TAS5162DDV6EVM This user's guide describes the operation of the evaluation module for the TAS5162 Digital Amplifier Power Output Stage using the TAS5086 Digital Audio PWM Processor from Texas Instruments. The user's guide also provides measurement data and design information such as the schematic, bill of materials, and printed-circuit board layout #### Contents 1 Overview 3 2 3 4 Appendix A **List of Figures** 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 High Current Protection (PBTL) 19 21 22 Pop/Click (BTL) 19 23 24 Output Stage Efficiency 20 List of Tables 1 TAS5162DDV6EVM Specification 3 2 Recommended Supply Voltages 6 3 General Test Conditions 9 PurePath Digital, Equibit are trademarks of Texas Instruments. Windows is a trademark of Microsoft Corporation. I²C is a trademark of Philips Electronics. | 5 | TAS5086 Register Settings | . 9 | |----|--|-----| | 6 | Electrical Data | . ç | | 7 | Audio Performance | 10 | | | Thermal Specifications | | | 9 | Physical Specifications | 10 | | 10 | Related Documentation from Texas Instruments | 21 | PurePath Digital, Equibit are trademarks of Texas Instruments. Windows is a trademark of Microsoft Corporation. I²C is a trademark of Philips Electronics. #### 1 Overview The TAS5162DDV6EVM PurePath Digital ™ customer evaluation module (Figure 1) demonstrates the integrated circuits TAS5162DDV and TAS5086DBT from Texas Instruments (TI). Figure 1. TAS5162DDV6EVM Board The TAS5162DDV is a high-performance, integrated stereo digital amplifier power stage designed to drive $6-\Omega$ speakers at up to 210 W per channel. The device incorporates PurePath DigitalTM technology and is designed to be used with PurePath DigitalTM modulators (Figure 2). This system requires only a simple, passive demodulation filter to deliver high-quality, high-efficiency audio amplification. TAS5086DBT is a high-performance, 32-bit (24-bit input), multichannel PurePath Digital™ pulse width modulator (PWM) based on Equibit™ technology with fully symmetrical analog-to-digital modulation scheme. This EVM is configured with four single-ended (SE) channels and two bridge-tied load (BTL) channels. This EVM, together with a TI input-USB board, is a complete 5.1 channels, digital audio amplifier system which includes digital input (S/PDIF), analog inputs, interface to PC and DAP features like digital volume control, input and output mixers, automute, tone controls, loudness, EQ filters, and dynamic range compression (DRC). Table 1 lists the key parameters of the EVM. There are configuration option for power stage failure protection and a mini-jack connector for headphone. | | • | |------------------------------|--| | Key Parameters | | | Output Stage Supply Voltage: | 0 V–50 V | | System Supply Voltage: | 15 V–20 V | | Number of Channels | 4 x SE, 2 x BTL | | Load Impedance SE: | 4–8 Ω | | Load Impedance BTL: | 6–8 Ω | | Output power SE | 80 W / 4 Ω 10% THD | | Output power BTL | 160 W / 8 Ω / 10% THD or 210 W / 6 Ω / 10% THD | Table 1. TAS5162DDV6EVM Specification Table 1. TAS5162DDV6EVM Specification (continued) | DNR | >109 dB | |---------------|------------| | PWM Processor | TAS5086DBT | | Output Stage | TAS5162DDV | This 6.1 system is designed for home theater applications such as A/V receivers, DVD receivers, DVD mini-component systems, or home theater in a box (HTIB). This document covers EVM specifications, audio performance and power efficiency measurements graphs, and design documentation that includes schematics, parts list, layout, and mechanical design. The EVM is delivered with cables and Input-USB board to connect to an input source and be controlled from a personal computer (PC). #### 1.1 TAS5162DDV6EVM Features - 7/8-channel PurePath Digital™ evaluation module (double-sided, plated-through PCB layout). - Self-contained protection system (short-circuit and thermal). - Standard I²S and I²C™ / Control connector for TI input board - Double-sided, plated-through PCB layout. Figure 2. Integrated PurePath Digital™ Amplifier System ## 1.2 PCB Key Map Physical structure for the TAS5162DDV6EVM is illustrated in Figure 3. Figure 3. Physical structure for the TAS5162DDV6EVM (Approximate Layout) #### 2 Quick-Setup Guide This section describes the TAS5162DDV6EVM board in regards to power supplies