ABSOLUTE MAXIMUM RATINGS

, ,		
V _{DD} to GND0.3V to +6V OUTA, OUTB to GND0.3V to (V _{DD} + 0.3V)	Operating Temperature Range	
REFIN CS/AO, DOUT/AI, SPI/I2C, FSADJA,	Storage Temperature Range	65°C to +150°C
FSADJB to GND0.3V to (V _{DD} + 0.3V)	Lead Temperature (soldering, 10s)	+300°C
SCLK/SCL, DIN/SDA0.3V to +6V		
Continuous Power Dissipation (T _A = +85°C)		
16-Pin Thin QFN (derate 17.5mW/°C above +70°C)1398.6mW		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +2.7V \text{ to } +5.25V, \text{ GND} = 0, V_{REFIN} = +1.25V, \text{ internal reference, } R_{FSADJ} = 20k\Omega; \text{ compliance voltage} = (V_{DD} - 0.6V), V_{SCLK/SCL} = 0, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.} \text{ Typical values are at } V_{DD} = +3.0V \text{ and } T_{A} = +25^{\circ}\text{C}.) \text{ (Note 1)}$

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE—ANAL	OG SECTIO	N					1
Resolution				8			Bits
Integral Nonlinearity	INL	$I_{OUT} = 1$ mA to 30m	nA (Note 2)		±1		LSB
Differential Nonlinearity	DNL	Guaranteed monoto	onic			±1	LSB
Offset	los			-13	-4		LSB
Zero-Scale Error		$I_{OUT} = 1$ mA to 30m	nA, code = 0x00			1	μΑ
Full-Scale Error		I _{OUT} = 1mA to 30m includes offset	nA, code = 0xFF,		-4		LSB
REFERENCE							
Internal Reference Range				1.21	1.25	1.29	V
Internal Reference Tempco					30		ppm/°C
External Reference Range				0.5		1.5	V
External Reference Input Current					108	225	μΑ
DAC OUTPUTS							
Full-Scale Current		(Note 3)		1		30	mA
Output Current Leakage in Shutdown						±1	μΑ
Output Capacitance					10		рF
		$I_{OUT} = 30mA$		1			
Current Source Dropout Voltage (VDD - VOUT_)		January 20m A	$T_A = +25^{\circ}C$	0.55			V
(*66 *661=)		I _{OUT} _ = 20mA	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	0.6			
Output Impedance at Full-Scale Current					100		kΩ
Capacitive Load to Ground	CLOAD				10		nF
Series Inductive Load	LLOAD				100		nH
Maximum FSADJ_ Capacitive Load	CFSADJ_			_	75	_	pF
DYNAMIC PERFORMANCE							
Settling Time	ts	$C_{LOAD} = 24pF, L_{LO}$	AD = 27nH (Note 4)		30		μs
Digital Feedthrough					2		nVs
Digital-to-Analog Glitch Impulse					40		nVs

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +2.7V \text{ to } +5.25V, \text{ GND} = 0, V_{REFIN} = +1.25V, \text{ internal reference}, R_{FSADJ} = 20k\Omega; \text{ compliance voltage} = (V_{DD} - 0.6V), V_{SCLK/SCL} = 0, T_{A} = -40^{\circ}\text{C}$ to +85°C, unless otherwise noted. Typical values are at $V_{DD} = +3.0V$ and $T_{A} = +25^{\circ}\text{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DAC-to-DAC Current Matching				2		%
Walta I la Tira		$V_{DD} = +3V, R_L = 65\Omega, C_L = 24pF$		400		
Wake-Up Time		V _{DD} = +5V, no load		10		μs
POWER SUPPLIES						
Supply Voltage	V_{DD}		+2.70		+5.25	V
Supply Current	I _{DD}	$V_{DD} = +5.25V$, no load		3	6	mA
Shutdown Current					1.2	μΑ
LOGIC AND CONTROL INPUTS						
Input High Voltage (Note 5)	VIH	+2.7V ≤ V _{DD} ≤ +3.4V	0.7 x V _{DD}			V
		+34V < V _{DD} ≤ +5.25V	2.4			
Input Low Voltage	V _{IL}	(Note 5)			0.8	V
Input Hysteresis	V _{HYS}			0.1 x V _{DD}		V
Input Capacitance	CIN			10		рF
Input Leakage Current	I _{IN}				±1	μΑ
Output Low Voltage	VoL	I _{SINK} = 3mA			0.6	V
Output High Voltage	Voн	ISOURCE = 2mA	V _{DD} - 0.5			V
I ² C TIMING CHARACTERISTICS	(Figure 2)					
SCL Clock Frequency	fscl				400	kHz
Setup Time for START Condition	tsu:sta		600			ns
Hold Time for START Condition	thd:sta		600			ns
SCL Pulse-Width Low	tLOW		130			ns
SCL Pulse-Width High	thigh		600			ns
Data Setup Time	tsu:dat		100			ns
Data Hold Time	thd:dat		0		70	ns
SCL Rise Time	tRCL		20 + 0.1 x C _B		300	ns
SCL Fall Time	tFCL		20 + 0.1 x C _B		300	ns
SDA Rise Time	t _{RDA}		20 + 0.1 x C _B	_	300	ns
SDA Fall Time	tFDA		20 + 0.1 x C _B		300	ns
Bus Free Time Between a STOP and START Condition	tBUF		1.3	_		μs

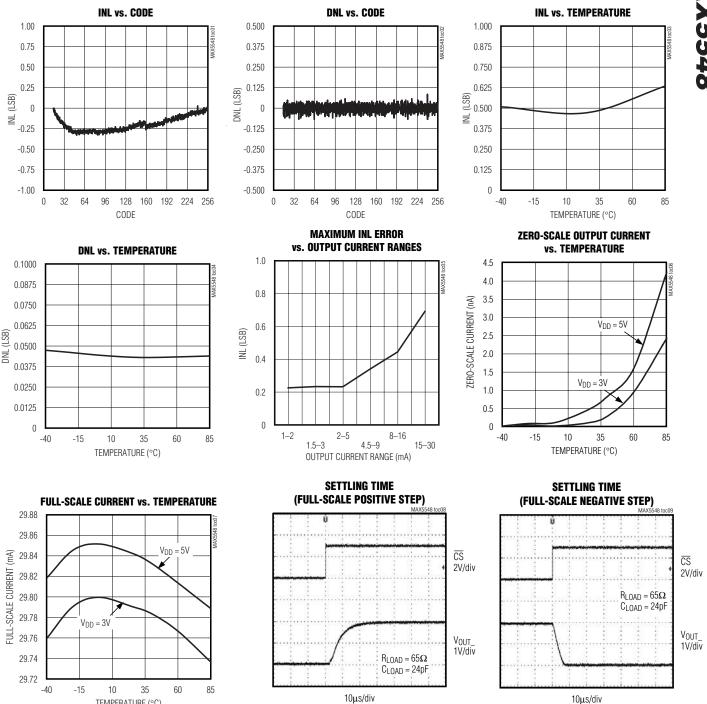
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +2.7V \ to \ +5.25V, \ GND = 0, \ V_{REFIN} = +1.25V, \ internal \ reference, \ R_{FSADJ} = 20k\Omega; \ compliance \ voltage = (V_{DD} - 0.6V), \ V_{SCLK/SCL} = 0, \ T_{A} = -40^{\circ}C \ to \ +85^{\circ}C, \ unless \ otherwise \ noted. \ Typical \ values \ are \ at \ V_{DD} = +3.0V \ and \ T_{A} = +25^{\circ}C.) \ (Note \ 1)$

Setup Time for STOP Condition SU:STO CB	TYP	MAX	UNITS
Each Bus Line			ns
SCLK Clock Period tcp 100 SCLK Pulse-Width High tcH 40 SCLK Pulse-Width Low tcL 40 CS Fall to SCLK Rise Setup Time tcss 25 SCLK Rise to CS Rise Hold Time tcsh 50 DIN Setup Time tbs 40 DIN Hold Time tbs 40 DIN Hold Time tcsh 0 SCLK Fall to DOUT Transition tbot 0 CS Fall to DOUT Enable tcsc CLOAD = 30pF CS Rise to DOUT Disable tcsp CLOAD = 30pF SCLK Rise to Total Delay tcso 50 Total Rise to Total Delay tcso 50 Total Rise to SCLK Rise Hold Time tcsh 40 Total Rise Total Delay tcsh 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) 200 SCLK Clock Period tcp 200 SCLK Pulse-Width High tch 80 SCLK Pulse-Width Low tcl 80 Total Total Rise Setup Time tcsh 25 <	400		pF
SCLK Pulse-Width High tCH 40 SCLK Pulse-Width Low tCL 40 CS Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to CS Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0 SCLK Fall to DOUT Transition tDOI CLOAD = 30pF CS Fall to DOUT Enable tCSE CLOAD = 30pF CS Rise to DOUT Disable tCSD CLOAD = 30pF SCLK Rise to CS Fall Delay tCSO 50 CS Rise to SCLK Rise Hold Time tCSI 40 CS Pulse-Width High tCSI 40 SCIK Clock Period tCP 200 SCLK Clock Period tCP 200 SCLK Pulse-Width High tCH 80 SCLK Pulse-Width Low tCL 80 CS Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to CS Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0 <td></td> <td></td> <td></td>			
SCLK Pulse-Width Low tCL 40 \overline{\text{CS}} Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to \overline{\text{CS}} Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0 SCLK Fall to DOUT Transition tDO1 CLOAD = 30pF \overline{\text{CS}} SFall to DOUT Enable tCSE CLOAD = 30pF \overline{\text{CS}} Rise to DOUT Disable tCSD CLOAD = 30pF \overline{\text{CS}} SFall Delay tCSO 50 \overline{\text{CS}} SIse to SCLK Rise Hold Time tCS1 40 \overline{\text{CS}} Pulse-Width High tCSM 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tCP 200 SCLK Pulse-Width High tCH 80 SCLK Pulse-Width Low tCL 80 SCLK Rise to \overline{\text{CS}} Rise Hold Time tCSH 25 SCLK Rise to \overline{\text{CS}} Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time			ns
CS Fall to SCLK Rise Setup Time tcss 25 SCLK Rise to CS Rise Hold Time tcsh 50 DIN Setup Time tbs 40 DIN Hold Time tbh 0 SCLK Fall to DOUT Transition tbo1 CLOAD = 30pF CS Fall to DOUT Enable tcse CLOAD = 30pF CS Rise to DOUT Disable tcsb CLOAD = 30pF SCLK Rise to CS Fall Delay tcso 50 CS Rise to SCLK Rise Hold Time tcso 40 CS Pulse-Width High tcsu 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) 200 SCLK Clock Period tcp 200 SCLK Pulse-Width High tch 80 SCLK Pulse-Width Low tcl 80 SCLK Rise to CS Rise Hold Time tcsh 25 SCLK Rise to CS Rise Hold Time tcsh 50 DIN Setup Time tbs 40 DIN Hold Time tbh 0			ns
SCLK Rise to \$\overline{CS}\$ Rise Hold Time tcsh 50 DIN Setup Time tbs 40 DIN Hold Time tbh 0 SCLK Fall to DOUT Transition tcbh CLOAD = 30pF \$\overline{CS}\$ Fall to DOUT Enable tcse CLOAD = 30pF \$\overline{CS}\$ Rise to DOUT Disable tcsb CLOAD = 30pF \$\overline{CS}\$ Rise to SCLK Rise Hold Time tcso 50 \$\overline{CS}\$ Rise to SCLK Rise Hold Time tcso 40 \$\overline{CS}\$ Pulse-Width High tcsw 100 \$\overline{SP}\$ Use-Width High tcp 200 \$\overline{SCLK}\$ Period tcp 200 \$\overline{SCLK}\$ Pulse-Width Low tcL 80 \$\overline{SCLK}\$ Pulse-Width Low tcL 80 \$\overline{SC}\$ Fall to SCLK Rise Setup Time tcss 25 \$\overline{SCLK}\$ Rise to \$\overline{SC}\$ Rise Hold Time tcsh 50 DIN Setup Time tcsh 40 DIN Hold Time tch 0			ns
DIN Setup Time tDS 40 DIN Hold Time tDH 0 SCLK Fall to DOUT Transition tDO1 CLOAD = 30pF CS Fall to DOUT Enable tCSE CLOAD = 30pF CS Rise to DOUT Disable tCSD CLOAD = 30pF SCLK Rise to CS Fall Delay tCSO 50 CS Rise to SCLK Rise Hold Time tCS1 40 CS Pulse-Width High tCSW 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tCP 200 SCLK Pulse-Width High tCH 80 SCLK Pulse-Width Low tCL 80 SC Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to CS Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0			ns
DIN Hold Time tDH 0 SCLK Fall to DOUT Transition tDO1 CLOAD = 30pF CS Fall to DOUT Enable tCSE CLOAD = 30pF CS Rise to DOUT Disable tCSD CLOAD = 30pF SCLK Rise to CS Fall Delay tCSO 50 CS Rise to SCLK Rise Hold Time tCS1 40 CS Pulse-Width High tCSW 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tCP 200 SCLK Pulse-Width High tCH 80 SCLK Pulse-Width Low tCL 80 CS Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to CS Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0			ns
SCLK Fall to DOUT Transition tDO1 CLOAD = 30pF CS Fall to DOUT Enable tCSE CLOAD = 30pF CS Rise to DOUT Disable tCSD CLOAD = 30pF SCLK Rise to CS Fall Delay tCSO 50 CS Rise to SCLK Rise Hold Time tCS1 40 CS Pulse-Width High tCSW 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tCP 200 SCLK Pulse-Width High tCH 80 SCLK Pulse-Width Low tCL 80 CS Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to CS Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0			ns
CS Fall to DOUT Enable tcse CLOAD = 30pF CS Rise to DOUT Disable tcsD CLOAD = 30pF SCLK Rise to CS Fall Delay tcs0 50 CS Rise to SCLK Rise Hold Time tcs1 40 CS Pulse-Width High tcsw 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tcp 200 SCLK Pulse-Width High tcH 80 SCLK Pulse-Width Low tcL 80 CS Fall to SCLK Rise Setup Time tcss 25 SCLK Rise to CS Rise Hold Time tcsh 50 DIN Setup Time tds 40 DIN Hold Time tdh 0			ns
CS Rise to DOUT Disable tCSD CLOAD = 30pF SCLK Rise to CS Fall Delay tCS0 50 CS Rise to SCLK Rise Hold Time tCS1 40 CS Pulse-Width High tCSW 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tCP 200 SCLK Pulse-Width High tCH 80 SCLK Pulse-Width Low tCL 80 CS Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to CS Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0		40	ns
SCLK Rise to \$\overline{\text{CS}}\$ Fall Delay tcso 50 \$\overline{\text{CS}}\$ Rise to SCLK Rise Hold Time tcs1 40 \$\overline{\text{CS}}\$ Pulse-Width High tcsw 100 \$\overline{\text{SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6)}}\$ 200 \$\overline{\text{SCLK Clock Period}}\$ tcp 200 \$\overline{\text{SCLK Pulse-Width High}}\$ tcH 80 \$\overline{\text{SCLK Pulse-Width Low}}\$ tcL 80 \$\overline{\text{CS}}\$ Fall to \$\overline{\text{SCLK Rise Setup Time}}\$ tcss 25 \$\overline{\text{SCLK Rise to }overline{\text{CS}}\$ Rise Hold Time tcsh 50 \$\overline{\text{DIN Setup Time}}\$ tcsh 40 \$\overline{\text{DIN Hold Time}}\$ tch 0		40	ns
CS Rise to SCLK Rise Hold Time tCS1 40 CS Pulse-Width High tCSW 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tCP 200 SCLK Pulse-Width High tCH 80 SCLK Pulse-Width Low tCL 80 CS Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to CS Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0		40	ns
CS Pulse-Width High tcsw 100 SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tcp 200 SCLK Pulse-Width High tch 80 SCLK Pulse-Width Low tcl 80 CS Fall to SCLK Rise Setup Time tcss 25 SCLK Rise to CS Rise Hold Time tcsh 50 DIN Setup Time tdsh 40 DIN Hold Time tdh 0			ns
SPI TIMING CHARACTERISTICS FOR DAISY CHAINING (Figure 6) SCLK Clock Period tcp 200 SCLK Pulse-Width High tch 80 SCLK Pulse-Width Low tcl 80 CS Fall to SCLK Rise Setup Time tcss 25 SCLK Rise to CS Rise Hold Time tcsh 50 DIN Setup Time tds 40 DIN Hold Time tdh 0			ns
SCLK Clock Period tcP 200 SCLK Pulse-Width High tcH 80 SCLK Pulse-Width Low tcL 80 CS Fall to SCLK Rise Setup Time tcss 25 SCLK Rise to CS Rise Hold Time tcsh 50 DIN Setup Time tbs 40 DIN Hold Time tbh 0			ns
SCLK Pulse-Width High tCH 80 SCLK Pulse-Width Low tCL 80 CS Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to CS Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0			
SCLK Pulse-Width Low tCL 80 \$\overline{CS}\$ Fall to SCLK Rise Setup Time tCSS 25 SCLK Rise to \$\overline{CS}\$ Rise Hold Time tCSH 50 DIN Setup Time tDS 40 DIN Hold Time tDH 0			ns
CS Fall to SCLK Rise Setup Time tcss 25 SCLK Rise to CS Rise Hold Time tcsh 50 DIN Setup Time tbs 40 DIN Hold Time tbh 0			ns
SCLK Rise to \$\overline{CS}\$ Rise Hold Time t_{CSH} 50 DIN Setup Time t_{DS} 40 DIN Hold Time t_{DH} 0			ns
DIN Setup Time tDS 40 DIN Hold Time tDH 0			ns
DIN Hold Time t _{DH} 0			ns
SIT STATE OF THE S			ns
SCLK Fall to DOUT Transition t _{DO1} C _{LOAD} = 30pF			ns
		40	ns
CS Fall to DOUT Enable t _{CSE} C _{LOAD} = 30pF		40	ns
CS Rise to DOUT Disable tcsd CLOAD = 30pF		40	ns
SCLK Rise to $\overline{\text{CS}}$ Fall Delay t _{CS0} 50			ns
CS Rise to SCLK Rise Hold Time t _{CS1} 40			ns
CS Pulse-Width High tcsw 100			ns

Note 1: 100% production tested at T_A = +25°C. Limits over temperature are guaranteed by design.

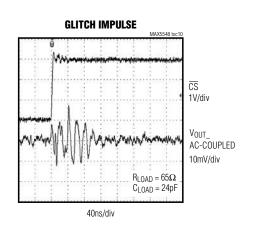
Note 2: INL linearity is guaranteed from code 15 to code 255.

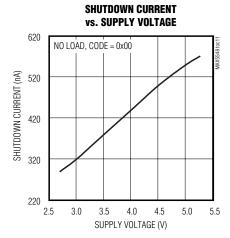

Note 3: Connect a resistor from FSADJ_ to GND to adjust the full-scale current. See the Reference Architecture and Operation section.

Note 4: Settling time is measured from (0.25 x full scale) to (0.75 x full scale).

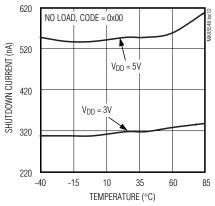
Note 5: The device draws higher supply current when the digital inputs are driven with voltages between (V_{DD} - 0.5V) and (GND + 0.5V). See the Supply Current vs. Digital Input Voltage graph in the *Typical Operating Characteristics*.

Typical Operating Characteristics

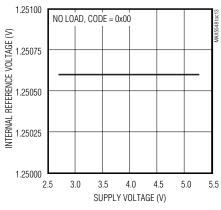

 $(V_{DD} = +3.0V, GND = 0, V_{REFIN} = +1.25V, internal reference, R_{FSADJ} = 20k\Omega, T_{A} = +25^{\circ}C.$ unless otherwise noted).

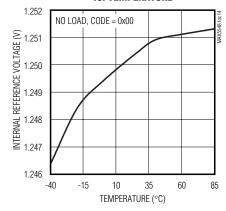


TEMPERATURE (°C)

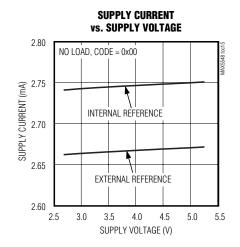

Typical Operating Characteristics (continued)

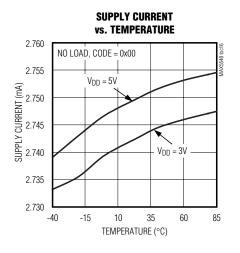
 $(V_{DD} = +3.0V, GND = 0, V_{REFIN} = +1.25V, internal reference, R_{FSADJ} = 20k\Omega, T_A = +25^{\circ}C.$ unless otherwise noted).

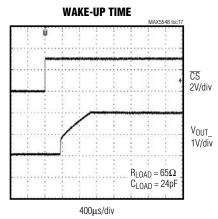


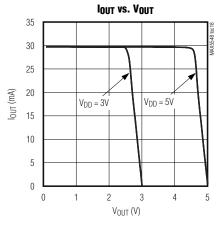

SHUTDOWN CURRENT vs. TEMPERATURE

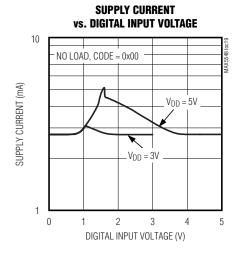
INTERNAL REFERENCE VOLTAGE vs. SUPPLY VOLTAGE

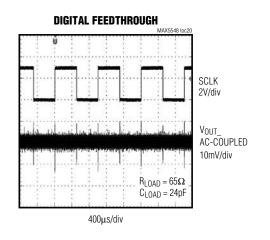



INTERNAL REFERENCE VOLTAGE vs. Temperature




Typical Operating Characteristics (continued)


 $(V_{DD} = +3.0V, GND = 0, V_{REFIN} = +1.25V, internal reference, R_{FSADJ} = 20k\Omega, T_{A} = +25^{\circ}C.$ unless otherwise noted).



Pin Description

PIN	NAME	FUNCTION
1	SCLK/SCL	Serial Clock Input. Connect SCL to V _{DD} through a 2.4kΩ resistor in I ² C mode.
2	DIN/SDA	Serial Data Input. Connect SDA to V_{DD} through a 2.4k Ω resistor in I ² C mode.
3	CS/A0	Chip-Select Input in SPI Mode/Address Select 0 in I2C Mode. $\overline{\text{CS}}$ is an active-low input. Connect A0 to VDD or GND to set the device address in I2C mode.
4	SPI/Ī2C	SPI/I2C Select Input. Connect SPI/I2C to V _{DD} to select SPI mode, or connect SPI/I2C to GND to select I2C mode.
5	DOUT/A1	Serial Data Output in SPI Mode/Address Select 1 in I ² C Mode. Use DOUT to daisy chain the MAX5548 to other devices or to read back in SPI mode. The digital data is clocked out on SCLK's falling edge. Connect A1 to V _{DD} or GND to set the device address in I ² C mode.
6, 13, 15	N.C.	No Connection. Leave unconnected or connect to GND.
7	REFIN	Reference Input. Drive REFIN with an external reference source between +0.5V and +1.5V. Leave REFIN unconnected in internal reference mode. Bypass REFIN with a 0.1µF capacitor to GND as close to the device as possible.
8, 16	GND	Ground
9	OUTB	DACB Output. OUTB provides up to 30mA of output current.
10	FSADJB	DACB Full-Scale Adjust Input. For maximum full-scale output current, connect a $20k\Omega$ resistor between FSADJB and GND. For minimum full-scale current, connect a $40k\Omega$ resistor between FSADJB and GND.
11	FSADJA	DACA Full-Scale Adjust Input. For maximum full-scale output current, connect a $20k\Omega$ resistor between FSADJA and GND. For minimum full-scale current, connect a $40k\Omega$ resistor between FSADJA and GND.
12	OUTA	DACA Output. OUTA provides up to 30mA of output current.
14	V_{DD}	Power-Supply Input. Connect V_{DD} to a +2.7 to +5.25V power supply. Bypass V_{DD} to GND with a 0.1 μ F capacitor as close to the device as possible.
_	EP	Exposed Pad. Connect to GND. Do not use as a substitute ground connection.

Detailed Description

Architecture

The MAX5548 8-bit, dual current-steering DAC (see the *Functional Diagram*) operates with DAC update rates up to 10Msps in SPI mode and 400ksps in I²C mode. The converter consists of a 16-bit shift register and input DAC registers, followed by a current-steering array. The current-steering array generates full-scale currents up to 30mA per DAC. An integrated +1.25V bandgap reference, control amplifier, and an external resistor determine each data converter's full-scale output range.

Reference Architecture and Operation

The MAX5548 provides an internal +1.25V bandgap reference or accepts an external reference voltage source between +0.5V and +1.5V. REFIN serves as the input for an external low-impedance reference source. Leave REFIN unconnected in internal reference mode. Internal or external reference mode is software selectable through the SPI/I²C serial interface.

The MAX5548's reference circuit (Figure 1) employs a control amplifier to regulate the full-scale current (IFS) for the current outputs of the DAC. This device has a software-selectable full-scale current range (see the command summary in Table 4). After selecting a current range, an external resistor (RFSADJ_) sets the full-scale current. See Table 1 for a matrix of IFS and RFSADJ selections.

During startup, when the power is first applied, the MAX5548 defaults to the external reference mode, and to the 1mA-2mA full-scale current-range mode.

DAC Data

The 8-bit DAC data is decoded as offset binary, MSB first, with 1 LSB = IFS / 256, and converted into the corresponding current as shown in Table 2.

Serial Interface

The MAX5548 features a pin-selectable SPI/I²C serial interface. Connect SPI/I²C to GND to select I²C mode, or connect SPI/I²C to V_{DD} to select SPI mode. SDA

8 ______ /N/XI/M

and SCL (I^2C mode) and DIN, SCLK, and \overline{CS} (SPI mode) facilitate communication between the MAX5548 and the master. The serial interface remains active in shutdown.

I^2C Compatibility (SPI/ $\overline{I2C}$ = GND)

The MAX5548 is compatible with existing I²C systems (Figure 2). SCL and SDA are high-impedance inputs; SDA has an open-drain output that pulls the data line low during the ninth clock pulse. SDA and SCL require pullup resistors (2.4k Ω or greater) to VDD. Optional resistors (24 Ω) in series with SDA and SCL protect the device inputs from high-voltage spikes on the bus lines. Series resistors also minimize crosstalk and undershoot of the bus signals. The communication protocol supports standard I²C 8-bit communications. The device's address is compatible with 7-bit I²C addressing protocol only. Ten-bit address formats are not supported. Only write commands are accepted by the MAX5548.

Note: I²C readback is not supported.

Bit Transfer

One data bit transfers during each SCL rising edge. The MAX5548 requires nine clock cycles to transfer data into or out of the DAC register. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high are read as control signals (see the *START and STOP Conditions* section). Both SDA and SCL idle high.

START and STOP Conditions

The master initiates a transmission with a START condition (S), (a high-to-low transition on SDA with SCL high). The master terminates a transmission with a STOP condition (P), (a low-to-high transition on SDA while SCL is high) (Figure 3). A START condition from the master signals the beginning of a transmission to the MAX5548. The master terminates transmission by issuing a STOP condition. The STOP condition frees the bus.

If a repeated START condition (S_r) is generated instead of a STOP condition, the bus remains active.

Table 1. Full-Scale Output Current and RFSADJ_ Selection Based on a +1.25V (typ) Reference Voltage

	FUL	L-SCALE OUTP	UT CURRENT (r	nA)*		RFSAD)J (k Ω)
1mA-2mA	1.5mA-3mA	2.5mA-5mA	4.5mA-9mA	8mA-16mA	15mA-30mA	Calculated	1% EIA Std.
1.00	1.500	2.500	4.500	8.00	15.00	40	40.2
1.25	1.875	3.125	5.625	10.00	18.75	35	34.8
1.50	2.250	3.750	6.750	12.00	22.50	30	30.1
1.75	2.625	4.375	7.875	14.00	26.25	25	24.9
2.00	3.000	5.000	9.000	16.00	30.00	20	20.0

^{*}See the command summary in Table 4.

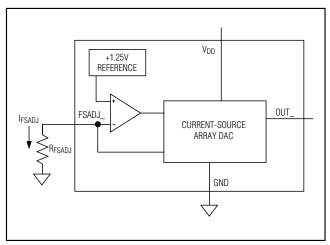


Figure 1. Reference Architecture and Output Current Adjustment

Table 2. DAC Output Code Table

DAC CODE	I _{OUT} _
1111 1111	255 × ^I FS
1000 0000	128× IFS - IOS
0000 0001*	<u> FS</u> - I _{OS}
0000 0000	0

^{*}Negative output current values = 0.

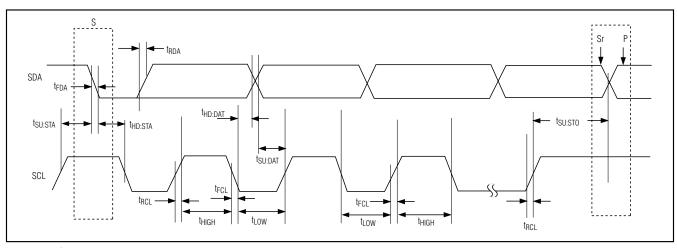


Figure 2. I²C Serial-Interface Timing Diagram

Early STOP Conditions

The MAX5548 recognizes a STOP condition at any point during transmission except if a STOP condition occurs in the same high pulse as a START condition (Figure 4). This condition is not allowed in the I²C format.

Repeated START Conditions

A repeated START (S_r) condition is used when the bus master is writing to several I²C devices and does not want to relinquish control of the bus. The MAX5548's serial interface supports continuous write operations with an S_r condition separating them.

Acknowledge Bit (ACK)

Successful data transfers are acknowledged with an acknowledge bit (ACK). Both the master and the MAX5548 (slave) generate acknowledge bits. To generate an acknowledge, the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock pulse (Figure 5).

Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer happens if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the master should reattempt communication at a later time.

Slave Address

A master initiates communication with a slave device by issuing a START condition followed by a slave address (see Table 3). The slave address consists of 7

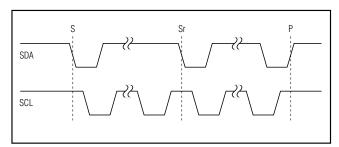


Figure 3. START and STOP Conditions

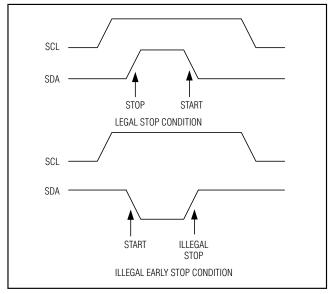


Figure 4. Early STOP Conditions

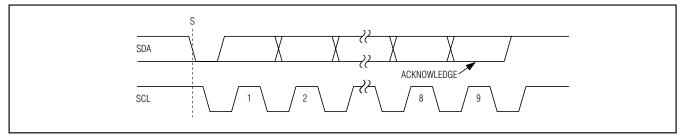


Figure 5. Acknowledge Condition

Table 3. Write Operation

	S T A R T				ORE	SS E		R/\	// **			cc)MM	AND/	DAT	A BY	TE					D	ΑΤ	AΒ	/TE*				S T O P
Master SDA	S	0	1	1	0	0	A 1	A0	0		C5	C4	СЗ	C2	C1	CO	D7	D6		D5	D4	D3	D2	D1	D0	S1**	S0**		Р
Slave SDA										A C K									ACK									А С К	

^{*}S1 and S0 are subbits. Set S1 and S0 to zero for proper 8-bit operation.

address bits and a read/write bit ($R\overline{W}$). When idle, the device continuously waits for a START condition followed by its slave address. When the device recognizes its slave address, it acquires the data and executes the command. The first 5 bits (MSBs) of the slave address have been factory programmed and are always 01100. Connect A1 and A0 to V_{DD} or GND to program the remaining 2 bits of the slave address. Set the least significant bit (LSB) of the address byte ($R\overline{W}$) to zero to write to the MAX5548. After receiving the address, the MAX5548 (slave) issues an acknowledge by pulling SDA low for one clock cycle. I²C read commands (R/\overline{W} = 1) are not acknowledged by the MAX5548.

Write Cycle

The write command requires 27 clock cycles. In write mode ($R/\overline{W}=0$), the command/data byte that follows the address byte controls the MAX5548 (Table 3). The registers update on the rising edge of the 26th SCL pulse. Prematurely aborting the write cycle does not update the DAC. See Table 4 for a command summary.

SPI Compatibility (SPI/ $\overline{I2C} = V_{DD}$)

The MAX5548 is compatible with the 3-wire SPI serial interface (Figure 6). This interface mode requires three

inputs: chip-select (\overline{CS}) , data clock (SCLK), and data in (DIN). Drive \overline{CS} low to enable the serial interface and clock data synchronously into the shift register on each SCLK rising edge.

The MAX5548 requires 16 clock cycles to clock in 6 command bits (C5–C0) and 8 data bits (D7–D0) and S1 = S0 = 0 (Figure 7). After loading data into the shift register, drive $\overline{\text{CS}}$ high to latch the data into the appropriate DAC register and disable the serial interface. Keep $\overline{\text{CS}}$ low during the entire serial data stream to avoid corruption of the data. See Table 4 for a command summary.

Shutdown Mode

The MAX5548 has a software shutdown mode that reduces the supply current to less than $1\mu A$. Shutdown mode disables the DAC outputs. The serial interface remains active in shutdown. This provides the flexibility to update the registers while in shutdown. Recycling the power supply resets the device to the default settings.

^{**}Read operation not supported.

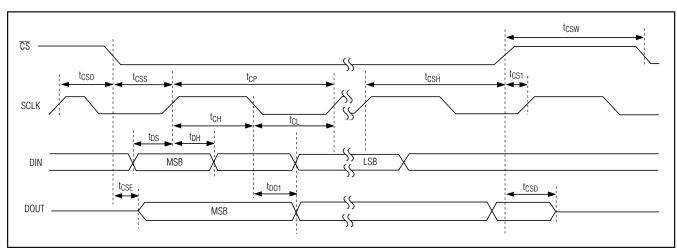


Figure 6. SPI-Interface Timing Diagram

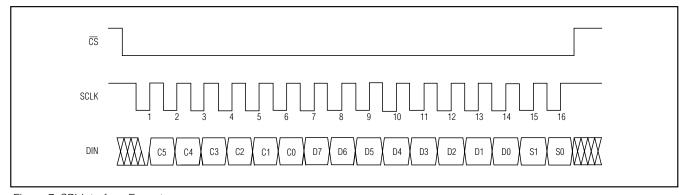


Figure 7. SPI-Interface Format

Applications Information

Daisy Chaining (SPI/ $\overline{I2C} = V_{DD}$)

In standard SPI-/QSPITM-/MICROWIRETM-compatible systems, a microcontroller (μ C) communicates with its slave devices through a 3- or 4-wire serial interface. The typical interface includes a chip-select signal (\overline{CS}), a serial clock (SCLK), a data input signal (DIN), and sometimes a data signal output (DOUT). In this system, the μ C allots an independent slave-select signal (\overline{SS} _) to each slave device so that they can be addressed individually. Only the slaves with their \overline{CS} inputs asserted low acknowledge and respond to the activity on the serial clock and data lines. This is simple to implement when there are very few slave devices in the system.

An alternative method is daisy chaining. Daisy chaining, in serial-interface applications, is the method of propagating commands through devices connected in series (see Figure 8).

Daisy chain devices by connecting the DOUT of one device to the DIN of the next. Connect the SCLK of all devices to a common clock and connect the $\overline{\text{CS}}$ of all devices to a common slave-select line. Data shifts out of DOUT 16.5 clock cycles after it is shifted into DIN on the falling edge of SCLK. In this configuration, the μC only needs three signals ($\overline{\text{SS}}$, SCK, and MOSI) to control all of the slaves in the network. The SPI-/QSPI-/MICROWIRE-compatible serial interface normally works at up to 10MHz, but must be slowed to 5MHz if daisy chaining. DOUT is high impedance when $\overline{\text{CS}}$ is high.

QSPI is a trademark of Motorola, Inc.

MICROWIRE is a trademark of National Semiconductor Corp.

Table 4. Command Summary

			SEF	RIAL [DATA	INPUT	
C 5	C4	СЗ	C2	C1	CO	D7-D0, S1 AND S0	FUNCTIONS
0	0	0	0	0	0	XXXXXXXXX	No operation.
0	0	0	0	0	1	8-bit DAC data	Load DAC data to both DAC registers and both input registers from the shift register.
0	0	0	0	1	0	8-bit DAC data	Load DAC register A and input register A from the shift register.
0	0	0	0	1	1	8-bit DAC data	Load DAC register B and input register B from the shift register.
0	0	0	1	0	0	8-bit DAC data	Load both channel input registers from the shift register; both DAC registers are unchanged.
0	0	0	1	0	1	8-bit DAC data	Load input register A from the shift register; DAC register A is unchanged.
0	0	0	1	1	0	8-bit DAC data	Load input register B from the shift register; DAC register B is unchanged.
0	0	0	1	1	1	XXXXXXXXX	Update both DAC registers from their corresponding input registers.
0	0	1	0	0	1	XXXXXXXXX	Update DAC register A from input register A.
0	0	1	0	1	0	XXXXXXXXX	Update DAC register B from input register B.
0	0	1	0	1	1	XXXXXXXXX	Internal reference mode.
0	0	1	1	0	0	XXXXXXXXX	External reference mode (default mode at power-up).
0	0	1	1	0	1	XXXXXXXXX	Shut down both DACs.
0	0	1	1	1	0	XXXXXXXXX	Shut down DACA.
0	0	1	1	1	1	XXXXXXXXX	Shut down DACB.
0	1	0	0	0	0	XXXXXXXXX	DACA 1mA-2mA full-scale current range mode (default mode at power-up)
0	1	0	0	0	1	XXXXXXXXX	DACA 1.5mA–3mA full-scale current range mode.
0	1	0	0	1	0	XXXXXXXXX	DACA 2.5mA-5mA full-scale current range mode.
0	1	0	0	1	1	XXXXXXXXX	DACA 4.5mA-9mA full-scale current range mode.
0	1	0	1	0	0	XXXXXXXXX	DACA 8mA-16mA full-scale current range mode.
0	1	0	1	0	1	XXXXXXXXX	DACA 15mA-30mA full-scale current range mode.
1	0	1	1	0	1	XXXXXXXXX	Power up both channels of the DACs.
1	0	1	1	1	0	XXXXXXXXX	Power up DACA.
1	0	1	1	1	1	XXXXXXXXX	Power up DACB.
1	1	0	0	0	0	XXXXXXXXX	DACB 1mA-2mA full-scale current range mode (default mode at power-up)
1	1	0	0	0	1	XXXXXXXXX	DACB 1.5mA–3mA full-scale current range mode.
1	1	0	0	1	0	XXXXXXXXX	DACB 2.5mA–5mA full-scale current range mode.
1	1	0	0	1	1	XXXXXXXXX	DACB 4.5mA-9mA full-scale current range mode.
1	1	0	1	0	0	XXXXXXXXX	DACB 8mA-16mA full-scale current range mode.
1	1	0	1	0	1	XXXXXXXXX	DACB 15mA-30mA full-scale current range mode.

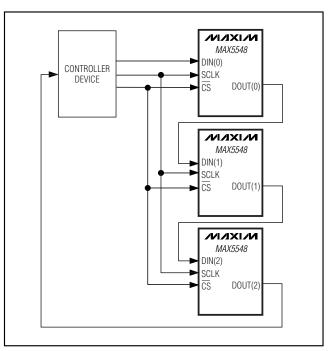
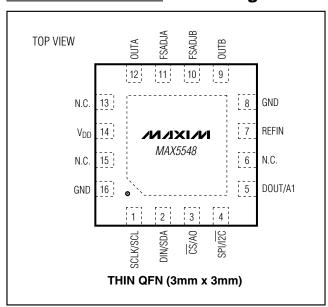


Figure 8. Daisy-Chain Configuration

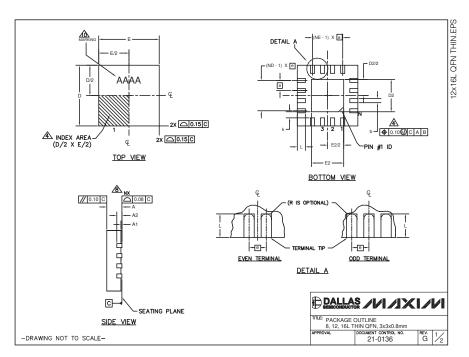

Power Sequencing

Ensure that the voltage applied to REFIN does not exceed V_{DD} at any time. If proper power sequencing is not possible, connect an external Schottky diode between REFIN and V_{DD} to ensure compliance with the absolute maximum ratings.

Power-Supply Bypassing and Ground Management

Digital or AC transient signals on GND create noise at the analog output. Return GND to the highest-quality ground plane available. For extremely noisy environments, bypass REFIN and VDD to GND with 1 μ F and 0.1 μ F capacitors with the 0.1 μ F capacitor as close to the device as possible. Careful PC board ground layout minimizes crosstalk between the DAC outputs and digital inputs.

Pin Configuration


Chip Information

PROCESS: BICMOS

_ /U/IXI/U

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

REF. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. A 0.70 0.75 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8		8L 3x3	12L 3x3	16L 3x3			EXF	POSE	D PAI	VAR	IATIC	NS		
D 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.20 0.25 0.30 0.30 0.20 0.25 0.30 0.30 0.30 0.20 0.25 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3					PKG.		D2			E2		DIN ID	IEDEC	
D 290 300 310 310 320 310 320 310 320 310 320 310 320 310 320 310 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 320 320 310 310 310 320 320 310 310 320 320 310					CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	1 114 115	JEDEO	
1233-1 1235-1 125 135 1.10 1.25 1.25 1.25 1.35 1.35 1.45 1.25					14000	0.20	0.70		0.20	0.70	_	0.35 x 45°		NO
1						0.00		-	0.00			0.00		
1							_	_		_	_		_	
NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. NIS THE TOTAL NUMBER OF TERMINALS. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95: 15P-012. DETAILS OF TERMINALS IN DENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. TERMINAL #1 IDENTIFIER AND LESS D95: 15P-012. DETAILS OF TERMINAL #1 IDENTIFIER AND LESS TERMINALS. 4. DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. NIS THE TOTAL NUMBER OF TERMINALS. IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINALS IN DENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER AND SERVING AT THE PROM TERMINAL TIP. AND AND NE REFER TO THE NUMBER OF TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP. AND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. AND AND NE REFER TO THE NUMBER OF TERMINALS. 5. DRAWING CONFORMS TO JUDICE OF REVISION. C.	_				T1233-4		1.10	_	0.95	1.10	_	0.35 x 45°	WEED-1	1.00
ND	N	8	12	16	T1633-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONIS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. NI STHE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESS 95-1 SPOIZ. DETAILS OF TERMINAL #1 IDENTIFIER AND TERMINAL HUMBER OF TOTAL HUMBER OF TERMINAL #1 IDENTIFIER AND TERMINAL HUMBER OF TERMINAL HUMBER OF TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP. DIMENSION TO APPLIES TO METALLIZED TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. © COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MOZED REVISION C.	ND		3		T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	YES
A2	NE	2	3	4	T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45°	WEED-2	N/A
NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. 3. NIS THE TOTAL NUMBER OF TERMINALS. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESO 951 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION DA APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP. NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH DAND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. S. DOPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWNING CONFORMS TO JEDEC MOZEO REVISION C.	A1	0 0.02 0.05	0 0.02 0.05	0 0.02 0.05	T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45°	WEED-2	N/A
NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. NIS THE TOTAL NUMBER OF TERMINALS. ▲ THE TERMINAL # IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESO 95 1-SP0-012. DETAILS OF TERMINAL # IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL # IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL # IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. ▶ DIMENSION DA APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP. ▶ ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. ▶ COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. ▶ DRAWING CONFORMS TO JEDEC MO220 REVISION C.	A2	0.20 REF	0.20 REF	0.20 REF	T1633-4	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2	NO
	4	1. DIMENSIONING 2. ALL DIMENSIO 3. N IS THE TOTA 4. THE TERMINAL JESD 95-1 SPF WITHIN THE ZI MARKED FEAT 5. DIMENSION B FROM TERMIN	NS ARE IN MILLIMI L NUMBER OF TEI . #1 IDENTIFIER AI -012. DETAILS OF DNE INDICATED. T URE. APPLIES TO META AL TIP. FER TO THE NUM	ETERS. ANGLES ARE IN D MINIALS. NO TERMINAL NUMBERIN TERMINAL #1 IDENTIFIER HE TERMINAL #1 IDENTIFIER HE TERMINAL #1 IDENTIFIER LLIZED TERMINAL AND IS BER OF TERMINALS ON E	EGREES. G CONVENTION A ARE OPTIONA IER MAY BE EI MEASURED BE ACH D AND E S	L, BUT THER A	MUST I MOLD	BE LOC OR nm AND	ATED	m				

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.