BOURNS®

- 5 A Continuous On-State Current
- 30 A Surge-Current
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 200 μA

This series is obsolete and not recommended for new designs.

Pin 2 is in electrical contact with the mounting base.

MDC1ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

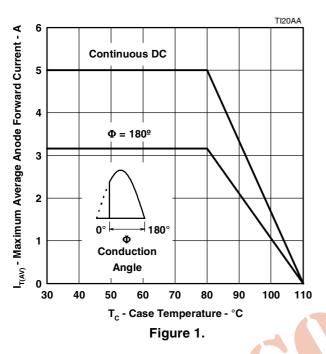
RATING	SYMBOL	VALUE	UNIT		
	TIC106D		400		
Repetitive peak off-state voltage (see Note 1)	TIC106M	VDRM	600	V	
Trepetitive peak off-state voltage (see Note 1)	TIC106S	VDRM	700		
	TIC106N		800		
	TIC106D		400		
Repetitive peak reverse voltage	TIC106M	\/	600	V	
Tropontivo poar reverse voltage	TIC106S	VRRM	700		
	TIC106N		800		
Continuous on-state current at (or below) 80°C case temperature (see Note 2)		I _{T(RMS)}	5	Α	
Average on-state current (180° conduction angle) at (or below) 80°C case temporary	l=	3.2	Α		
(see Note 3)		I _{T(AV)}	0.2	^	
Surge on-state current at (or below) 25°C (see Note 4)	I _{TSM}	30	Α		
Peak positive gate current (pulse width ≤ 300 μs)	I _{GM}	0.2	Α		
Peak gate power dissipation (pulse width ≤ 300 μs)	P _{GM}	1.3	W		
Average gate power dissipation (see Note 5)	$P_{G(AV)}$	0.3	W		
Operating case temperature range	T _C	-40 to +110	°C		
Storage temperature range	T _{stg}	-40 to +125	°C		
Lead temperature 1.6 mm from case for 10 seconds	T _L	230	°C		

NOTES: 1. These values apply when the gate-cathode resistance R_{GK} = 1 $k\Omega$.

- 2. These values apply for continuous dc operation with resistive load. Above 80°C derate linearly to zero at 110°C.
- 3. This value may be applied continuously under single phase 50 Hz half-sine-wave operation with resistive load. Above 80°C derate linearly to zero at 110°C.
- 4. This value applies for one 50 Hz half-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.
- 5. This value applies for a maximum averaging time of 20 ms.

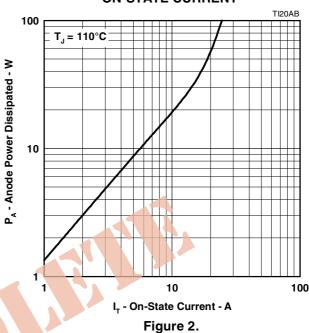
electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = rated V _{DRM}	R _{GK} = 1 kΩ	T _C = 110°C			400	μА
I _{RRM}	Repetitive peak reverse current	V _R = rated V _{RRM}	I _G = 0	T _C = 110°C			1	mA
I _{GT}	Gate trigger current	V _{AA} = 12 V	$R_L = 100 \Omega$	t _{p(g)} ≥ 20 μs		5	200	μΑ
		$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$	T _C = - 40°C			1.2	
V _{GT} Gate trigger voltage	$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$		0.4	0.6	1	V	
		$V_{AA} = 12 \text{ V}$ $t_{p(g)} \ge 20 \mu\text{s}$	$R_L = 100 \Omega$ $R_{GK} = 1 k\Omega$	T _C = 110°C	0.2			
I _H	I⊔ Holding current	$V_{AA} = 12 \text{ V}$ Initiating $I_T = 10 \text{ mA}$	$R_{GK} = 1 k\Omega$	T _C = - 40°C			8	mA
H HOIG	riolaing current	$V_{AA} = 12 \text{ V}$ Initiating $I_T = 10 \text{ mA}$	$R_{GK} = 1 k\Omega$				5	ША
V _T	Peak on-state voltage	I _T = 5 A	(See Note 6)				1.7	V
dv/dt	Critical rate of rise of off-state voltage	V _D = rated V _D	R _{GK} = 1 kΩ	T _C = 110°C	A	10		V/µs

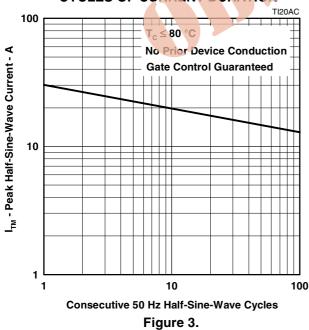

NOTE 6: This parameter must be measured using pulse techniques, t_p = 300 µs, duty cycle ≤ 2 %. Voltage sensing-contacts, separate from the current carrying contacts, are located within 3.2 mm from the device body.

thermal characteristics

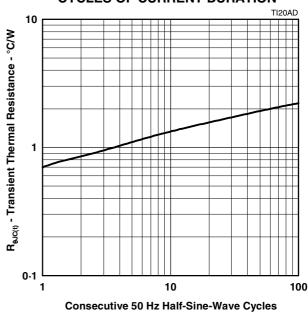
PARAMETER				7		MIN	TYP	MAX	UNIT	
R _{θJC} Junction to case therma	l resistance								3.5	°C/W
R _{θJA} Junction to free air them	mal resistance		1	2					62.5	°C/W


THERMAL INFORMATION

AVERAGE ANODE ON-STATE CURRENT DERATING CURVE


ON-STATE CURRENT 100

ANODE POWER DISSIPATED


SURGE ON-STATE CURRENT

CYCLES OF CUPRENT DURATION

TRANSIENT THERMAL RESISTANCE

CYCLES OF CURRENT DURATION

TYPICAL CHARACTERISTICS

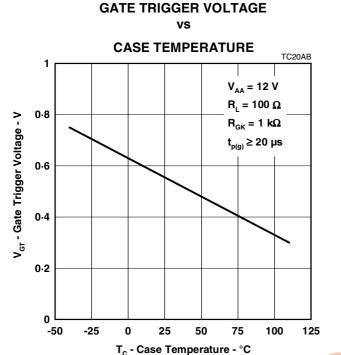


Figure 5.

HOLDING CURRENT

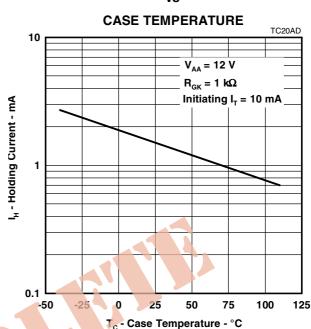


Figure 6.

PEAK ON-STATE VOLTAGE

PEAK ON-STATE CURRENT

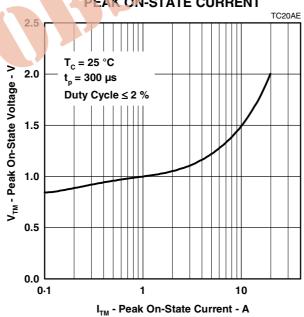


Figure 7.