision History

Location	Page
Data Sheet changed from REV. 0 to REV. A.	
Edits to ORDERING INFORMATION	1
Edits to PIN CONNECTIONS	1
Edits to ABSOLUTE MAXIMUM RATINGS	
Edits to PACKAGE TYPE	
Edits to WAFER TEST LIMITS	
Edits to DICE CHARACTERISTICS	