Complementary Silicon Transistors, Plastic, Medium-Power

TIP100, TIP101, TIP102 (NPN); TIP105, TIP106, TIP107 (PNP)

Designed for general-purpose amplifier and low-speed switching applications.

Features

• High DC Current Gain -

$$h_{FE} = 2500 \text{ (Typ)} @ I_{C}$$

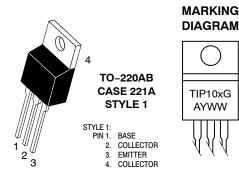
= 4.0 Adc

• Collector-Emitter Sustaining Voltage - @ 30 mAdc

• Low Collector-Emitter Saturation Voltage -

$$V_{CE(sat)} = 2.0 \text{ Vdc (Max)} @ I_{C}$$

= 3.0 Adc
= 2.5 Vdc (Max) @ $I_{C} = 8.0 \text{ Adc}$


- Monolithic Construction with Built-in Base-Emitter Shunt Resistors
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

DARLINGTON 8 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 60-80-100 VOLTS, 80 WATTS

TIP10x = Device Code x = 0, 1, 2, 5, 6, or 7 A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	TIP100, TIP105	TIP101, TIP106	TIP102, TIP107	Unit
Collector – Emitter Voltage	V _{CEO}	60	80	100	Vdc
Collector - Base Voltage	V _{CB}	60	80	100	Vdc
Emitter – Base Voltage	V _{EB}		5.0		Vdc
Collector Current - Continuous - Peak	Ic	8.0 15			Adc
Base Current	I _B	1.0			Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	80 0.64			W W/°C
Unclamped Inductive Load Energy (1)	E	30		mJ	
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	2.0 0.016		W W/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.56	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. I_C = 1.1 A, L = 50 mH, P.R.F. = 10 Hz, V_{CC} = 20 V, R_{BE} = 100 Ω

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			l .	1	I
Collector-Emitter Sustaining Voltage (1)		V _{CEO(sus)}			Vdc
$(I_C = 30 \text{ mAdc}, I_B = 0)$	TIP100, TIP105		60	_	
	TIP101, TIP106		80	-	
	TIP102, TIP107		100	_	
Collector Cutoff Current		I _{CEO}			μAdc
$(V_{CE} = 30 \text{ Vdc}, I_B = 0)$	TIP100, TIP105		_	50	
$(V_{CE} = 40 \text{ Vdc}, I_B = 0)$	TIP101, TIP106		_	50	
$(V_{CE} = 50 \text{ Vdc}, I_B = 0)$	TIP102, TIP107		-	50	
Collector Cutoff Current		I _{CBO}			μAdc
$(V_{CB} = 60 \text{ Vdc}, I_{E} = 0)$	TIP100, TIP105		_	50	
$(V_{CB} = 80 \text{ Vdc}, I_{E} = 0)$	TIP101, TIP106		_	50	
$(V_{CB} = 100 \text{ Vdc}, I_{E} = 0)$	TIP102, TIP107		_	50	
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	8.0	mAdc
ON CHARACTERISTICS (1)					
DC Current Gain		h _{FE}			-
$(I_C = 3.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$			1000	20,000	
$(I_C = 8.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$			200	-	
Collector-Emitter Saturation Voltage		V _{CE(sat)}			Vdc
$(I_C = 3.0 \text{ Adc}, I_B = 6.0 \text{ mAdc})$			_	2.0	
$(I_C = 8.0 \text{ Adc}, I_B = 80 \text{ mAdc})$			_	2.5	
Base-Emitter On Voltage (I _C = 8.0 Adc, V _{CE} = 4.0 Vdc)		V _{BE(on)}	-	2.8	Vdc
DYNAMIC CHARACTERISTICS				•	•
Small-Signal Current Gain (I_C = 3.0 Adc, V_{CE} = 4.0 Vdc, f =	= 1.0 MHz)	h _{fe}	4.0	_	_
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	TIP105, TIP106, TIP107	C _{ob}	-	300	pF
	TIP100, TIP101, TIP102		_	200	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

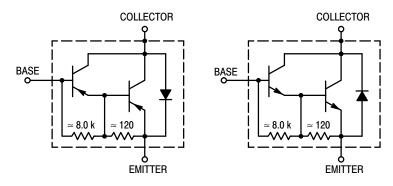


Figure 1. Darlington Circuit Schematic

ORDERING INFORMATION

Device	Package	Shipping
TIP100	TO-220	50 Units / Rail
TIP100G	TO-220 (Pb-Free)	50 Units / Rail
TIP101	TO-220	50 Units / Rail
TIP101G	TO-220 (Pb-Free)	50 Units / Rail
TIP102	TO-220	50 Units / Rail
TIP102G	TO-220 (Pb-Free)	50 Units / Rail
TIP105	TO-220	50 Units / Rail
TIP105G	TO-220 (Pb-Free)	50 Units / Rail
TIP106	TO-220	50 Units / Rail
TIP106G	TO-220 (Pb-Free)	50 Units / Rail
TIP107	TO-220	50 Units / Rail
TIP107G	TO-220 (Pb-Free)	50 Units / Rail

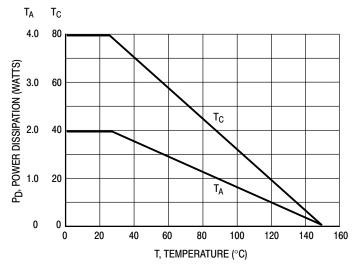


Figure 2. Power Derating

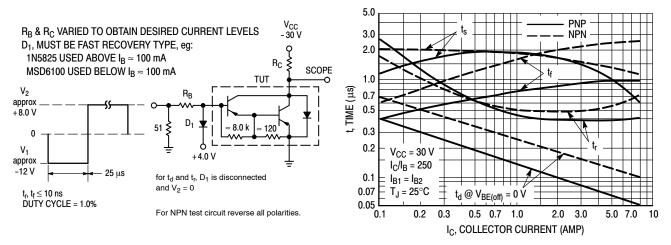


Figure 3. Switching Times Test Circuit

Figure 4. Switching Times

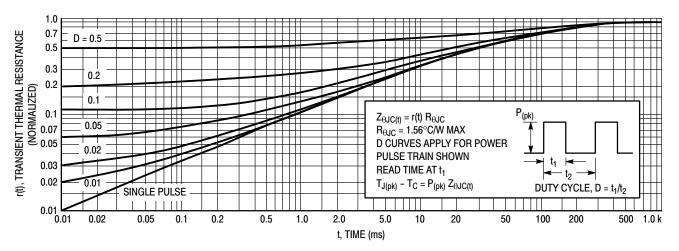


Figure 5. Thermal Response

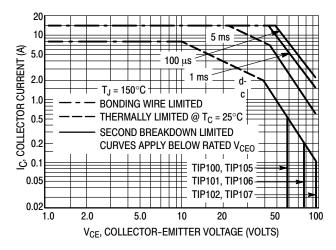


Figure 6. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $T_{J(pk)} = 150$ °C; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)}$ < 150°C. $T_{J(pk)}$ may be calculated from the data in Figure 5. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown

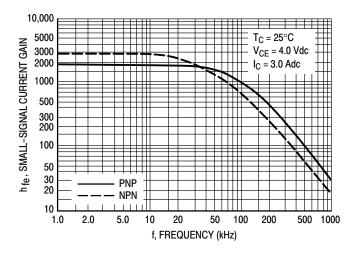


Figure 7. Small-Signal Current Gain

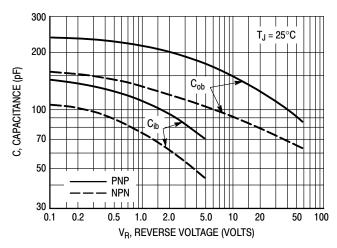


Figure 8. Capacitance

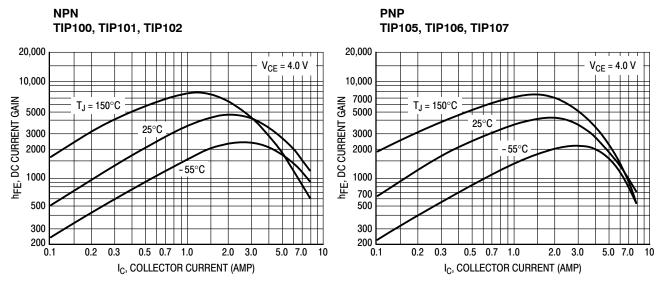


Figure 9. DC Current Gain

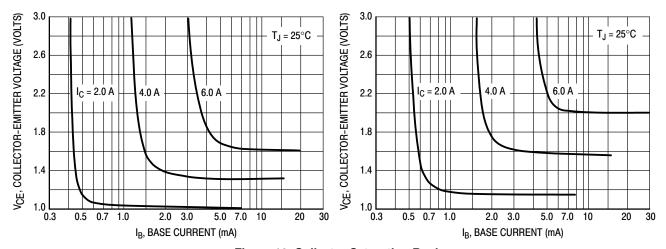


Figure 10. Collector Saturation Region

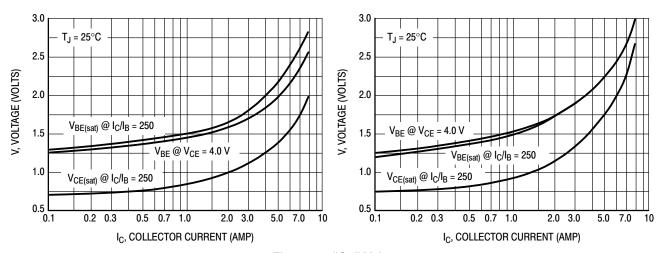


Figure 11. "On" Voltages

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales