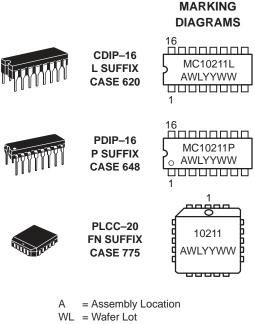

Dual 3-Input/3-Output NOR Gate

The MC10211 is designed to drive up to six transmission lines simul– taneously. The multiple outputs of this device also allow the wire "OR"–ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the MC10211 particularly useful in clock distribution applications where minimum clock skew is desired.

- $P_D = 160 \text{ mW typ/pkg}$ (No Loads)
- $t_{pd} = 1.5$ ns typ (All Output Loaded)
- t_r , $t_f = 1.5$ ns typ (20%-80%)



ON Semiconductor

http://onsemi.com

WL = Wafer Lot YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping			
MC10211L	CDIP-16	25 Units / Rail			
MC10211P	PDIP-16	25 Units / Rail			
MC10211FN	PLCC-20	46 Units / Rail			

ELECTRICAL CHARACTERISTICS

				Test Limits							
			Pin Under	-30	–30°C		+25°C			+85°C	
Characteristic		Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current		١E	8	1	42		30	38		42	mAdc
Input Current		l _{inH}	5, 6, 7		650			410		410	μAdc
		l _{inL}	5, 6, 7	0.5		0.5			0.3		μAdc
Output Voltage	E Logic 1	Vон	2 3 4	-1.060 -1.060 -1.060	-0.890 -0.890 -0.890	-0.960 -0.960 -0.960		-0.810 -0.810 -0.810	-0.890 -0.890 -0.890	-0.700 -0.700 -0.700	Vdc
Output Voltage	E Logic 0	VOL	2 3 4	-1.890 -1.890 -1.890	-1.675 -1.675 -1.675	-1.850 -1.850 -1.850		-1.650 -1.650 -1.650	-1.825 -1.825 -1.825	-1.615 -1.615 -1.615	Vdc
Threshold Volta	age Logic 1	Voha	2 3 4	-1.080 -1.080 -1.080		-0.980 -0.980 -0.980			-0.910 -0.910 -0.910		Vdc
Threshold Volta	age Logic 0	VOLA	2 3 4		-1.655 -1.655 -1.655			-1.630 -1.630 -1.630		-1.595 -1.595 -1.595	Vdc
Switching Times (50 Ω Load)											ns
Propagation De	elay	^t 5+2– ^t 5–2+ ^t 5+3– ^t 5–3+ ^t 5+4– ^t 5–4+	2 2 3 3 4 4	1.0 1.0 1.0 1.0 1.0 1.0	2.6 2.6 2.6 2.6 2.6 2.6	1.0 1.0 1.0 1.0 1.0 1.0	1.5 1.5 1.5 1.5 1.5 1.5	2.5 2.5 2.5 2.5 2.5 2.5 2.5	1.0 1.0 1.0 1.0 1.0 1.0	2.8 2.8 2.8 2.8 2.8 2.8 2.8	
Rise Time	(20 to 80%)	t ₂₊ t ₃₊ t ₄₊	2 3 4	1.0 1.0 1.0	2.6 2.6 2.6	1.0 1.0 1.0	1.5 1.5 1.5	2.5 2.5 2.5	1.0 1.0 1.0	2.8 2.8 2.8	
Fall Time	(20 to 80%)	t ₂₋ t3- t4-	2 3 4	1.0 1.0 1.0	2.6 2.6 2.6	1.0 1.0 1.0	1.5 1.5 1.5	2.5 2.5 2.5	1.0 1.0 1.0	2.8 2.8 2.8	

MC10211

ELECTRICAL CHARACTERISTICS (continued)

				TEST VOLTAGE VALUES (Volts)					
		@ Test Te	mperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE	1
			−30°C	-0.890	-1.890	-1.205	-1.500	-5.2	1
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	1
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
			Pin	TEST V]				
Characteristic		Symbol	Under Test	V _{IHmax}	V _{ILmin}	VIHAmin	VILAmax	VEE	(V _{CC}) Gnd
Power Supply Drain Current		١E	8					8	1, 15, 16
Input Current		l _{inH}	5, 6, 7	*				8	1, 15, 16
		l _{inL}	5, 6, 7		*			8	1, 15, 16
Output Voltage	Logic 1	VOH	2 3 4					8 8 8	1, 15, 16 1, 15, 16 1, 15, 16
Output Voltage	Logic 0	VOL	2 3 4	5 6 7				8 8 8	1, 15, 16 1, 15, 16 1, 15, 16
Threshold Voltage	Logic 1	Voha	2 3 4				5 6 7	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16
Threshold Voltage	Logic 0	VOLA	2 3 4			5 6 7		8 8 8	1, 15, 16 1, 15, 16 1, 15, 16
Switching Times	(50Ω Load)					Pulse In	Pulse Out	–3.2 V	+2.0 V
Propagation Delay		^t 5+2– t5–2+ t5+3– t5–3+ t5+4– t5–4+	2 2 3 3 4 4			5 5 5 5 5 5 5	2 2 3 3 4 4	8 8 8 8 8 8	1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16 1, 15, 16
Rise Time	(20 to 80%)	t ₂₊ t3+ t ₄₊	2 3 4			5 5 5	2 3 4	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16
Fall Time	(20 to 80%)	t2 t3 t4	2 3 4			5 5 5	2 3 4	8 8 8	1, 15, 16 1, 15, 16 1, 15, 16

* Individually test each input using the pin connections shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50–ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.