

Self-Balancing Robot

User Guide

1 www.terasic.com

July 12, 2018

y94

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

I www.terasic.com

July 12, 2018

CONTENTS

CHAPTER 1 USING THE SELF-BALANCING ROBOT ... 1

1.1 CONTROL THE MOTOR .. 1

1.2 DETECT THE MOTOR SPEED AND DIRECTION... 8

1.3 GET THE TILT ANGLE OF ROBOT .. 14

1.4 DETECT OBSTACLE DISTANCE... 21

1.5 BALANCED SYSTEM .. 27

1.6 USE THE BLUETOOTH .. 29

1.7 USING THE IR CONTROLLER ... 36

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

1 www.terasic.com

July 12, 2018

Chapter 1

Using the Self-Balancing Robot

11..11 CCoonnttrrooll tthhee MMoottoorr

To keep the robot in vertical balance status, user need to control the rotation of the motor and make

sure the accelerated rotation direction is reversed to the robot tilt direction. User need to learn how

to control the rotation direction and speed of the motor.

This section describes how to control the motor forward rotation or reverse, also describes how to

control the speed of the motor. As general FPGA IOs of DE10-Nano are unable to drive the motor,

an extra motor drive chip or circuit is needed to drive the motors, the motor drive chip used on the

robot is Toshiba TB6612FNG, which can be used to control two DC motors simultaneously. As

shown in Figure 1- 1, the control signals--- IN1, IN2, PWM (control signals of motor A and B) and

STBY are connected to FPGA, the control signals --O1 and O2 output to the motor. The way to

control the rotation direction and speed of the motors is described as below.

Figure 1- 1 Block Diagram of Motor Driver Control Function

Note: As there are some photo couplers between the FPGA and TB6612FNG, the logic of control

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

2 www.terasic.com

July 12, 2018

signals output from FPGA should be opposite to the logic described in the TB6612FNG datasheet.

◼◼ CCoonnttrrooll RRoottaattiioonn DDiirreeccttiioonn

Table 1- 1 lists the TB6612FNG control function.

Table 1- 1 TB6612FNG Control Function

⚫ Control the logic value for IN1 and IN2 can drive the motor to counterclockwise rotation (IN1

= 0; IN2 = 1) or clockwise rotation (IN1 = 1; IN2 = 0).

⚫ The motor will stop rotation when logics of both the two control signals (IN1 and IN2) are 0.

⚫ STBY is equal to Chip Enable function. The motor will stop and wait for new command when

STBY logic is 0.

In summary, user can easily change the motor rotation direction via controlling the IN1 and IN2

logic value.

◼◼ CCoonnttrrooll RRoottaattiioonn SSppeeeedd

The motor speed of the motors can be controlled by controlling the Duty Cycle of the PWM signal.

FPGA Control Output Driver Input
Driver

Output

Modes

description

MTRX_P MTRX_N MTR_PWMX MTRX_STBY IN1 IN2 PWM STBY O1 O2 --

0 0 1/0 0 1 1 1/0 1 0 0 Short brake

1 0
1 0

0 1
1 1 0 1 CCW

0 0 0 1 0 0 Short brake

0 1
1 0

1 0
1 1 1 0 CW

0 0 0 1 0 0 Short brake

1 1 1 0 0 0 1 1

OFF

(High

Impedance)

Stop

0/1 0/1 1/0 1 1/0 1/0 1/0 0

OFF

(High

Impedance)

Standby

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

3 www.terasic.com

July 12, 2018

As shown in Figure 1- 2, the motor speed is faster while the PWM signal Duty Cycle is higher

(Which means the ratio of the high logic positive pulse duration to the total pulse period is higher).

Figure 1- 2 The diagram of different Duty Cycle

The maximum PWM frequency that TB6612FNG provides is 100KHz. For the Self-Balancing

Robot, the PWM frequency is set as 7.14KHz.

◼◼ EExxaammppllee DDeessccrriippttiioonn

Motor control IP TERASIC_DC_MOTOR_PWM.v is provided in the robot demo code. In this

demo, it is packed as Qsys component and used to control the right and left motor. User can find the

TERASIC_DC_MOTOR_PWM.v file in the robot system CD:

Demonstrations\BAL_CAR_Nios_Code\IP\TERASIC_DC_MOTOR_PWM

⚫⚫ IIPP SSyymmbbooll

Figure 1- 3 shows the symbol of TERASIC_DC_MOTOR_PWM.v and its block diagram. The

main outputs are DC_MOTOR_IN1, DC_MOTOR_IN2 and PWM, others are Avalon interface

signals. The DC_MOTOR_IN1 and DC_MOTOR_IN2 are the control signals that can control the

motor rotation direction and stopping, which has been described in previous section. PWM control

signal is responsible for controlling the motor speed.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

4 www.terasic.com

July 12, 2018

Figure 1- 3 TERASIC_DC_MOTOR_PWM.v symbol and block diagram

Table 1- 2 describes the Register Table of the motor control IP. Base Address 1~0 is the control

register of PWM, Base Address 2 is the control register of motor brake control. User can read these

registers value through Nios.

Table 1- 2 Register Table for TERASIC_DC_MOTOR_PWM.v IP

Reg Address
Bit

Field
Type Name Description

Base Addr +

0
31:0 R/W total_dur

PWM total duration

value

Base Addr +

1
31:0 R/W high_dur

PWM high duration

value

Base Addr +

2

31:3 - Unused Unused bit

2 R/W motor_fast_decay

Motor brake control

1 for fast brake

0 for short brake

1 R/W motor_forward

Motor direction control :

1 for forward

0 for backward

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

5 www.terasic.com

July 12, 2018

0 R/W motor_go

Motor enable：

1 for start

0 for stop

⚫⚫ IIPP CCooddee DDeessccrriippttiioonn

a. Control Rotation Direction

Below is Partial code for controlling the rotation direction:

always @(*)

begin

 if (motor_fast_decay)

 begin

 // fast decay

 if (motor_go)

 begin

 if (motor_forward)

 {DC_MOTOR_IN2, DC_MOTOR_IN1,PWM} <= {1'b1, 1'b0,PWM_OUT}; // forward

 else

 {DC_MOTOR_IN2, DC_MOTOR_IN1,PWM} <= {1'b0, 1'b1,PWM_OUT}; // reverse

 end

 else

 {DC_MOTOR_IN2, DC_MOTOR_IN1,PWM} <= {1'b1, 1'b1,1'b0};

 end

 else

 begin

 // slow decay

 if (motor_go)

 begin

 if (motor_forward)

 {DC_MOTOR_IN2, DC_MOTOR_IN1,PWM} <= {1'b1, 1'b0,PWM_OUT}; // forward

 else

 {DC_MOTOR_IN2, DC_MOTOR_IN1,PWM} <= {1'b0, 1'b1,PWM_OUT}; // reverse

 end

 else

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

6 www.terasic.com

July 12, 2018

 {DC_MOTOR_IN2, DC_MOTOR_IN1,PWM} <= {1'b0, 1'b0,1'b0};

 end

end

The register values of motor control register are related to DC_MOTOR_IN1 and

DC_MOTOR_IN2 control signals, then user can control the motor rotation direction.

To drive the motors moving forward, user need set both motor_go and motor_forward as “1”. Then
the code “"DC_MOTOR_IN2, DC_MOTOR_IN1, PWM} <= {1'b1, 1'b0, PWM_OUT}; //
forward" will be executed.

DC_MOTOR_IN1 outputs logic 0 and DC_MOTOR_IN2 outputs logic 1. During the logic transmit

from FPGA to motor driver IC, they will be inverted to 1 and 0 respectively through the photo

coupler. IN1 and IN2 of TB6612FNG will receive logic 1 and 0 respectively. As shown in Table 4-1,

in this state, the motor will be clockwise rotation to drive the robot moving forward.

User can set motor_fast_decay as 1 and motor_go as 0 if they need a fast braking. Then, the below

code will be executed.

DC_MOTOR_IN2, DC_MOTOR_IN1, PWM} <= {1'b1, 1'b1,1'b0};

Finally, the IN1 and IN2 logic will receive logic 0 and logic 0 respectively. As shown in Table 4-1,

the motor is stopped.

The right and left motors on the robot are assembled opposite, so their rotation direction is opposite

too. As we use the same IP to control both the right and left motor, the control signals in project top

level file (DE10_Nano_Bal.v) are defined opposite, as described in code below:

Qsys u0 (

 //clock && reset

 .clk_clk (FPGA_CLK2_50), // clk.clk）

 .reset_reset_n (1'b1), // reset.reset_n

 //right motor control

 .dc_motor_right_conduit_end_1_pwm (MTR_PWMA), //

dc_motor_right_conduit_end_1.pwm

 .dc_motor_right_conduit_end_1_motor_in1 (MTRR_P), // .motor_in1

 .dc_motor_right_conduit_end_1_motor_in2 (MTRR_N), // .motor_in2

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

7 www.terasic.com

July 12, 2018

 //left motor control

 .dc_motor_left_conduit_end_1_pwm (MTR_PWMB), //

dc_motor_left_conduit_end_1.pwm

 .dc_motor_left_conduit_end_1_motor_in1 (MTRL_N), // .motor_in1

 .dc_motor_left_conduit_end_1_motor_in2 (MTRL_P),

b. Control Rotation Speed

Below is partial code for controlling the rotation speed:

//

// PWM

reg PWM_OUT;

reg [31:0] total_dur;

reg [31:0] high_dur;

reg [31:0] tick;

always @ (posedge clk or negedge reset_n)

begin

 if (~reset_n)

 begin

 tick <= 1;

 end

 else if (tick >= total_dur)

 begin

 tick <= 1;

 end

 else

 tick <= tick + 1;

end

always @ (posedge clk)

begin

 PWM_OUT <= (tick <= high_dur)?1'b1:1'b0;

end

The tick register is the main counter, total_dur represents the total_dur register described in Table

4-2. When the tick value equals to total_dur setting value, the whole counter will be reset and

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

8 www.terasic.com

July 12, 2018

recounted. PWM_OUT represents one PWM cycle is finished. So, the longer the PWM cycle is, the

larger the total_dur value will be. In this demo, the total_dur register is set to 7000 as default, it is

one PWM cycle when the counter counts to 7000. The output PWM frequency is 7.14KHz

(50MHz/7000).

As shown in Figure 1- 4, the motor speed depends on high_dur register. During one PWM cycle,

when the tick value is less than high_dur, the PWM output is 1; otherwise, the PWM output is 0. So,

the PWM Duty Cycle depends on the high_dur. Therefore, the larger the high_dur value is, the

Duty Cycle will be larger and rotation speed will be faster.

Figure 1- 4 The diagram of relationship between total_dur and high_dur in PWM

11..22 DDeetteecctt tthhee MMoottoorr ssppeeeedd aanndd DDiirreeccttiioonn

Section 1.1 introduces how to control motor speed and direction, this section will introduce how to

use the Hall effect sensor and decoder on the motor to detect the motor speed and direction in real

time.

◼◼ DDeetteeccttiioonn PPrriinncciippllee

Figure 1- 5 shows the appearance of motor, there are two Hall effect sensors and one magnetic

Rotor on the motor. When the motor rotates, it will drive the magnetic Rotor to pass through the

Hall effect sensors, and then, the Hall effect sensor magnetic force will change and generate Hall

effect voltage, a digital circuit will process the Hall effect voltage and output square wave pulse

(See Figure 1- 6).

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

9 www.terasic.com

July 12, 2018

Figure 1- 5 the Hall effect sensor and magnetic Rotor on a motor

Figure 1- 6 Hall effect sensor and the square wave pulse

The two Hall effect sensors output two waves in different phases (Phase A and Phase B) as the two

sensor locations are different (See Figure 1- 7). When magnetic Rotor rotates, the first sensed

sensor will output wave first, and the other sensor output will delay. That is why the two waves

have different phases. So, we can know the motor rotation direction according which sensor wave

phase is ahead. Figure 1- 7 is the motor clockwise rotation status. In addition, we can also calculate

the motor speed according to the pulse number. Over a period of time, the faster the motor rotates,

the more pulses it generates.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

10 www.terasic.com

July 12, 2018

Figure 1- 7 Hall effect decoder output A B Phase waves

Figure 1- 8 shows the motor phase pins connecting to FPGA. We can obtain the motor speed and

direction in real time by writing code to just detect the phase and pulse number of the two signals

(MTRR_IN_PA, MTRR_IN_PB).

Figure 1- 8 The motor phase pins connect to FPGA

◼◼ EExxaammppllee DDeessccrriippttiioonn

We do provide a Qsys IP in the Self-Balancing Robot demo for users to obtain the motor speed and

direction, the IP can be found in folder:

 \Demonstrations\BAL_CAR_Nios_Code\IP\motor_measure\motor_measure.v

⚫⚫ IIPP SSyymmbbooll

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

11 www.terasic.com

July 12, 2018

Figure 1- 9 is the symbol and the system block diagram of motor_measure.v. Here we only draw

the detecting diagram of the motor on the right, and the motor on the left also has the same module

to detect the speed.

The module phase_AB[1:0] is used to connect the motor to receive the waves from the Hall effect

sensor. The module can detect and obtain the motor speed and direction and save the data in the

module register. CPU can read the data from Avalon bus.

Figure 1- 9 The motor_measure.v module and the system block diagram(for the motor on the right)

⚫⚫ RReeggiisstteerr TTaabbllee

Table 1- 3 is the IP register table. The Counter register in address “Base Addr+0” will counts the

motor pulse number. The system can detect how much the motor rotates according to this register,

and the positive number means clockwise direction, the negative number means counterclockwise

direction. Counter is read only register, the CPU can only read the Counter value. The Counter

register in address “Base Addr+2” is for write. The count_en register in address “Base Addr+1” is

for controlling the two Counters. When count_en is set to 1, the Counter register will start to count.

Table 1- 3 motor_measure.v IP Register

Reg Address Bit Filed Type Name Description

Base Addr + 0 31:16 RO Unuse -

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

12 www.terasic.com

July 12, 2018

15:0 RO
Counter (For

Read)

Read Counter

value for Motor

output pules

Base Addr + 1

31:30 RW Unuse -

1 RW count_en
Enable Motor

pulse counter

Base Addr + 2

31:16 WO Unused -

15:0 WO
Couter (For

Write)

Set Counter

vaule

⚫⚫ IIPP CCooddee DDeessccrriippttiioonn

There is a submodule code TERAISC_AB_DECODER.v in motor_measure.v IP, this submodule

can detect phase A and phase B signals from the motor, and according the different phases, the

submodule can figure out whether the rotation direction is clockwise or counterclockwise. The

direction result will output to DO_DIRECT port and the rotation pulse will output to DO_PULSE

port. Then these two signal will pass to the motor_measure.v IP.

TERAISC_AB_DECODER u_decoder

(

 .DI_SYSCLK(clk),

 .DI_PHASE_A(phase_AB[0]),

 .DI_PHASE_B(phase_AB[1]),

 .DO_PULSE(conter_pulse),

 .DO_DIRECT(direction)

);

Please refer to below code list in below, the motor_measure IP has a 16bit Counter (initial value is

16'h8000) register, which is enabled only if the "count_en" register is set to 1. In the beging When

the motor rotates clockwise (direction = 1), The Counter register will count from the initial value

and increase by the number of pulses returned from the motor; If the motor rotates

counterclockwise, the Counter register also will decrement with the number of pulses returned by

the motor. The system will periodically read the value of this Counter register to acquire the current

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

13 www.terasic.com

July 12, 2018

number of rotation speed of the motor.

always @(posedge clk)

begin

 if(s_cs && s_write && s_address==`CNT_WRITE)

 counter<=s_writedata[15:0];

 else if(count_en && conter_pulse)

 begin

 if(direction)

 begin

 if(counter<16'hffff)

 counter<=counter+1;

 end

 else if(!direction)

 begin

 if(counter>0)

 counter<=counter-1;

 end

 else

 counter<=0;

 end

end

Users can refer to the Nios version demo file Motor.cpp (which location is

\Demonstrations\BAL_CAR_Nios_Code\software\DE10_Nano_bal) for the steps of system reading

counter. During the Self-Balancing Robot system initialization process, the count_en will be set to 1,

after this, the system will read the counter every 10ms. Every time after the reading, the system

will set the counter back to the initial value(16'h8000) and wait for the next reading time. The

system will use the latest counter value to minus the initial value (16'h8000), the result will be a

positive number if the motor direction is clockwise, the result will be a negative number if the

motor direction is counterclockwise.

The counter values of the two motors will finally transfer to the balancing PID algorithm.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

14 www.terasic.com

July 12, 2018

11..33 GGeett tthhee ttiilltt aannggllee ooff RRoobboott

This section describes how to obtain the tilt angle of the Self-Balancing Robot, and how to get an

angularity correction to keep the robot balance.

◼◼ HHooww ttoo ggeett tthhee ttiilltt aannggllee ooff tthhee bbooddyy

The idealized state of the balance car is to maintain a vertical 90-degree angle to the ground.

However, there are only two wheels support the body, which is more likely to lean forward or

backward. It actually exists an angle of θ showing as Figure 1- 10. Our aim is to read out this angle

and feed it back to the balance system for controlling the motor rotating in the opposite direction. In

this way, it will make the tilt of the Angle to become the ideal 0 degree as a correction.

Figure 1- 10 The tilted angle of the balance car

To obtain the tilt angle of the body, the Motion Tracking device MPU-6500 on the robot will be

used. The single-chip MPU-6500 integrates a 3-axis accelerometer, and a 3-axis gyroscope. It is

able to read out the acceleration of there-axis (/g) from accelerator, and angular speed of three axes

(/Sec) from the gyroscope. The balance system will use both of these two sensors to compute the tilt

angle.

First of all, we need to obtain the status of the XYZ coordinates of the MPU-6500 in the robot.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

15 www.terasic.com

July 12, 2018

From Figure 1- 11, It can be seen if the balance of the car is tilted forward or backward,

corresponding changes resulting the acceleration of the X-axis and Y-axis. Meanwhile, the angular

speed of the Y-axis will also change.

Figure 1- 11 Status of the XYZ coordinates on the mpu-6500

Continue to introduce how to calculate the tilt angle of the balance car from the accelerometer.

Figure 1- 12, ignore the horizontal acceleration of the car, there is a vertical angle θ when body tilts
forward or backward. G is for the acceleration of gravity. Resolve g vector into X and Z directions,

gx and gz are coordinate components for X-axis and Z-axis respectively, θ is the tangent angle of gx
or gz. Read out the values of gx & gz from the accelerometer in the MPU-6500. Get the degree of

angle θ by using the function θ = arctan(gx/gz).

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

16 www.terasic.com

July 12, 2018

Figure 1- 12 The tilted angle of the self-balance Robot

Besides, it can also get the body tilted angle from Y-axis angular rate by using the gyroscope in the

MPU-6500. See below Figure 1- 13, when the body tilts, the angular rate changes as well. Obtain

the angle in Y-axis via doing the integral calculation on the angular rate.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

17 www.terasic.com

July 12, 2018

Figure 1- 13 The tilted angle of the self-balance Robot

There is an error in the angles calculated by the above two methods. When the accelerometer reads

the angle, the acquired value error will increase when the outside is disturbed. Use the gyroscope's

angular speed to integrate the acquired angle, due to the integral calculation will accumulate the

error, and increase with time, the error will become bigger and bigger. If you use the angle with

larger error to balance the system, it will be very difficult to stabilize the robot. Therefore, so a

method on Angle error correction is required.

It is common to use Kalman Filter as a method, which adopts the data fusion of two sensors (gyro

and accelerometer) to get a more precise angle.

Figure 1- 14 shows the comparison of the original tilt Angle (blue) and the Angle (orange) by

Kalman Filter. From the figure, you can see that the change in angle is large different for unfiltered

angle (blue). By working with these data, the balance of the car body could not be stable. However,

the varying amplitude for the orange Angle after filtering is significantly reduced.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

18 www.terasic.com

July 12, 2018

Figure 1- 14 Comparison chart of the Kalman angle filter

◼◼ MMPPUU--66550000 OOppeerraattiioonn

FPGA uses I2C or SPI interface to control the MPU-6500, In our demo, we use the I2C interface to

read the register of the MPU-6500 with Salve Address 7'b1011001. The data registers of XYZ axis

accelerator and gyroscope locate in the range of 3B(Hex) ~ 48(Hex). It requires the initial operation

on starting up. For more details about the MPU-6500 and Register map, please refer to the

CD\Datasheet\Sensor\. And refer to the MPU.cpp & MPU.h provided in

CD\Demonstrations\BAL_CAR_Nios_Code\software\DE10_Nano_bal\ for control code.

◼◼ EExxaammppllee DDeessccrriippttiioonnss

We provide the Nios II demo for balance car by using the Open-core I2C module in Qsys. This

module allows Nios II to access the mpu-6500 through the I2C interface.

The function for obtaining the tilted angle is provided in path:

\Demonstrations\BAL_CAR_Nios_Code\software\DE10_Nano_bal\main.cpp, the main codes are

as following:

/**

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

19 www.terasic.com

July 12, 2018

Function : Get Angle value (Kalman filter)

parameter :

return value :

**/

void Get_Angle(void)

 {

 int16_t ax, ay, az, gx, gy, gz;

 mpu.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

 Gyro_Balance=-gy;

 x_angle=atan2(ax,az)*180/PI;

 gy=gy/16.4;

 Angle_Balance=kalman.getAngle(x_angle,-gy);

 Gyro_Turn=gz;

 }

First, read out the acceleration of X-, Y-, & Z- Axes and angular rate of gyroscope.

mpu.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

Because the polarity of the angular rate read out is opposite to the actual value, it is necessary to do

a negative operation.

Gyro_Balance=-gy;

As described above, the tilted angle is obtained by computing the acceleration of X-axis & Y-axis.

Use function atan2() to obtain the angle.

x_angle=atan2(ax,az)*180/PI;

As described above again, we can also get the tiled angle from Y- axis argular rate of gyroscope.

However, the read-out value needs to divide by precision.

gy=gy/16.4;

Here, 16.4 is the Sensitivity Scale Factor for the gyroscope. Why use this value are introduced in

the following descriptions.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

20 www.terasic.com

July 12, 2018

The data register of the MPU-6500 is a 16-bit register, as the MSB is sign bit, the output range of

the data register is -7FFF~7FFF, same as -32767~32767 in decimal format: See the diagram as

below, if the full-scale range of ±2000 degrees/sec is selected, that means -32767 corresponding to

-2000(°/s) and 32767 is corresponding to 2000(°/s). While reading out the value of gyroscope as

1000, the corresponding angular rate can be computed as below: 32767/2000 =1000/x; As x =

16.4（°/s），The corresponding Sensitivity Scale Factor is 16.4 LSB/(°/s) in the manual. It is able to

compute the angular rate as the same way if selecting the other ranges.

Figure 1- 15 MPU-6500 datasheet-Gyroscope Specifications

Finally, send the Angle value obtained from the accelerometer and gyroscope the kalman filter

function, to obtain the Angle of the car body with a smaller error.

Angle_Balance=kalman.getAngle(x_angle,-gy);

When dealing with the turning of the body, the system needs to refer to the angular speed of the z

axis.

Gyro_Turn=gz;

The parameters above will be provided to system for balance PID(Proportional–Integral–Derivative)

controlling to feed back the actual condition of the body to achieve a balanced state.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

21 www.terasic.com

July 12, 2018

11..44 DDeetteecctt OObbssttaaccllee DDiissttaannccee

This section describes how to detect the obstacle distance in front of the robot by using the

Ultrasonic module.

◼◼ PPrriinncciippllee

As shown in Figure 1- 16, the robot assembled HC-SR04 Ultrasonic module. Besides VCC and

GND pin, the module is controlled mainly by TRIG and ECHO signal.

The detection process is described as below:

⚫ To start detecting the distance, input High-level logic signal to the TRIG I/O for at least 10us.

⚫ The Module automatically sends eight 40 kHz and detect where there is pulse signal return.

⚫ The echo port will automatically output a high-level logic when detecting a rebound signal. The

duration of the high-level logic is the timing for the ultrasonic wave to be reflected back to the

module after the ultrasonic wave is emitted from the module.

Figure 1- 16 Ultrasonic module working diagram

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

22 www.terasic.com

July 12, 2018

Figure 1- 17 Ultrasonic module working diagram

◼◼ CCaallccuullaattee DDiissttaannccee

Obstacle distance= (high level logic time × Speed of sound (340m/s) / 2

The obstacle distance is calculated by the formula above, please note that the distance unit is meter.

Figure 1- 18 Ultrasonic Module Timing Diagram

◼◼ DDeemmoonnssttrraattiioonn DDeessccrriippttiioonn

The demo provides Qsys IP which can read the obstacle distance from the Ultrasonic module, it’s

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

23 www.terasic.com

July 12, 2018

located in \Demonstrations\BAL_CAR_Nios_Code\IP\sonic_distance\sonic_distance.v

⚫⚫ IIPP ssyymmbbooll

As shown in Figure 1- 19, the IP controls the TRIG pin, drives the module to start to detect obstacle,

monitors whether there is reflection signal on ECHO pin and calculate the duration of the high level

logic signal, then CPU will can read the data.

Figure 1- 19 The IP symbol and block diagram

⚫⚫ RReeggiisstteerr TTaabbllee

Table 1- 4 shows the register table of the IP. measure_value register stores the ultrasonic

transmission time that the module detects the obstacle distance each time.

 Table 1- 4 Register table of the IP

Reg Address Bit Filed Type Name Description

Base Addr + 0

31:22 RO Unuse --

21:0 RO measure_value
Sonic wave propagation

time

⚫⚫ IIPP CCooddee DDeessccrriippttiioonn

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

24 www.terasic.com

July 12, 2018

The IP is consisted of a State Machine and below is the code:

always @(posedge av_mm_clk or negedge count_rst)

if(~count_rst)

begin

 measure_count<=0;

 trig_count<=0;

 state<=0;

end

else

begin

 case(state)

 3'd0:begin

 sonic_trigger<=1;

 state<=1;

 end

 3'd1:begin

 if(trig_count==2000)

 begin

 sonic_trigger<=0;

 state<=2;

 end

 else

 begin

 trig_count<=trig_count+1;

 state<=1;

 end

 end

 3'd2:begin

 if(!reg_echo&sonic_echo)

 state<=3;

 else

 state<=2;

 end

 3'd3:begin

 if(reg_echo&!sonic_echo)

 state<=4;

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

25 www.terasic.com

July 12, 2018

 else

 begin

 state<=3;

 measure_count<=measure_count+1;

 end

 end

 3'd4:begin

 state<=state;

 end

 endcase

end

Figure 1- 20 is the state diagram of the State Machine in the IP.

Figure 1- 20 State Diagram of the State Machine

When the FPGA is running, this IP will operate independently and the state machine will go to State

0. The IP include a counter to avoid the State Machine blocks in a state, the counter will accumulate

continually until 22'h3fffff then trigger count_rst=0, the State Machine will be reset. Below is the

code:

always @(posedge av_mm_clk or negedge av_mm_rst)

if(~av_mm_rst)

 counter<=0;

else if(counter==22'h3fffff)

 counter<=0;

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

26 www.terasic.com

July 12, 2018

else counter<=counter+1;

wire count_rst=(counter==22'h3fffff)?0:1;

Below is the description for each state.

State 0: Set the output of TRIG pin to high level logic signal and the state machine goes to State 1.

State 1: In State 1, the counter trig_count starts to accumulate until counter achieves 2000. Since,

the system clock is 50MHz. Thus, the accumulation time is 10us, so the request for pulling the

TRIG to logic high for 10us is complete. Then, pulls the TRIG signal to low and goes to State 2.

State 2: Monitor whether the ECHO signal has rising edge state. If it has, the state machine goes to

State 3, or the state machine is stay in State 2 until count_rst achieves 0, then the State machine is

reset.

State 3: Calculate the ultrasonic reflection time by using the measure_count, the state machine goes

to State 4 when ECHO pin signal has falling edge.

State 4: idle state, waiting for count_rst achieve 0, reset the state machine and begin to next

detection.

⚫⚫ SSooffttwwaarree CCooddee

After adding this IP to Qsys, Nios CPU can read the ultrasonic transmission and reflection time

from measure_value register of the IP. Then calculate the obstacle distance by the formula, the Nios

code in \Demonstrations\BAL_CAR_Nios_Code\software\DE10_Nano_bal\main.cpp is shown

below and for designers’ reference:
 data = IORD(SONIC_DISTANCE_0_BASE,0x00);

 distance = (float)data*34.0/100000.0;

Note: As described in previous, the system clock in the IP is 50MHz and the distance unit is

centimeter, apply to the formula, it is data * 340 * 100 / (2 * 50 * 1000000) = data*34.0/100000.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

27 www.terasic.com

July 12, 2018

11..55 BBaallaanncceedd SSyysstteemm

This section will introduce balancing system control of the self-balancing robot. This section

describes how a robot can maintain its uprightness, speed, and state of turn and how it is controlled.

As described in the previous sections, the tilt-angle measurement and rotation-angle measurement

of the robot are implemented by using the MPU-6500 to measure acceleration and gyroscope. The

motor rotation speed of the robot is implemented by the Hall sensor of the motor. The obstacle

avoidance function is implemented by the ultrasonic sensor measurement. These measured values

are used as the feedback values for vertical control, rotation angle control and speed control,

respectively.

The status control of the robot introduces the concept of PID (Proportional–Integral–Derivative)

controller, the robot uses PD (Proportional Derivative) or PI (Proportional Integral) to control the

balancing status, which are used for vertical angle control, rotation angle control and speed control,

respectively. As these three controls are closed loop controls, they are also called as balance loop,

turn loop and speed loop, respectively. The balance loop is controlled by PD controller, the speed

loop is controlled by PI controller, and the turn loop is controlled by PD controller.

The balance loop is controlled by PD controller, this is because the robot needs to respond quickly

to the robot’s angle changing, and the derivative control just meets this requirement. The control

value of P is tilt angle of the robot (the angle offset that is relative to balance status). The control

value of D is the motor axial gyroscope. This loop corresponds to the int balance(float Angle,float

Gyro) function in the software of our demo.

The speed loop is controlled by PI controller, which is the most commonly used control method for

speed control. PI controller is a linear control method. The deviation is formed according to the

given value and the actual output value, then the Proportional (P) and Integral (I) of the deviation

are composed of the control value by the linear combination, then the speed can be controlled. The

control value of P is speed deviation, the control value of I is displacement. This loop corresponds

to the int speed (void) function in the software of our demo.

The turn control is a simple control. In our demo, the turn value is measured by MPU-6500 Z-axis

gyroscope and the difference of two speed encoders, which is used for D and P control value,

respectively, so the rotation angle can be controlled by PD controller to ensure the angle keep the

set value, and the response speed of the robot can be improved by z-axis gyroscope control. This

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

28 www.terasic.com

July 12, 2018

loop corresponds to the int turn(float Gyro) function in the software of our demo.

The block diagram of the three loops integrated function is shown in Figure 1- 21.

Figure 1- 21 PID closed-loop Control with Angle, Speed and Turn of the Robot

Note: The PID parameters of the balance loop, speed loop and turn loop have polarity, so the

feedback must be formed positive feedback to become the closed loop control which is

advantageous to the robot balance.

The corresponding codes are Encoder_Integral=Encoder_Integral-Movement; in the int speed(void)

function and Bias+=110; and Bias-=110; in the int turn(float Gyro) function. When the Bluetooth

and IR send control commands, the speed loop and turn loop start working. The robot does a linear

motion at a set speed, and rotates at a set angular speed.

The status of the robot needs to be sampling controlled at regular intervals. In our demo, the interval

time is 10ms. The sampling control of the angle, speed and rotation angle can be implemented by

executing the interrupt function void MPU_INT_ISR(void * contex, alt_u32 id). Meanwhile, the

while function in the main code is used for polling the Bluetooth/IR control signal, ultrasonic

detection obstacle distance (for obstacle avoidance) signal and power monitoring signal.

The main routine flow chart is shown in Figure 1- 22.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

29 www.terasic.com

July 12, 2018

Figure 1- 22 Main Routine FLOW Chart

11..66 UUssee tthhee BBlluueettooootthh

This section introduces how to use the ESP32 module on the Self-balancing robot for Bluetooth

connection. It enable the user to communicate the ESP32 with mobile phone via Bluetooth, and

transfer the serial port protocol to FPGA for the moving control.

ESP32 is a powerful Bluetooth+WiFi module. It is easily developed. The Factory code in the

ESP32 module has been written with ID Number of the Self-balancing robot, so it is able to accept

the control command from mobile phone APP via Bluetooth connection. Besides it, there are also

many other expandable functions such as I2C, WiFi and SPI data transmission, etc. However, in the

robot, only the Bluetooth part is currently used, so only Bluetooth part is introduced.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

30 www.terasic.com

July 12, 2018

◼◼ EExxaammppllee DDeessccrriippttiioonnss

Figure 1- 23 is for the system architecture of Self-balancing robot using the ESP32. When the

ESP32 receives the string command from the app via the Bluetooth protocol, it will be transferred

to the UART interface and pass to the UART IP of the QSYS within the FPGA. In this way, the

NIOS CPU can easily read the value of the data register in the IP, and then compare it with the

defined instruction to get an effective instruction and control the movement of the robot.

In the Quartus project of the demonstration, a PIO module is reserved in the Qsys system which is

used for communicating the ESP32 module with FPGA I/O. It can be ignored as it not being used in

the demo.

Figure 1- 23 The Block Diagram of the communication between EPS32 and FPGA

The UART IP is a Qsys built-in component, which user guide is available in:

<Quartus install path>\<Quartus version ex: 16.1

>\ip\altera\university_program\communication\altera_up_avalon_rs232\doc\RS232.pdf.

The settings for the UART IP is as Figure 1- 24, Baud Rate set as115200.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

31 www.terasic.com

July 12, 2018

Figure 1- 24 Qsys uart IP Settings

As shown in Table 1- 5, the UART IP contains two registers: Data Register & Control Register.

The read and write FIFOs are accessed via the data register. The Data transmitted via bluetooth will

be stored here. RS232 UART Core’s interrupt generation and read-status information are controlled

by the Control register.

Table 1- 5 RS232 UART Core register map

Offset

in bytes

Register

Name
R/W

Bit description

31..24 23..16 15 14..11 10 9 8 7 6..2 1 0

0 data RW (1) RAVAIL RVALID (1) PE (2) (2) DATA

4 control RW (1) WSPACE (1) WI RI (1) WE RE

Notes on Table 1-5

(1) Reserved. Read values are undefined. Write zero.

(2) These bits may or may not exist, depending on the specified DataWidth.

If they do not exist, they read zero and writing has no effect.

Table 1- 6 shows the Data Register format, the bit 8~0 are for the data transferring, bit 23~16 are

for indicating the number of characters remaining in the read FIFO. We can know the data

transmission completed or not via bit 23~16.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

32 www.terasic.com

July 12, 2018

Table 1- 6 Data register bits

Bit

number

Bit/Filed

Name
Read/Write Description

8..0 DATA R/W

The value to transfer to/from the RS232

UART Core. When writing, the DATA field is

a character to be written to the write FIFO.

When reading, the DATA field is a character

read from the read FIFO.

9 PE R

Indicates whether the DATA field had a

parity

error.

15 RVALID R
Indicates whether the DATA and PE fields

contain valid data.

23..16 RVAIL R
The number of characters remaining in the

read FIFO (including this read).

The following will introduce how to use Nios to read the data transmitted by ESP32 and convert it

to control commands. In the main.cpp (path:\BAL_CAR_Nios_Code\software\DE10_Nano_bal),

the codes for Bluetooth controlling as below:

 // Bluetooth control

 temp=IORD(UART_BT_BASE,0x00);

 number=temp>>16;

 if(number!=0)

 {

 szData[i]=temp&0xff;

 i++;

 if((temp&0xff)==0x0a)

 {

 i=0;

 if(CommandParsing(szData, &Command_EPS32, &Param)){

 switch(Command_EPS32){

 case CMD_FOWARD: //Forward

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

33 www.terasic.com

July 12, 2018

 if(cmd_ut){

 if(distance>15.0){

 led3=0x01;

 flag=0x01;

 demo=false;

 Car.Set_TurnFORWARD();

 }}

 else{

 led3=0x01;

 flag=0x00;

 demo=false;

 Car.Set_TurnFORWARD();

 }

 break;

 case CMD_BACKWARD: //Backward

 led3=0x02;

 demo=false;

 Car.Set_TurnBACKWARD();

 break;

 case CMD_LEFT: //Left

 led3=0x04;

 demo=false;

 Car.Set_TurnLEFT();

 break;

 case CMD_RIGHT: //Right

 led3=0x08;

 demo=false;

 Car.Set_TurnRIGHT();

 break;

 case CMD_STOP: //Stop

 led3=0x00;

 demo=false;

 Car.Pause();

 break;

First, read the receiving data register (Receiving data register offset address is 0)

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

34 www.terasic.com

July 12, 2018

temp=IORD(UART_BT_BASE,0x00);

The data width for receiving data register is 32 bits. However, when the command comes from the

Bluetooth, the UART IP only transmit the 8 bits data at one time, so the full instruction needs to be

received multiple times. You can know how many characters have not yet been read via checking

the register data bit 23~16,

number=temp>>16;

If the read data number is not 0, that is, the data is valid. Take the last 8 bits into the array, and then

receive the next 8 bits cyclically, when the received data is 0x0a (which is defined as end of

transmission character). When transferring a control command completed on the mobile app, it

will send out this value for data sending finished, Next to the command comparision, all commands

from the bluetooth are definded in the command.h.

/*

* Command.h

*

*/

#ifndef COMMAND_H_

#define COMMAND_H_

#include "terasic_includes.h"

typedef enum{

 CMD_FOWARD=1,

 CMD_BACKWARD,

 CMD_LEFT,

 CMD_RIGHT,

 CMD_STOP,

 CMD_AKBT,

 CMD_ATDM,

 CMD_ATUTON,

 CMD_ATUTOFF,

}COMMAND_ID;

typedef struct{

 char szCommand[10];

 int CommandId;

 bool bParameter;

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

35 www.terasic.com

July 12, 2018

}COMMAND_INFO;

COMMAND_INFO gCommandList[] = {

 {"ATFW", CMD_FOWARD, false},

 {"ATBW", CMD_BACKWARD, false},

 {"ATTL", CMD_LEFT, false},

 {"ATTR", CMD_RIGHT, false},

 {"ATST", CMD_STOP, false},

 {"ATAB", CMD_AKBT, false},

 {"ATDM", CMD_ATDM, false},

 {"ATUTON", CMD_ATUTON, false},

 {"ATUTOFF", CMD_ATUTOFF, false},

};

#endif /* COMMAND_H_ */

Compare the command character from ESP32 with the definition in the command.h, it is able to

parse the command. The source codes in main.cpp are as below:

 /**

 Function : Bluetooth Command Parsing

 parameter : Command 、Command ID

 return value : Command Parsing data

 **/

bool CommandParsing(char *pCommand, int *pCommandID, int *pParam){

 bool bFind = false;

 int nNum, i, j , x=0;

 bool find_equal = false;

 char Data[10]={0};

 nNum = sizeof(gCommandList)/sizeof(gCommandList[0]);

 for(i=0;i<nNum && !bFind;i++){

 if (strncmp(pCommand, gCommandList[i].szCommand, strlen(gCommandList[i].szCommand)) == 0){

 *pCommandID = gCommandList[i].CommandId;

 if (gCommandList[i].bParameter){

 //*pParam = 10; //??

 //for(j=0;pCommand[j]!=0x0a;j++){

 for(j=0;pCommand[j]!=0x0d;j++){

 if(find_equal==true){

 Data[x] = pCommand[j];

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

36 www.terasic.com

July 12, 2018

 x++;

 }

 else if(pCommand[j]=='=')

 find_equal=true;

 }

 *pParam=atoi(Data);

 }

 bFind = true;

 } // if

 } // for

 return bFind;

 }

Finally, the control command is converted to the corresponding function for the Self-balancing

robot controlling. For example, the "Backward" command processing in below:

 case CMD_BACKWARD: //Backward

 led3=0x02;

 demo=false;

 Car.Set_TurnBACKWARD();

 break;

11..77 UUssiinngg tthhee IIRR CCoonnttrroolllleerr

In addition to using the mobile phone app to control the robot via the Bluetooth, using an infrared

remote control is also a simple and convenient option.

The infrared remote controller included with the kit package is an infrared remote controller that

uses the NEC protocol. It uses 38K HZ frequency modulation to emit control signals to the infrared

receiver on the robot. The FPGA decoder IP will decode the signal to control the robot motion.

◼◼ IInnffrraarreedd RReemmoottee CCoonnttrroolllleerr PPrroottooccoollss

The NEC format composes of a Leader Code, a 16-bit Custom Code, and a 8-bit Key Code. The

Leader Code is transmitted first, which contains 9ms carrier frequency and 4.5ms zero signal, then

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

37 www.terasic.com

July 12, 2018

followed by 16-bit Client Code, 8-bit Key Code and 8-bit Inversed Key Code, which is the reverse

value of the Key Code, the robot IR receiver can use the Inversed Key Code to verify the Key Code.

The logic is judged through different time lengths, 560us carrier frequency plus 1690us 0 signal

represents the transmission of logic 1, 560us carrier frequency plus 560us 0 signal represents logic

0.

Figure 1- 25 NEC protocol leader & length variable block

The IR receiver on the balanced car can decode the carrier frequency of 38 kHz and reverse the

received signal. Therefore, it should be noted that the signal processed in the FPGA will be opposite

to that of the transmitter, as shown in Figure 1- 26.

Figure 1- 26 The signal received by IR receiver

◼◼ SSeellff--BBaallaanncciinngg RRoobboott mmoottiioonn kkeeyy ddeeffiinniittiioonn aanndd KKeeyy CCooddee

See Figure 1- 27 for IR controller’s function and key and its corresponding Inversed Key Code,

Key Code and Custom Code are shown in Table 1-7.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

38 www.terasic.com

July 12, 2018

Figure 1- 27 IR controller key function

Table 1- 7 Key code information for each Key on remote controller

IR Controller key

Custom Code Key code
Inversed Key

Code

D[3:0] D[7:4] D[11:8] D[15:12]
D[19:16]

D[23:20]
D[27:24] D[31:28]

68 B6 F0 0F

68 B6 31 CE

68 B6 01 FE

68 B6 00 FF

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

39 www.terasic.com

July 12, 2018

68 B6 10 EF

68 B6 20 DF

68 B6 30 CF

68 B6 40 BF

68 B6 50 AF

68 B6 60 9F

68 B6 70 8F

68 B6 80 7F

68 B6 90 6F

68 B6 21 DE

68 B6 A1 5E

68 B6 E1 1E

68 B6 B1 4E

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

40 www.terasic.com

July 12, 2018

68 B6 F1 0E

68 B6 C0 3F

68 B6 11 EE

68 B6 61 9E

◼◼ EExxaammppllee DDeessccrriippttiioonnss

We provide an IR control decoder IP in the Self-Balancing Robot demonstrations folder, which

location is \Demonstrations\BAL_CAR_Nios_Code\IP\TERASIC_IRM\TERASIC_IRM.v.

Figure 1- 28 is the block diagram of FPGA using TERASIC_IRM.v to decode IR control signal.

The IR receiver receives signal and send the signal to this IP, this IP provides Avalon interface, a

submodule irda_receive_terasic.v will do the decoding work. The decoded Custom Code and Key

Code information will be sent to TERASIC_IRM. V and stored in the register. At the same time, an

interrupt signal is sent to the CPU and the Nios CPU will read the key value that has just been

decoded. The register format is shown as Table 1- 8:

Figure 1- 28 Block diagram of using TERASIC_IRM.v to decode IR signal

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

41 www.terasic.com

July 12, 2018

Table 1- 8 Register Format

Reg Address Bit Filed Type Name Description

Base Addr + 0

31:24 RO
Inversed Key

Code

Inversed Key

Code

24:16 RO Key Code Key Code

15:0 RO Custom Code
Custom

Code: 16'h6b86

If pressing IR controller key “2”, the register value will be 32'hfd026b86, the "6b86" is Custom
Code, the "02" is Key Code, the “fd” is Inversed Key Code, which is the reversed value of “02”.
After the Nios CPU receives IR interrupt signal, the Nios CPU will read the register value and

compare it with the defined code table, and then, judge the meaning of the instruction. IR controller

key codes(32bits) are defined in the file IrRx.h, as followed code lines:

typedef enum{

 IR_POWER = 0xed126b86,

 IR_CH_UP = 0xe51a6b86,

 IR_CH_DOWN = 0xe11e6b86,

 IR_VOL_UP = 0xe41b6b86,

 IR_VOL_DOWN = 0xe01f6b86,

 IR_MUTE = 0xf30c6b86,

 IR_ADJ_LEFT = 0xeb146b86,

 IR_ADJ_RIGHT = 0xe7186b86,

 IR_PLAY_PAUSE = 0xe9166b86,

 IR_NUM_0 = 0xff006b86,

 IR_NUM_1 = 0xfe016b86,

 IR_NUM_2 = 0xfd026b86,

 IR_NUM_3 = 0xfc036b86,

 IR_NUM_4 = 0xfb046b86,

 IR_NUM_5 = 0xfa056b86,

 IR_NUM_6 = 0xf9066b86,

 IR_NUM_7 = 0xf8076b86,

 IR_NUM_8 = 0xf7086b86,

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

42 www.terasic.com

July 12, 2018

 IR_NUM_9 = 0xf6096b86,

 IR_NUM_A = 0xf00f6b86,

 IR_NUM_B = 0xec136b86,

 IR_NUM_C = 0xef106b86,

 IR_RETURN = 0xe8176b86,

 IR_MENU = 0xee116b86

 };

 In main.cpp file, there are code lines for detecting IR:

 // IR Remote control

 if (!IR.IsEmpty()){

 Command_IR = IR.Pop();

 //Command_IR = IORD(IR_RX_BASE,0x00);

 //printf("%04xh\r\n", Command_IR);

 switch(Command_IR){

 case CIrRx::IR_NUM_5: //Stop

 led3=0x00;

 demo=false;

 Car.Pause();

 break;

 case CIrRx::IR_NUM_2: //Forward

 if(mode==0x02){

 if(distance>15.0){

 led3=0x01;

 flag=0x02;

 demo=false;

 Car.Set_TurnFORWARD();

 }}

 else{

 led3=0x01;

 flag=0x00;

 demo=false;

 Car.Set_TurnFORWARD();

 }

 break;

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

43 www.terasic.com

July 12, 2018

Using IR.IsEmpty to detect whether IR data is received or not, using IR.Pop to read register

DATA_BUF value, and compare it with the defined code table, and then, judge the meaning of the

instruction and control the Self-Balancing Robot moving forward or backward.

http://www.terasic.com/
http://www.terasic.com/

Self-Balancing Robot

User Guide

44 www.terasic.com

July 12, 2018

Additional Information

GGeettttiinngg HHeellpp

Here is the contact information where you can get help if you encounter problems:

⚫ Terasic Inc.

9F, No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, Taiwan 300-70

Email : support@terasic.com

Web : www.terasic.com

RReevviissiioonn HHiissttoorryy

Date Version Changes

2018.03.16 First publication

2018.07.11 V1.1 Modify Figure 1-21 and Figure 1-22

http://www.terasic.com/
http://www.terasic.com/
mailto:support@terasic.com
http://www.terasic.com/

	Chapter 1 Using the Self-Balancing Robot
	1.1 Control the Motor
	1.2 Detect the Motor speed and Direction
	1.3 Get the tilt angle of Robot
	1.4 Detect Obstacle Distance
	1.5 Balanced System
	1.6 Use the Bluetooth
	1.7 Using the IR Controller

	Additional Information