and system interfaces. The section provides information regarding handling and unpacking, absolute operating conditions, and a description of the factory default switch and jumper configuration. This section provides a step-by-step guide to configuring the TAS5162DDV6EVM for device evaluation. #### 2.1 Electrostatic Discharge Warning Many of the components on the TAS5162DDV6EVM are susceptible to damage by electrostatic discharge (ESD). Customers are advised to observe proper ESD handling precautions when unpacking and handling the EVM, including the use of a grounded wrist strap at an approved ESD workstation. #### **CAUTION** Failure to observe ESD handling procedures may result in damage to EVM components. ## 2.2 Unpacking the EVM On opening the TAS5162DDV6EVM package, check to ensure that the following items are included: - 1 pc. TAS5162DDV6EVM board using one TAS5086DBT and two TAS5162DDV. - 1 pc. TI Input-USB board for interfacing TAS5162DDV6EVM with SPDIF/analog sources and PC for control. - 1 pc. Signal Interface IDC cable for connection to an I²S front-end like the attached TI Input-USB board. - 1 pc. Control Interface IDC cable for connection to an I²C™ front-end like the attached TI Input-USB board. - 1 pc Cable for connecting Input-USB board to a USB port on a PC for TAS5086 control by software. - 1 pc. Power supply cable for two regulated power supplies (H-bridge and system supply). - 1 pc. PurePath Digital™ CD-ROM If any of these items are missing, contact the Texas Instruments Product Information Center nearest you to inquire about a replacement. Connect the Input-USB board to TAS5162DDV6EVM using the two delivered IDC cables. #### 2.3 Power Supply Setup Two power supplies are required to power up the EVM: one for system power, logic, and gate-drive, and one for output stage supply. Power supplies are connected to the EVM using the delivered power cable Red/Black, White/Black. **Table 2. Recommended Supply Voltages** | Description | Voltage Limitations | Current Requirement | Cable | |---------------------------|---------------------|---------------------|-------------| | System power supply | 15–20 V | 0.3 A | Red/Black | | Output stage power supply | 0–50 V | 10 A | White/Black | #### **CAUTION** Applying voltages above the limitations given in Table 2 may cause permanent damage to the hardware. Note The length of power supply cable must be minimized. Increasing the length of the PSU cable is equivalent to increasing the distortion for the amplifier at high-output levels and low frequencies. #### 2.4 Speaker Connection #### **CAUTION** Both positive and negative speaker outputs are floating and may not be connected to ground (e.g., through an oscilloscope). #### 2.5 GUI Software Installation The TAS5086 GUI provides easy control of all registers in the TAS5086. To install the GUI, run setup file from the PurePath™ CD-ROM. After installation, turn on the power supplies and connect the USB cable to the Input-USB board. Start GUI program from the Windows™ menu. Start up of GUI will take few seconds. Figure 4. TAS5518 GUI Window From the files menu, load the configuration file: TAS5162DDV6EVM Configuration (3.00).cfg The file is located on the PurePath™ CD-ROM. This file contains all settings for a default setup of the EVM. For easy access of the file, it is recommended to copy the files into a directory where the GUI is installed. Default is C:\Program Files\Texas Instruments Inc\TAS5086\. For more advanced use of the GUI, see the GUI user's guide and data sheet for the TAS5086. #### 3 Protection This section describes the short-circuit protection and fault-reporting circuitry of the TAS5162 device. ## 3.1 Short-Circuit Protection and Fault-Reporting Circuitry The TAS5162 is a self-protecting device that provides fault reporting (including high-temperature protection and short-circuit protection). TAS5162 is configured in back-end auto-recovery mode and therefore resets automatically after all errors (M1, M2, and M3 is set low); see the data sheet for further explanation. This means that the device restarts itself after an error occasion and reports shortly thereafter through the $\overline{\text{SD}}$ error signal. # 3.2 Fault Reporting The $\overline{\text{OTW}}$ and $\overline{\text{SD}}$ outputs from TAS5162 indicate fault conditions. See the TAS5162 data sheet for a description of these pins. Table 3. TAS5162 Warning/Error Signal Decoding | OTW | SD | Device Condition | |-----|----|--| | 0 | 0 | High-temperature error and/or high current error | | 0 | 1 | High-temperature warning | | 1 | 0 | Undervoltage lockout or high-current error | | 1 | 1 | Normal operation, no errors/warnings | The temperature warning signals at the TAS5162DDV6EVM board are wired-OR to one temperature warning signal (\overline{OTW} – pin 22 in control interface connector). Shutdown signals are wired-OR into one shutdown signal (\overline{SD} – pin 20 in control interface connector). The shutdown signals together with the temperature warning signal give chip-state information as described in Table 3. Device fault-reporting outputs are open-drain outputs. #### 4 TAS5162DDV6EVM Performance **Table 4. General Test Conditions** | General Test Conditions ⁽¹⁾ | | Notes | |--|-------------------|--| | Output Stage Supply Voltage: | 50 V | Laboratory Power Supply (EA-PS 7065-10A) | | System Supply Voltage: | 15 V | | | Load Impedance SE: | 4 Ω | | | Load Impedance BTL: | 8 Ω | | | Input Signal | 1 kHz Sine | | | Sampling Frequency | 48 kHz | | | Gain Setting in TAS5086 | 0 dB | | | Measurement Filter | AES17 and AUX0025 | | | TI Input-USB Board | Input-USB | Rev 10 | | EVM Configuration File | Ver 3.00 | TAS5162DDV6EVM Configuration (3.00).cfg | ⁽¹⁾ These test conditions are used for all tests, unless otherwise specified. ## Table 5. TAS5086 Register Settings | Register ⁽¹⁾ | | Value | Notes | |---------------------------------|------|-------------|--| | Oscillator Trim Register | 0x1B | 0x00 | Initiate Factory Trim | | Master Volume Register | 0x07 | 0x30 | Master Volume 0 dB | | Split Cap Register | 0x1A | 0x00 | No Split Capacitor Charge Period. | | Modulation Index Limit Register | 0x10 | 0x04 | Set Modulation Index to 96.1% | | PWM Start Register | 0x18 | 0xF0 | Mid-Z Sequence Enabled For All Channels. | | Input Multiplexer Register | 0x20 | 00 01 23 45 | | | Output Mulitplexer Register | 0x25 | 00 01 23 45 | | | System Control Register | 0x05 | 20 | PWM Start | ⁽¹⁾ These register settings are used for all tests, unless otherwise specified. #### **Table 6. Electrical Data** | Electrical Data | | Notes/Conditions | |-------------------------------------|---------|--| | Output Power, SE, 4 Ω: | 60 W | 1 kHz, Unclipped (0 dBFS), T _A = 25°C | | Output Power, SE, 4 Ω: | 80 W | 1 kHz, 10% THD+N, T _A = 25°C | | Output Power, BTL, 6 Ω: | 161 W | 1 kHz, Unclipped (0 dBFS), T _A = 25°C | | Output Power, BTL, 6 Ω: | 210 W | 1 kHz, 10% THD+N, T _A = 25°C | | Output Power, BTL, 8 Ω: | 122 W | 1 kHz, Unclipped (0 dBFS), T _A = 25°C | | Output Power, BTL, 8 Ω: | 160 W | 1 kHz, 10% THD+N, T _A = 25°C | | Maximum Peak Current, SE: | >9.9 A | 1 kHz Burst, 1 Ω , R _{OC} = 22 k | | Maximum Peak Current, BTL: | >9.9 A | 1 kHz Burst, 1 Ω , R _{OC} = 22 k | | Output Stage Efficiency: | >90% | 1 x SE Channels, 4 Ω + 1 \times BTL Channel, 8 Ω | | Damping Factor SE: | 14 | 1 kHz, Relative to 4-Ω load | | Damping Factor BTL: | 15 | 1 kHz, relative to 8-Ω Load | | System Supply Current: | <195 mA | 1 kHz, -60-dBFS Signal, With TI Input Board | | H-Bridge Supply Current: | <190 mA | 1 kHz, -60-dBFS Signal | | Total Board Idle Power Consumption: | 12.5 W | H-Bridge Supply + System Supply, -60-dBFS Signal | #### **Table 7. Audio Performance** | Audio Performance | | | Notes/Conditions | |--|-------|----------------|---| | THD+N, SE, 4 Ω: | 1 W | <0.09% | 1 kHz | | THD+N, SE, 4 Ω: | 10 W | <0.09% | 1 kHz | | THD+N, SE, 4 Ω : | 50 W | <0.08% | 1 kHz | | THD+N, BTL, 6 Ω: | 1 W | <0.009% | 1 kHz | | THD+N, BTL, 6 Ω: | 10 W | <0.05% | 1 kHz | | THD+N, BTL, 6 Ω: | 50 W | <0.03% | 1 kHz | | THD+N, BTL, 6 Ω: | 100 W | <0.12% | 1 kHz | | THD+N, BTL, 6 Ω: | 150 W | <0.14% | 1 kHz | | THD+N, BTL, 8 Ω: | 1 W | <0.007% | 1 kHz | | THD+N, BTL, 8 Ω: | 10 W | <0.04% | 1 kHz | | THD+N, BTL, 8 Ω: | 50 W | <0.03% | 1 kHz | | THD+N, BTL, 8 Ω: | 100 W | <0.08% | 1 kHz | | Dynamic Range: | | >109 dB | Ref: Rated Power, A-Weighted, AES17 Filter, 4 Ch
Avg | | Noise Voltage SE: | | <50 μVrms | A-weighted, AES17 Filter | | Noise Voltage BTL: | | <100 µVrms | A-weighted, AES17 Filter | | Channel Separation: | | >68 dB | 1 kHz | | Frequency Response SE (100 Hz–20 kHz): | | ±0.5 / -1.0 dB | 62.5 W / 4 Ω, Unclipped (0 dBFS) | | Frequency Response BTL (20 Hz–20 kHz): | | ±0.3 | 125 W / 8 Ω, Unclipped (0 dBFS) | # **Table 8. Thermal Specifications** | Thermal Specifications | T _{HEATSINK} (1) | Notes/Conditions | |---|---------------------------|---| | Idle, All Channels Switching | 46°C | 1 kHz, 15 min, -60-dBFS signal, T _A = 25°C | | 4 x 7.5 W, 4 Ω + 2 × 16 W , 8 Ω (1/8 power) | 66°C | 1 kHz, 1 hour, T _A = 25°C | | 2 x 60 W, 4 Ω | 73°C | 1 kHz, 5 min, T _A = 25°C | ⁽¹⁾ Measured on surface of heatsink. # Table 9. Physical Specifications⁽¹⁾ | Physical Specification | | Notes/Conditions | |------------------------|----------------|--| | PCB Dimensions: | 112 x 154 x 54 | Width x Length x Height (mm) | | Total Weight: | 350 g | Components + PCB + Heat-Sink + Mechanics | ⁽¹⁾ All electrical and audio specifications are typical values. # 4.1 THD+N vs Power (SE -4Ω) Gain: 2.5 dB set in TAS5086 Figure 5. THD+N vs Power (SE -4Ω) ## 4.2 THD+N vs Power (SE – 3Ω) Gain: 2.5 dB set in TAS5086 Figure 6. THD+N vs Power (SE -3Ω) # 4.3 THD+N vs Power (BTL $- 8 \Omega$) Gain: 2.5 dB set in TAS5086 Figure 7. THD+N vs Power (BTL - 8 Ω) ## 4.4 THD+N vs Power (BTL – 6Ω) Gain: 2.5 dB set in TAS5086 Figure 8. THD+N vs Power (BTL – 6 Ω) # 4.5 THD+N vs Frequency (SE – 4Ω) Figure 9. THD+N vs Frequency (SE – 4 Ω) ## 4.6 THD+N vs Frequency (SE – 3 Ω) Figure 10. THD+N vs Frequency (SE – 3 Ω) # 4.7 THD+N vs Frequency (BTL – 8 Ω) Figure 11. THD+N vs Frequency (BTL $- 8 \Omega$) ## 4.8 THD+N vs Frequency (BTL – 6Ω) Figure 12. THD+N vs Frequency (BTL – 6 Ω) ## 4.9 FFT Spectrum With -60-dBFS Tone (SE) Reference voltage is 15.5 V. FFT size 16 k. Figure 13. FFT Spectrum With -60 dBFS Tone (SE) #### 4.10 FFT Spectrum With -60-dBFS Tone (BTL) Reference voltage is 31.2 V. FFT size 16 k. Figure 14. FFT Spectrum With -60-dBFS Tone (BTL) # 4.11 Idle Noise FFT Spectrum (SE) Reference voltage is 15.5 V. FFT size 16 k. Figure 15. Idle Noise FFT Spectrum (SE) # 4.12 Idle Noise FFT Spectrum (BTL) Reference voltage is 31.2 V. FFT size 16 k. Figure 16. Idle Noise FFT Spectrum (BTL) # 4.13 Channel Separation Channel separation is tested for two channels, channel 1 and channel 2. Both channels use $4-\Omega$ loads. Channel-1 input signal is 0 dBFS, channel 2 is muted. Reference voltage is 15.5 Vrms. Figure 17. Channel Separation ## 4.14 Frequency Response (SE) Measurement bandwidth filter is 80 kHz. Figure 18. Frequency Response (BTL) # 4.15 Frequency Response (BTL) Measurement bandwidth filter is 80 kHz. Figure 19. Frequency Response (BTL) # 4.16 High-Current Protection (SE) Input 1-kHz bursted signal, Load 1 Ω . Figure 20. High Current Protection (SE) # 4.17 High-Current Protection (BTL) Input 1-kHz bursted signal, Load 1 Ω . Figure 21. High Current Protection (PBTL) ## 4.18 Pop/Click (BTL) No input signal applied, Load 8 Ω . FFT Analyzer Setup: Size = 32768, Window = Blackman Harris, Sample Rate = 48 kHz, DC Coupled. Figure 22. Pop/Click (BTL) #### 4.19 Pop/Click (SE) No input signal applied, Load 4 Ω . FFT Analyzer Setup: Size = 32768, Window = Blackman Harris, Sample Rate = 48 kHz, DC Coupled. Figure 23. Pop/Click (SE) #### 4.20 Output Stage Efficiency Efficiency is tested with one SE channel loaded 4 Ω and one BTL channel loaded with 8 Ω . The board has been preheated for 1 hour at 1/8 output power. Figure 24. Output Stage Efficiency #### 5 Related Documentation from Texas Instruments Table 10 contains a list of data sheets that have detailed descriptions of the integrated circuits used in the design of the TAS5162DDV6EVM. The data sheets can be obtained at http://www.ti.com. Table 10. Related Documentation from Texas Instruments | Part Number | Literature Number | |-------------|-------------------| | TAS5086 | SLES131 | | TAS5162 | <u>SLES194</u> | | TLV272 | <u>SLOS351</u> | | TPS5430 | SLVS632 | | TPS3801K33 | SLVS219 | | TLV2217-33 | SLVS067 | | UA78M12 | <u>SLVS059</u> | #### 5.1 Additional Documentation - 1. PC Configuration Tool for TAS5086 (TAS5086 GUI ver. 4.0 or later) - 2. System Design Considerations for True Digital Audio Power Amplifiers (SLAA117) - 3. Digital Audio Measurements (SLAA114) - 4. PSRR for PurePath Digital ™Audio Amplifiers (SLEA049) - 5. Power Rating in Audio Amplifier (SLEA047) - 6. PurePath Digital™ AM Interference Avoidance (SLEA040) - 7. Click and Pop Measurement Technique (SLEA044) - 8. Power Supply Recommendations for DVD Receivers (SLEA027) - 9. Implementation of Power Supply Volume Control (SLEA038) ## **Appendix A Design Documents** This appendix comprises design documents pertaining to the TAS5162DDV6EVM evaluation module. The documents are presented in the following order. - Schematic (6 pages) - Parts List (2 pages) - PCB Specification (1 page) - PCB Layers (4 pages) - Heat-Sink Drawing (1 page) Design Name: TAS5162DDV6EVM Type: Mass Market Evaluation Module File Name: A816-SCH-001(4.00).DSN Version: 4.00 Date: 7.September 2007 Design Engineer: Jonas L. Holm (jlh@ti.com) Audio Configuration: 5.1 PurePath Digital Amplifier Design 1 x TAS5086, 2 x TAS5162DDV Interfaces: J40: 34 pin IDC Header for Control, I2C and +5V J60: 16 pin IDC Header for I2S Audio J101-J106: 2 pin 3.96mm Headers for Speakers J901: 4 pin 3.96mm Header for H-Bridge and System Power Supply Setup: 4 x 4 Ohm and 2 x 8 Ohm Speaker Loads +50V H-Bridge and +15V System Power Supplies Performance: 4 x 62.5 W/4 Ohm (SE) + 2 x 125 W/8 Ohm (BTL) - all unclipped. 105 dB Dynamic Range #### Page 1/6: Front Page and Schematic Disclaimer 2/6: Overview - Modulator and Input/Output 3/6: 4 Channel SE Power Stage (FL, FR, SL, and SR) 4/6: 2 Channel BTL Power Stage (C and LFE SW) 5/6: Power Supplies 6/6: Mechanics Copyright 2007 Texas Instruments, Inc - All rights reserved - The "TI" and "PurePath Digital" logos are trademarks of Texas Instruments. NOTE #### SCHEMATIC DISCLAIMER The schematic information and materials ("Materials") provided here are provided by Texas Instruments Incorporated ("TI") as a service to its customers and/or suppliers, and may be used for informational purposes only, and only subject to the following terms. By downloading or viewing these Materials, you are signifying your assent to these terms. - 1.) These evaluation schematics are intended for use for ENGINEERING DEVELOPMENT AND EVALUATION PURPOSES ONLY and are not considered by Texas Instruments to be fit as a basis for establishing production products or systems. This information may be incomplete in several respects, including but not limited to information relating to required design, marketing, and/or manufacturing-related protective considerations and product safety measures typically found in the end-product incorporating the goods. - 2.) Accordingly, neither TI nor its suppliers warrant the accuracy or completeness of the information, text, graphics, links or other items contained within the Materials. TI may make changes to the Materials, or to the products described therein, at any time without notice. TI makes no commitment to update the Materials. - 3.) TI assumes no liability for applications assistance, customer product design, software performance, or services that may be described or referenced in the Materials. The user assumes all responsibility and liability for proper and safe design and handling of goods. Accordingly, the user indemnifies TI from all claims arising from its use of the Materials. - 4.) TI currently deals with various customers for products, and therefore our arrangement with the user will not be exclusive. TI makes no representations regarding the commercial availability of non-TI components that may be referenced in the Materials. - 5.) No license is granted under any patent right or other intellectual property right of TI covering or relating to any combination, machine, or process in which such TI products or services might be or are used. Except as expressly provided herein, TI and its suppliers do not grant any express or implied right to you under any patents, copyrights, trademarks, or trade secret information. - 6.) Performance tests and ratings, to the extent referenced in the Materials, are measured using specific computer systems and/or components and reflect the approximate performance of TI products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. - 7.) Resale of TTs products or services with statements different from or beyond the parameters stated by TI for that product or service in official TI data books or data sheets voids all express and any implied warranties for the associate. TI product or service, and is an unfair and deceptive business practice, and TI is not responsible for any such use. - 8.) The Materials are copyrighted and any unauthorized use may violate copyright, trademark, and other laws. You may only download one copy for your internal use only, unless you are specifically licensed to do otherwise by TI in writing. This is a license, not a transfer of tile, and is subject to the following restrictions: You may not: (a) modify the Materials (including any associated warranties, conditions, limitations or notices) or use them for any commercial purpose, or any public display, performance, sale or rental; (b) decompile, reverse engineer, or disassemble software Materials except and only to the extent permitted by applicable law; (c) remove any copyright or other proprietary notices from the Materials; (d) transfer the Materials to another person. You agree to prevent any unauthorized copying of the Materials. TI may terminate this license at any time if you are in breach of the terms of this Agreement. Upon termination, you will immediately destroy the Materials. - 9.) THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL TI OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE MATERIALS, EVEN IF TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Not Used | TEXAS
INSTRUMENTS | Parts List 4.00 AUDIO/IMAGING GROUP Home Audio Amplifiers ALL RIGHTS RESERVED TEXAS INSTRUMENTS INCORPORATED | | | |----------------------------------|--|-------------------------|--| | Project: TAS5162DDV6EVM | | Rev: 4.00 | | | Page Title: Schematic Disclaimer | | Size: A2 | | | File Name: A816-SCH-001.DSN | | Engineer: Jonas L. Holm | | | Date: Friday, September 07, 2007 | | Page: 1 of 6 | | #### TAS5162DDV6EVM CHANNEL 1-4 /RESET_AB RESET CD /SD PROTECT_A PROTECT A OUT A PROTECT_B ■PROTECT_B GND_A 1 0 5 GND_B C25 100nF R51 47R 1-W-2 GND_C C10 10nF R52 47R +3.3V \$ R10 R11 \$ 200R \$ OUT D R53 47R PWM_2 37 PWM B R54 47R PWM_4 35 AVSS PWM D VGND PWM_6 33 PLL_FLTP CHANNEL 5-6 AVSS PWM_A VALID1 31 VALID1 MCLK GVDD PWM C VR_DIG 30 9 RESET R23 47R /PDN DVSS 29 J168 OH 5 SPEAKER OUTPUT (8 Ohm) CENTER J108 OH 5 SPEAKER OUTPUT (8 Ohm) LTE SUBWOOFER OUTPUT (8 Ohm) 10 PDN DVSS 28 DVDD R24 Not Used OUT_A BKND_ERR 27 C20 10uF 13 DVSS_OSC SDIN1 26 SDIN2 25 OUT_C /RESET_AB SDIN3 24 SDIN3 OUT D SDIN4 23 RESET CD SDOUT 22 SDA SCL 18 SCL RESERVED 21 SCLK 20 LRCLK Output Stage BTL R61 47R /RESET **■**/RESET R62 47R /RESET MODULATOR RESET MODULATOR PROTECT A PROTECT A R64 47R PROTECT_B VALID2 VALID2 R65 47R R66 47R Power Supplies R67 R68 R69 R70 R71 R72 R73 10k 10k 10k 10k 10k 10k 10k 10k | 1 | Parts Lis | 4.00 | |------------------------------|---|------| | TEXAS
INSTRUMENTS | AUDIO/IMAGING GROUP
Home Audio Amplifiers
ALL RIGHTS RESERVED
TEXAS INSTRUMENTS INCORPORAT | ED | | Project: TAS5162DDV6EVM | Rev: 4. | 00 | | Page Title: Overview | Size: A | : | | File Name: A816-SCH-001.DSN | Engineer: Jonas L. Holm | | | Date: Tuesday, June 19, 2007 | Page: 2 | of 6 | # TAS5162DDV6EVM Parts List (4.00) | Qtv | Part Reference | Description | Manufacture | First Mfr P/N | |-----|--|---|--------------------------|--------------------------------| | | | • | | | | 5 | R142 R143 R162 R163 R901
R144 R145 R146 R147 R164 R165 | 10.0k / 125mW / 1% / 0805 Thick Film Resistor | Yageo | RC0805FR-0710KL | | | R166 R167 R232 R233 R252 R253 | | | | | | R900 R903 R951 R952 | 3.30R / 125mW / 1% / 0805 Thick Film Resistor | Yageo | RC0805FR-073R3L | | | R112 R113 R212 R213 | 1.0k / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-071KL | | | R40 R41 R42 R43 R44 R45 R46 R47 | | - U | | | | R67 R68 R69 R70 R71 R72 R73 R956 | | | | | | R981 R982 R983 | 10k / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-0710KL | | | R114 R140 R141 R148 R149 R160
R161 R168 R169 R181 R183 R185 | | | | | | R187 R214 | 100k / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-07100KL | | | R104 R204 | 1R / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-071RL | | | R100 R106 R108 R109 R110 R200 | | | | | 10 | R206 R208 R209 R210 | 10R / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-0710RL | | 1 | R18 | 18.0k / 100mW / 1% / 0603 Thick Film Resistor | Yageo | RC0603FR-0718KL | | ' | 1110 | 10.0K / 100HW / 1 /6 / 0005 THICK THIT HESISTOI | rageo | TIGOGGGI TI-O7 TORE | | 2 | R10 R11 | 200R / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-07200RL | | | R105 R205 | 22k / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-0722KL | | 1 | R957 | 3.3k / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-073K3L | | | R23 R48 R49 R50 R51 R52 R53 R54
R55 R60 R61 R62 R63 R64 R65 R66 | | | | | | R111 R211 R980 | 47R / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-0747RL | | | R180 R182 R184 R186 | 6.8k / 100mW / 5% / 0603 Thick Film Resistor | Yageo | RC0603JR-076K8L | | | C146 C147 C148 C149 C166 C167 | | .9 | 31 21 22 | | | C168 C169 C235 C236 C255 C256 | | | | | | C901 C906 C953 C955 | Ceramic 10nF / 100V / 20% X7R 0805 Capacitor | BC Components | 0805B103M101NT | | | C900 C905 C909 C910 C922 C923
C952 C954 | Ceramic 100nF / 50V / 20% X7R 0805 Capacitor | BC Components | 0805B104M500NT | | | C107 C108 C109 C110 C207 C208 | Ceramic Toom / 50 V / 20 % X/H 0003 Capacitor | DO Components | 0003B104W300W1 | | 8 | C209 C210 | Ceramic 33nF / 50V / 20% X7R 0805 Capacitor | BC Components | 0805B333M500NT | | | C123 C125 C127 C129 C223 C225 | • | | | | 8 | C227 C229 | Ceramic 1uF / 100V / 10% X7R 1210 Capacitor | Murata | GRM32ER72A105KA01L | | 8 | C150 C151 C170 C171 C237 C238
C257 C258 | Coromio 1nE / 100V / 109/ V7B 0603 Consoiter | Murata | GRM188R72A102KA01 | | 0 | G237 G238 | Ceramic 1nF / 100V / 10% X7R 0603 Capacitor | Iviurala | GRW166R/2A102RA01 | | 3 | C10 C13 C962 | Ceramic 10nF / 50V / 20% X7R 0603 Capacitor | Vishay | VJ0603Y103MXA | | | C11 C12 C14 C17 C21 C22 C25 C101 | , | , | | | | C102 C104 C105 C106 C111 C114 | | | | | | C201 C202 C204 C205 C206 C211
C214 C915 C980 C981 | Coronic 100mF / 10V / 200/ YZB 0002 Conscitor | Vieber | V 10C02V104MV I | | 24 | C214 C915 C980 C981 | Ceramic 100nF / 16V / 20% X7R 0603 Capacitor | Visitay | VJ0603Y104MXJ | | 1 | C908 | Ceramic 100nF / 50V / 20% X7R 0603 Capacitor | Vishay | VJ0603Y104MXA | | | C113 C115 C117 C119 C213 C215 | Ceramic 100nF / 100V / 10% X7R 0603 | , | | | | C217 C219 C233 C234 C253 C254 | Capacitor | Murata | GRM188R72A104KA35D | | | C20 C100 C112 C180 C181 C182 | Electrolytic 10uF / 16V / 20% Aluminium 1.5mm | O line Floring | LINADACVACCAMAVE | | 9 | C183 C200 C212 | ø4mm Ultra-Mini Series Capacitor
Electrolytic 100uF / 35V / 20% Aluminium | Sang Jing Electronics | UMR16V106M4X5 | | | | 3.5mm ø8mm FC Series - Low Impedance | | | | 1 | C907 | Capacitor | Panasonic | EEUFC1V101 | | | 2011 2021 255 | Electrolytic 100uF / 16V / 20% Aluminium | | | | 3 | C911 C921 C924 | 2.5mm ø6.3mm Ultra-Mini Series Capacitor
Electrolytic 220uF / 25V / 20% Aluminium | Sang Jing Electronics | UMR16V107M6.3X5 | | | | 3.5mm ø8mm FC Series - Low Impedance | | | | 2 | C912 C913 | Capacitor | Panasonic | EEUFC1E221 | | | | · | | | | | C140 C141 C142 C143 C160 C161 | Electrolytic 390uF / 63V / 20% Aluminium 5mm | | FF11F04 1004 | | 10 | C162 C163 C272 C274 | ø12.5mm FC Series - Low Impedance Capacitor
Metal Film 330nF / 63V / 10% Polyester 5mm | ranasonic | EEUFC1J391 | | 2 | C232 C252 | (W:4.5mm L:7.2mm) Capacitor | Wima | MKS 2 0.33uF/10%/63Vdc PCM5 | | | 0_0_ | Metal Film 680nF / 63V / 10% Polyester 5mm | | | | | C144 C145 C164 C165 | (W:4.5mm L:7.2mm) Capacitor | Wima | MKS 2 0.68uF/10%/63Vdc PCM5 | | | L230 L231 L250 L251 | 15uH / Ferrite Inductor | Kwang Sung | 8019P-21-150L | | | L900
L130 L131 L150 L151 | 15uH / Ferrite Inductor
22uH / Ferrite Inductor | Kwang Sung
Kwang Sung | 8020P-06-150L
8019P-22-220L | | | D901 | 1A / 40V Schottky 10MQ040N Diode (SMA) | Int. Rectifier | 10MQ040N | | | | 600mA / 40V NPN Small signal PMBT2222 | 3.1.223 | | | | Q981 | Transistor (SOT-23) | Philips | PMBT2222 | | | Q100 Q180 Q181 Q182 Q183 Q184 | 800mA / 40V PNP Small signal MMBT2907A | | | | 12 | Q185 Q186 Q187 Q200 Q980 Q982 | Transistor (SOT-23) TAS5086DBT / 6 ch PWM processor (SE, VOL, | Fairchild | MMBT2907A | | 1 | U10 | 192kHz, I2S out) (TSSOP38) | Texas Instruments | TAS5086DBT | | ' | <u> </u> | TAS5162DDV / 4ch/2ch/1ch Digital Audio PWM | . OAGO MORIUMGINO | | | 2 | U100 U200 | Power Output Stage (DDV44) | Texas Instruments | TAS5162DDV | | | | TPS3801K33 / 3.3V Supply Voltage Supervisor | | | | 1 | U908 | (SOT323-5)
UA78M12 / 12V/500mA Positive Voltage | Texas Instruments | TPS3801K33DCK | | 1 | U900 | Regulator (PFM2-KTP) | Texas Instruments | UA78M12CKTPR | | _ ' | 0000 | riogulator (FFIVIE-IXTE) | I CARS IIISLIUIIIEIIIS | O/MOWIZORTI II | 1 of 2 2007-08-22 / JLH # TAS5162DDV6EVM Parts List (4.00) | | | TLV2217-33 / 3.3V Low Dropout Voltage | | | |---|------------------------------------|---|-------------------|---------------------| | 1 | U907 | Regulator (PFM2-KTP) | Texas Instruments | TLV2217-33KTPR | | | | TPS5430 / 5V/3A Buck Converter (HSOP8- | | | | 1 | U901 | DDA) | Texas Instruments | TPS5430DDA | | | SCREW620 SCREW621 SCREW622 | | | | | 4 | SCREW623 | M3x6 Pan Head, Pozidriv, A2 Screw | Bossard | BN 81882 M3x6 | | | SCREW630 SCREW631 SCREW632 | | | | | 4 | SCREW633 | M3x8 Pan Head, Pozidriv, A2 Screw | Bossard | BN 81882 M3x8 | | | WASHER620 WASHER621 | | | | | 4 | WASHER622 WASHER623 | M3 Stainless Steel Washer | Bossard | BN 670 M3 | | | WASHER630 WASHER631 | | | | | 4 | WASHER632 WASHER633 | M3 Stainless Steel Spring Washer | Bossard | BN 760 M3 | | | STANDOFF620 STANDOFF621 | | | | | 4 | STANDOFF622 STANDOFF623 | M3x10 Aluminium Stand-off | Ettinger | 05.03.108 | | | | 2 pins / 1 row / 3.96mm Pitch Vertical Male Pin | | | | 7 | J101 J102 J103 J104 J105 J106 J902 | header Header | JST | B2P-VH | | | | 4 pins / 1 row / 3.96mm Pitch Vertical Male Pin | | | | 1 | J901 | header Header | JST | B4P-VH | | | | 16 pins / 2 rows / 2.54mm Pitch Vertical Male | | | | 1 | J60 | IDC 16 pins IDC Box header | Molex | 87256-1611 | | | | 34 pins / 2 rows / 2.54mm Pitch Vertical Male | | | | 1 | J40 | IDC 34 pins IDC Box header | Molex | 87256-3411 | | | | A816-PCB-001_4.00 / TAS5162DDV6EVM | | | | 1 | PCB610 | Printed Circuit Board (ver. 4.00) | Printline | A816-PCB-001(4.00) | | | | TIC-HSINK-052_2.00 / Heatsink for 2 DDV | | | | 1 | HEATSINK630 | packages length 106 mm | THF-Teknik | TIC-HSINK-052(2.00) | 2 of 2 2007-08-22 / JLH Jonas L. Holm # TAS5162DDV6EVM PCB SPECIFICATION Version 4.00 BOARD IDENTIFICATION: A816-PCB-001(4.00) BOARD TYPE: DOUBLE-SIDED PLATED-THROUGH BOARD LAMINATE TYPE: FR4 LAMINATE THICKNESS: 1.6mm COPPER THICKNESS: 70 µm (INCL. PLATING EXTERIOR LAYER) COPPER PLATING OF HOLES: >25µm MINIMUM HOLE DIAMETER 0.3 mm SILKSCREEN COMPONENT SIDE: WHITE - REMOVE SILKSCREEN FROM SOLDER AREA & PRE-TINNED AREAS SILKSCREEN SOLDER SIDE: None SOLDER MASK COMPONENT SIDE: GREEN SOLDER MASK SOLDER SIDE: GREEN PROTECTIVE COATING: SOLDER COATING AND CHEMICAL SILVER ON FREE COPPER ELECTRICAL TEST: PCB MUST BE ELECTRICAL TESTED MANUFACTURED TO: PERFAG 2E (www.perfag.dk) APERTURE TABLE: PERFAG 10A (www.perfag.dk) BOARD SIZE: 112 x 154 mm Aprox. Number of holes 600 COMMENTS: SEE DRILL INFORMATION FILE (5201pcb.PDF). COMPONENT SIDE Dps 5201 070821 TI Denmark A816-PCB-001 (4.00) COMP. LAYOUT COMP | DpS 5201 070821 | TI Denmark A816-PCB-001 (4.00) COMPRIMAYOUTS TOOMP | DpS 5201 070821 | TI Denmark A816-PCB-001 (4.00) | 070821 | ops 5201 | | | SIDE | DER | SOL | | |--------|----------|------|----|------|-----|-----|--| | (4.00) | CB-001 | 16-F | 88 | mark | Den | ΙT | | # TIC-HSINK-052(2.00) Heatsink for 2 DDV packages length 106 mm Jonas L. Holm 19.June 2007 TIC-HSINK-052(2.00).dwg SCALE: 1:1.5 PROFILE: TIC-HSINK-050(1.00) DIMENSIONS: mm MATERIAL: ALUMINUM INTERNAL SCREW THREADS: M3 SURFACE: FREE OF SHARP EDGES SURFACE TREATMENT: BLACK ANODIZED TOLERANCES: +/- 0.1 mm #### **EVALUATION BOARD/KIT IMPORTANT NOTICE** Texas Instruments (TI) provides the enclosed product(s) under the following conditions: This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives. Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. #### **FCC Warning** This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. #### **EVM WARNINGS AND RESTRICTIONS** It is important to operate this EVM within the input voltage range of 3.3 V to 5 V and the output voltage range of 0 V to 5 V. Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power. Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 30°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |-----------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | RFID | www.ti-rfid.com | Telephony | www.ti.com/telephony | | Low Power
Wireless | www.ti.com/lpw | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated