DELKIN DEVICES

Utility +

SATA III Industrial 2.5" Solid State Drive

Engineering Specification

Document Number: 401-0454-00

Revision: E

Product Overview

- Capacity
 - 32GB up to 4TB
- SATA Interface
 - SATA Revision 3.2
 - SATA 1.5Gbps, 3Gbps, and 6Gbps interface
- Flash Interface
 - Flash type: 3D TLC
- Performance
 - Read: up to 550 MB/s
 - Write: up to 520 MB/s
- Power Consumption^{Note1}
 - Write: < 4,000mW
 - Read: < 3,200mW
 - Idle: < 1600mW
- TBW (Terabytes Written) Note2
 - 6114 TBW for 4TB (3840 GB)

- MTBF
 - More than 2,000,000 hours
- Features
 - Static and Dynamic Wear Leveling
 - Bad Block Management
 - TRIM
 - NCQ
 - SMART
 - Over-Provisioning
 - Firmware Update Capability
- Low Power Management
 - DIPM/HIPM Mode
- Temperature Range
 - Operation: -40°C ~ 85°C
 - Storage: -40°C ~ 85°C
- RoHS compliant
- Support AES/TCG OPAL Note3
 - 2TB and 4TB only

Notes:

- 1. Please see "4.2 Power Consumption" for details.
- 2. Please see "TBW (Terabytes Written)" in Chapter 2" for details.
- 3. Supported by a separate firmware version.

TABLE OF CONTENTS

ΕN	GINEERING	SPECIFICATION	1
1.	INTROD	UCTION	5
	1.1. G	eneral Description	5
	1.2. Pr	roduct Block Diagram	5
	1.3. FI	ash Management	5
	1.3.1.	Error Correction Code (ECC)	
	1.3.2.	Wear Leveling	5
	1.3.3.	Bad Block Management	6
	1.3.4.	TRIM	6
	1.3.5.	SMART	6
	1.3.6.	Over-Provisioning	6
	1.3.7.	Firmware Upgrades	7
	1.4. Lo	ow Power Management	7
	1.4.1.	DIPM/HIPM Mode	7
	1.5. Ad	dvanced Device Security Features	7
	1.5.1.	Secure Erase	7
	1.5.2.	Write Protect	7
	1.6. SS	SD Lifetime Management	8
	1.6.1.	Terabytes Written (TBW)	8
	1.6.2.	Thermal Monitor	8
	1.7. Ar	n Adaptive Approach to Performance Tuning	8
	1.7.1.	Throughput	8
	1.7.2.	Predict & Fetch	9
2.	PRODUC	CT SPECIFICATIONS	10
3.	ENVIRO	NMENTAL SPECIFICATIONS	12
	3.1. Er	nvironmental Conditions	12
	3.1.1.	Temperature and Humidity	12
	3.1.2.	Shock & Vibration	12
	3.1.3.	Electrostatic Discharge (ESD)	13
	3.1.4.	EMI Compliance	13
	3.2. M	TBF	13
	3.3. Ce	ertification & Compliance	13

4.	ELE	CTRICAL SPECIFICATIONS	13
	4.1.	Supply Voltage	13
	4.2.	Power Consumption	14
5.	INT	ERFACE	15
	5.1.	Pin Assignment and Descriptions	15
6.	SUF	PPORTED COMMANDS	16
	6.1.	ATA Command List	16
	6.2.	Identify Device Data	18
7.	PH	SICAL DIMENSIONS	22
		LIST OF TABLES	
	T:	able 4-1 Supply Voltage	13
		able 4-2 Power Consumption	
		able 5-1 Signal Segment Pin Assignment and Descriptions	
	Ta	able 6-1 ATA Command List	16
	Ta	able 6-2 List of Device Identification	18
	Ta	able 6-3 List of Device Identification for Each Capacity	21

1. INTRODUCTION

1.1. General Description

Delkin's Utility+ Industrial 3D TLC 2.5" Solid State Drive (SSD) delivers all the advantages of flash disk technology with the performance of the Serial ATA III interface and is fully compliant with the standard 2.5" form factor. Delkin's SSD draws significantly less power compared to traditional hard drives and is also hot swappable. The drive is available in capacities from 32GB to 4TB and can reach speeds up to 550MB/s read as well as 520MB/s write (measured by CrystalDiskMark v3.0).

1.2. Product Block Diagram

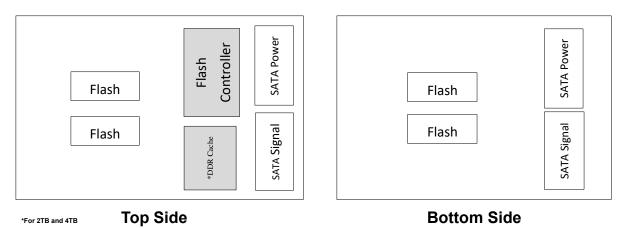


Figure 1-1 SSD Product Block Diagram

1.3. Flash Management

1.3.1. Error Correction Code (ECC)

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, Delkin's 2.5" SSD applies the Low Density Parity Check (LDPC) ECC algorithm, which can detect and correct errors occur during read process, ensure data been read correctly, as well as protect data from corruption.

1.3.2. Wear Leveling

NAND flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some areas are updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling is applied to extend the lifespan of NAND flash by evenly distributing write and erase cycles across the media.

Delkin utilizes advanced Wear Leveling algorithms, which can efficiently distribute flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND flash is greatly improved.

1.3.3. Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during usage of the flash are named "Later Bad Blocks". Delkin implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves data reliability.

1.3.4. TRIM

TRIM is a feature which helps improve the read/write performance and speed of solid-state drives (SSD). Unlike hard disk drives (HDD), SSDs are not able to overwrite existing data, so the available space gradually becomes smaller with each use. With the TRIM command, the operating system can inform the SSD which blocks of data are no longer in use and can be removed permanently. Thus, the SSD will perform an erase action, which prevents unused data from occupying blocks.

1.3.5. SMART

SMART, an acronym for Self-Monitoring, Analysis and Reporting Technology, is an open standard that allows a drive to automatically detect its health and report potential failures. When a failure is recorded by SMART, users can choose to replace the drive to prevent unexpected outage or data loss. Moreover, SMART can inform users of impending failures while there is still time to perform proactive actions, such as copy data to another device.

1.3.6. Over-Provisioning

Over Provisioning refers to the inclusion of extra NAND capacity in a SSD, which is not visible or usable by users. With Over Provisioning, the performance and IOPS (Input/Output Operations per Second) are improved by providing the controller additional space to manage P/E cycles, which enhances the reliability and endurance as well. Moreover, the write amplification of the SSD becomes lower when the controller writes data to the flash.

1.3.7. Firmware Upgrades

Firmware can be considered as a set of instructions on how the device communicates with the host. Firmware can be upgraded when new features are added, compatibility issues are fixed, or read/write performance gets improved, as controlled by the user.

1.4. Thermal Throttling

The purpose of thermal throttling is to prevent any components in a SSD from over heating during read and write operations. The 2TB and 4TB SSD's are designed with an on die thermal sensor, the firmware can apply different levels of throttling to achieve the purpose of protection efficiently and proactively via S M A R T reading.

1.5. Low Power Management

1.5.1. DIPM/HIPM Mode

SATA interfaces contain two low power management states for power saving: Partial and Slumber modes. In Partial mode, the device must resume full operation within 10 microseconds, whereas in Slumber mode, the device has 10 milliseconds to become fully operational. SATA interfaces allow low power modes to be initiated by Host (HIPM, Host Initiated Power Management) or Device (DIPM, Device Initiated Power Management). As for HIPM, Partial or Slumber mode can be invoked directly by the software. For DIPM, the device will send requests to enter Partial or Slumber mode.

1.6. Advanced Device Security Features

1.6.1. Secure Erase

Secure Erase is a standard ATA command and will write "0xFF" to all cells, to fully wipe all the data on hard drives and SSDs. When this command is issued, the SSD controller will erase its storage blocks and return to its factory default settings.

1.6.2. Write Protect

When a SSD contains too many bad blocks and data is continuously written in, then the SSD may no longer be usable. Thus, Write Protect is a mechanism to prevent data from being written in and protect the accuracy of data that are already stored in the SSD.

1.7. SSD Lifetime Management

1.7.1. Terabytes Written (TBW)

TBW (Terabytes Written) is a measurement of SSDs' expected lifespan, which represents the amount of data written to the device. To calculate the TBW of a SSD, the following equation is applied:

TBW = [(NAND Endurance) x (SSD Capacity) x (WLE)] / WAF

NAND Endurance: NAND endurance refers to the P/E (Program/Erase) cycle rating of NAND flash, per the manufacturer's specification.

SSD Capacity: The SSD capacity is the specific capacity in total of a SSD.

<u>WLE</u>: Wear Leveling Efficiency (WLE) represents the ratio of the average amount of erases on all the blocks to the erases on any block at maximum.

<u>WAF</u>: Write Amplification Factor (WAF) is a numerical value representing the ratio between the amount of data that a SSD controller writes to the flash and the amount of data that the host's flash controller writes. A better WAF, which is near 1, guarantees better endurance and lower frequency of data written to flash memory.

1.7.2. Thermal Monitor

Thermal monitors are devices for measuring temperature, and can be found in SSDs in order to issue warnings when SSDs go beyond a certain temperature. The higher temperature the thermal monitor detects, the more power the SSD consumes, causing the SSD to age quickly. Hence, the processing speed of a SSD should be under control to prevent temperature from exceeding a certain range. Temperature can be monitored via SMART, as referenced in Section 6.3.

1.8. An Adaptive Approach to Performance Tuning

1.8.1. Throughput

Based on the available space of the disk, Delkin SSD controller will regulate the read/write speed and manage the throughput performance. When significant free space remains, the firmware will continuously perform read/write activity. At this stage, there is still no need to implement garbage collection to allocate and release memory, which will accelerate read/write processing to improve the performance. However, when free space is used up, the controller will slow down the read/write processing, and implement garbage collection to release memory blocks. Hence, read/write performance will become slower.

1.8.2. Predict & Fetch

Normally, when the host tries to read data from the SSD, the SSD will only perform one read action after receiving one command. However, Delkin's controller applies *Predict & Fetch* to improve the read speed. When the host issues sequential read commands to the SSD, the SSD will automatically expect that the following will also be read commands. Thus, before receiving the next command, flash has already prepared the data. Accordingly, this accelerates the data processing time, and the host does not need to wait as long to receive data.

2. PRODUCT SPECIFICATIONS

Capacity

■ From 64GB up to 4TB

Electrical/Physical Interface

- SATA Interface
 - ♦ Compliant with SATA Revision 3.2
 - ♦ Compatible with SATA 1.5Gbps, 3Gbps and 6Gbps interface
 - Supports power management
 - ♦ Supports expanded register for SATA protocol 48 bit addressing mode

ECC Scheme

■ SATA SSD applies the LDPC (Low Density Parity Check) of ECC algorithm

• Supports SMART and TRIM commands

Performance and Power Consumption

	Perfo	rmance	Power Consumption			
Capacity	Crystall	DiskMark	Read	Write		
	Read (MB/s)	Write (MB/s)	(mW)	(mW)		
32GB	300	125	1000	1000		
64GB	550	255	1230	1020		
128GB	550	450	1350	1350		
256GB	550	490	1450	1450		
512GB	550	490	1670	1670		
1TB	550	500	1680	1680		
2TB	EEO	E20	2000	2200		
(1920GB)	550	520	3000	3200		
4TB	550	520	3200	4000		
(3840GB)	550	520	3200	4000		

NOTE: For more details on Power Consumption, please refer to Chapter 4.2. © 2020 | Delkin Devices Inc.

• Endurance - TBW (Terabytes Written)

Capacity	TBW
32GB	17
64GB	42
128GB	75
256GB	180
512TB	425
1TB	835
2TB (1920GB)	3118
4TB (3840GB)	6114

NOTES:

1. Many factors affect drive endurance / TBW, including flash configuration, SDR configuration, host platform, usage model, write amplification factor, etc. The figures above are estimates and are not guarantees. The test followed JEDEC219A client endurance workload.

Power on Ready Time

Specification	Power on Ready	
32GB	Тур.	0.5s
64GB	Тур.	0.5s
128GB	Тур.	0.5s
256GB	Тур.	0.5s
512TB	Тур.	0.5s
1TB	Тур.	0.5s
2TB (1920GB)	Тур.	TBD
4TB (3840GB)	Тур.	TBD

Notes:

- 1. Maximum within 10 seconds
- 2. Power on ready time assumes normal power on/off.
- 3. The value was measured base on normal power on-off condition and would be different based on different sample status.

Part Numbers

Industrial 3D TLC 2.5" SSD (-40 to 85°C Operating Temperature)

Capacity	Standard Part Number	Part Number with OPAL
32GB	DE32FQQFC-35000-2	NA
64GB	DE64FQQFC-35000-2	NA
128GB	DE1HFQQFC-35000-2	NA
256GB	DE2HFQXFC-35000-2	NA
512GB	DE5HFQXFC-35000-2	NA
1TB	DE1TFRAFC-35000-2	NA
2TB (1920GB)	DE2TFQXGJ-35000-2	TBD
4TB (3840GB)	DE4TFRAGJ-35000-2	TBD

3. ENVIRONMENTAL SPECIFICATIONS

3.1. Environmental Conditions

3.1.1. Temperature and Humidity

- Temperature:
 - ◆ Storage: -40°C to 85°C
 - ◆ Operational: -40°C to 85°C
- Humidity:
 - ◆ RH 95% under 55°C (operational)

3.1.2. Shock & Vibration

- Shock Specification
 - ◆ 1500G, 0.5ms duration
- Vibration Specification
 - ◆ 20Hz ~80Hz/1.52mm displacement, 80Hz~2000Hz / 20G Acceleration, 3 axes

3.1.3. Electrostatic Discharge (ESD)

+/- 4KV

3.1.4. EMI Compliance

• FCC: CISPR22 (For 2TB and 4TB CESPR32)

• CE: EN55022 (For 2TB and 4TB EN55032)

BSMI 13438

3.2. MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The measure is typically in units of hours. The higher the MTBF value, the higher the reliability of the device. The predicted result of Delkin's 2.5" SSD is more than 2,000,000 hours. For 2TB and 4TB the MTBF is 1.5 million hours.

3.3. Certification & Compliance

- RoHS
- SATA III (SATA Rev. 3.2)
- Up to ATA/ATAPI-8 (Including S.M.A.R.T)
- WARNING: This product may contain chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm. For more information go to www.p65warnings.ca.gov.

4. ELECTRICAL SPECIFICATIONS

4.1. Supply Voltage

Table 4-1 Supply Voltage

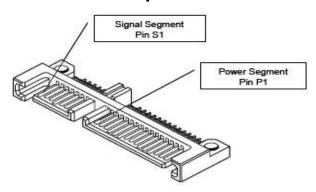
Parameter	Rating
Operating Voltage	5V ± 5% (Option)
Rise Time (Max/min)	100ms / 0.1ms
Fall Time (Max/min)	5s / 1ms

4.2. Power Consumption

Table 4-2 Power Consumption

			•		
Capacity	Read	Write	Partial	Slumber	ldle
32GB	1100	1000	22.5	15.5	325
64GB	1230	1020	20	14	320
128GB	1300	1350	20	14	320
256GB	1350	1450	20	14	325
512GB	1470	1670	20	15	320
1TB	1575	1680	20	15	320
2TB (1920GB)	3000	3200	*NA	*NA	1600
4TB (3840GB)	3200	4000	*NA	*NA	1600

Unit: mW


NOTES:

- 1. The average value of power consumption is achieved based on 100% conversion efficiency.
- 2. The measured power voltage is 5V.
- 3. Sequential R/W is measured while testing 4000MB sequential R/W 5 times by CrystalDiskMark. DEVSLP is measured while entering device sleep mode for 5 minutes.
- 4. Power Consumption may differ according to flash configuration, SDR configuration, and host platform.

^{*}Does not support low power mode

5. INTERFACE

5.1. Pin Assignment and Descriptions

Table 5-1 Signal Segment Pin Assignment and Descriptions

PIN NUMBER	FUNCTION				
S1	GND				
S2	A+ (DIFFERENTIAL SIGNAL PAIR A)				
S3	A- (DIFFERENTIAL SIGNAL PAIR A)				
S4	GND				
S5	B- (DIFFERENTIAL SIGNAL PAIR B)				
S6	B+ (DIFFERENTIAL SIGNAL PAIR B)				
S7	GND				

Table 5-2 Power Segment Pin Assignment and Descriptions

PIN NUMBER	FUNCTION
P1	NOT USED (3.3V)
P2	NOT USED (3.3V)
P3	DEVSLP
P4	GND
P5	GND
P6	GND
P7	5V PRE-CHARGE
P8	5V
P9	5V
P10	GND
P11	RESERVED
P12	GND
P13	NOT USED (12V PRE-CHARGE)
P14	NOT USED (12V)
P15	NOT USED (12V)

6. SUPPORTED COMMANDS

6.1. ATA Command List

Table 6-1 ATA Command List

Table 0-1 ATA Communic List						
Op Code	Description	Op C		е	Description	
00h	NOP	C9			Read DMA without Retry	
06h	Data Set Management	CAh			Write DMA	
10h-1Fh	Recalibrate	CBh			Write DMA without Retry	
20h	Read Sectors		CEh		Write Multiple FUA EXT	
21h	Read Sectors without Retry		E0h		Standby Immediate	
24h	Read Sectors EXT		E1h		Idle Immediate	
25h	Read DMA EXT		E2h		Standby	
27h	Read Native Max Address EXT		E3h		Idle	
29h	Read Multiple EXT		E4h		Read Buffer	
2Fh	Read Log EXT		E5h		Check Power Mode	
30h	Write Sectors		E6h		Sleep	
31h	Write Sectors without Retry		E7h		Flush Cache	
34h	Write Sectors EXT		E8h		Write Buffer	
35h	Write DMA EXT		E9h		READ BUFFER DMA	
37h	Set Native Max Address EXT		EAh		Flush Cache EXT	
38h	CFA WRITE SECTORS WITHOUT ERASE		EBh		Write Buffer DMA	
39h	Write Multiple EXT		ECh		Identity Device	
3Dh	Write DMA FUA EXT		EFh		Set Features	
3Fh	Write Long EXT	EFh	0:	2h	Enable volatile write cache	
40h	Read Verify Sectors	EFh	0:	3h	Set Transfer mode	
41h	Read Verify Sectors without Retry	EFh	0:	5h	Enable the APM feature set	
42h	Read Verify Sectors EXT	EFh	1)h	Enable use of SATA features set	
44h	Zero EXT	EFh	10h	02h	Enable DMA Setup FIS Auto- Activate optimization	
45h	WRITE UNCORRECTABLE EXT	EFh	10h	03h	Enable Device-initiated interface power state (DIPM) transitions	
47h	Red Log DMA EXT	EFh	10h	06h	Enable Software Settings Preservation (SSP)	
57h	Write Log DMA EXT	EFh	10h	07h	Enable Device Automatic Partial to Slumber transitions	
60h	Read FPDMA Queued	EFh	10h	09h	Enable Device Sleep	
		_				

61h		Write FPDMA Queued	EFh	5	5h	Disable read look-ahead		
				CCL		Disable reverting to power-on		
701	n-7Fh	Seek	EFh	EFh 66h		defaults		
90h		Execute Device Diagnostic	EFh	Fh 82h		Disable volatile write cache		
9	91h	Initialize Device Parameters	EFh	8	5h	Disable the APM feature set		
	92h	Daysland Microsodo	ГГЬ	0/)h	Disable use of SATA feature		
	9211	Download Microcode	EFh	90	JN	set		
	93h	DOWNLOAD MICROCODE DMA	EFh	90h	02h	Disable DMA Setup FIS Auto-		
	7311	DOWNLOAD MICROCODE DIMA	EFII	9011	0211	Activate optimization		
						Disable Device-initiated		
E	30h	SMART	EFh	90h	03h	interface power state (DIPM)		
						transitions		
B0h	D0h	SMART READ DATA	EFh	90h	06h	Disable Software Settings		
Don	Don	OWNER READ BATA		3011	0011	Preservation (SSP)		
B0h	D1h	SMART READ ATTRIBUTE	EFh	90h	07h	Disable Device Automatic		
Don	DIII	THRESHOLDS		3011	1 0/11	Partial to Slumber transitions		
B0h	D2h	Dah	D2h	SMART ENABLE/DISABILE	EFh	90h	09h	Disable Device Sleep
Don		ATTRIBUTE AUTOSAVE		00	0311	Bisable Bevice Gleep		
B0h	D3h	SMART SAVE ATTRIBUTE VALUES	EFh	A	Αh	Enable read look-ahead		
B0h	D4h	SMART EXECUTE OFF-LINE	EEh	EFh CCh		Enable reverting to power-on		
	D4II	IMMEDIATE				defaults		
B0h	D5h	SMART READ LOG		F1h		Security Set Password		
B0h	D6h	SMART WRITE LOG		F2h		Security Unlock		
B0h	D8h	SMART ENABLE OPERATIONS		F3h		Security Erase Prepare		
B0h	D9h	SMART DISABLE OPERATIONS		F4h		Security Erase Unit		
B0h	DAh	SMART RETURN STATUS		F5h		Security Freeze Lock		
B0h	DBh	SMART ENABLE/DISABILE	F6h			Security Disable Password		
DOIT	ווטט	AUTOMATIC OFF-LINE		1 011		Security Disable Fassword		
E	31h	Device Configuration		F8h		Read Native Max Address		
E	34h	Sanitize		F9h		Set Max Address		
C	C4h	Read Multiple	F9h	0	1h	SET MAX SET PASSWORD		
(C5h	Write Multiple	F9h	02	2h	SET MAXLOCK		
	C6h	Set Multiple Mode	F9h	03	3h	SET MAX UNLOCK		
(C8h	Read DMA	F9h	04	4h	SET MAX FREEZE LOCIK		

6.2. Identify Device Data

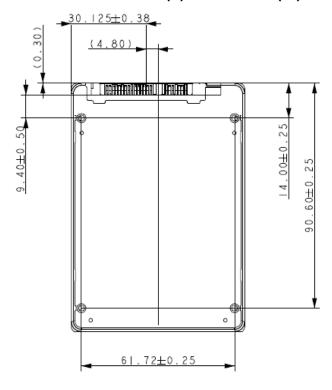
The following table details the sector data returned by the IDENTIFY DEVICE command.

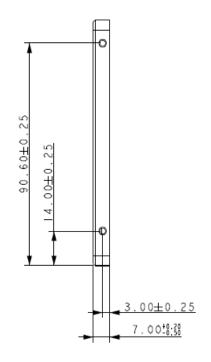
Table 6-2 List of Device Identification

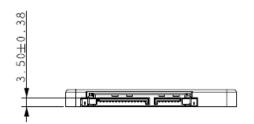
	F: Fixed				
Word	V: Variable	Default Value	Description		
	X: Both				
0	F	0040h	General configuration bit-significant information		
1	Х	*1	Obsolete		
2	V	C837h	Specific configuration		
3	X	0010h	Obsolete		
4-5	X	0000000h	Retired		
6	X	003Fh	Obsolete		
7-8	V	00000000h	Reserved for assignment by the Compact Flash Association		
9	Х	0000h	Retired		
10-19	F	Varies	Serial number (20 ASCII characters)		
20-21	Х	0000h	Retired		
22	Х	0000h	Obsolete		
23-26	F	Varies	Firmware revision (8 ASCII characters)		
27-46	F	Varies	Model number (xxxxxxxx)		
47	F	8010h	7:0- Maximum number of sectors transferred per interrupt on		
			MULTIPLE commands		
48	F	4000h	Trusted Computing feature set options (not support)		
49	F	2F00h	Capabilities		
50	F	4000h	Capabilities		
51-52	X	000000000h	Obsolete		
53	F	0007h	Words 88 and 70:64 valid		
54	Х	*1	Obsolete		
55	X	0010h	Obsolete		
56	Х	003Fh	Obsolete		
57-58	Х	*2	Obsolete		
59	F	0110h	Sanitize and Number of sectors transferred per interrupt on		
			MULTIPLE commands		
60-61	F	*3	Maximum number of sector (28bit LBA mode)		
62	Х	0000h	Obsolete		
63	F	0407h	Multi-word DMA modes supported/selected		
64	F	0003h	PIO modes supported		
65	F	0078h	Minimum Multiword DMA transfer cycle time per word		

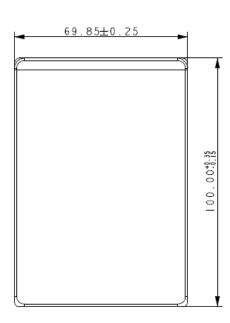
Word	F: Fixed V: Variable X: Both	Default Value	Description	
66	F	0078h	Manufacturer's recommended Multiword DMA transfer cycle	
			time	
67	F	0078h	Minimum PIO transfer cycle time without flow control	
68	F	0078h	Minimum PIO transfer cycle time with IORDY flow control	
69	F	0100h	Additional Supported (support download microcode DMA)	
70	F	0000h	Reserved	
71-74	F	000000000000000000h	Reserved for the IDENTIFY PACKET DEVICE command	
75	F	001Fh	Queue depth	
76	F	670eh	Serial SATA capabilities	
77	F	0084h	Serial ATA Additional Capabilities	
78	F	014Ch	Serial ATA features supported	
79	V	0040h	Serial ATA features enabled	
80	F	07F8h	Major Version Number	
81	F	0000h	Minor Version Number	
82	F	346bh	Command set supported	
83	F	7d09h	Command set supported	
84	F	6063h	Command set/feature supported extension	
85	V	3469h	Command set/feature enabled	
86	V	bc01h	Command set/feature enabled	
87	V	6063h	Command set/feature default	
88	V	003Fh	Ultra DMA Modes	
89	F	0001h	Time required for security erase unit completion	
90	F	001Eh	Time required for Enhanced security erase completion	
91	V	0000h	Current advanced power management value	
92	V	FFFEh	Master Password Revision Code	
93	F	0000h	Hardware reset result. For SATA devices, word 93 shall be	
			set to the value 0000h.	
94	Х	0000h	Obsolete	
95	F	0000h	Stream Minimum Request Size	
96	F	0000h	Streaming Transfer Time – DMA	
97	F	0000h	Streaming Access Latency – DMA and PIO	
98-99	F	0000h	Streaming Performance Granularity	
100-103	V	*4	Maximum user LBA for 48 bit Address feature set	
104	V	0000h	Streaming Transfer Time – PIO	
105	F	0008h	Maximum number of 512-byte blocks per DATA SET	
			MANAGEMENT command	

106	F	4000h	Physical sector size/Logical sector size		
107	F	0000h	Inter-seek delay for ISO-7779 acoustic testing in		
			microseconds		
108-111	F	Varies	World Wide Name		
112-115	F	00000000000000000h	Reserved		
116	V	0000h	Reserved		
117-118	F	0000000h	Words per logical Sector		
119	F	401Ch	Supported settings		
120	F	401Ch	Command set/Feature Enabled/Supported		
121-126	F	0h	Reserved		
127	F	0000h	Obsolete		
128	V	0021h	Security status		
129-140	V	Varies	Vendor specific		
141	V	Varies	Vendor specific		
142-159	Х	Varies	Vendor specific		
160	F	0h	Reserved for assignment by the CFA		
161-167	Х	0h	Reserved for assignment by the CFA		
168	V	Varies	Device Nominal Form Factor		
169	F	0001h	DATA SET MANAGEMENT command is supported		
170-173	F	00000000000	Additional Product Identifier		
		000			
		0h			
174-175	Χ	0h	Reserved		
176-205	V	0h	Current media serial number		
206	F	000h	SCT Command Transport		
207-208	F	0000000h	Reserved		
209	F	4000h	Alignment of logical blocks within a physical block		
210-211	V	0000000h	Write-Read-Verify Sector Count Mode 3 (not supported)		
212-213	F	0000000h	Write-Read-Verify Sector Count Mode 2 (not supported)		
214-216	Х	0h	Obsolete		
217	F	0001h	Non-rotating media device		
218	Х	000h	Reserved		
219	Х	0000h	NV Cache relate (not supported)		
220	V	0000h	Write read verify feature set current mode		
221		0000h	Reserved		
222	F	10FFh	Transport major version number		
223	F	0000h	Transport minor version number		
224-229	Х	0h	reserved		
230-233	F	00000000000000000h	Extend number of user addressable sectors		


234	F	0001h	Minimum number of 512-byte data blocks per DOWNLOAD	
			MICROCODE command for mode 03h	
235	F	FFFeh	Maximum number of 512-byte data blocks per DOWNLOAD	
			MICROCODE command for mode 03h	
236-254	F	0h	Reserved	
255	Х	XXA5h	Integrity word (Checksum and Signature)	
		XX is variable		


Table 6-3 List of Device Identification for Each Capacity


Capacity	*1	*2	*3	*4
(GB)	(Word 1/Word 54)	(Word 57 - 58)	(Word 60 - 61)	(Word 100 - 103)
32	3FFFh	FBFC10h	3BA2EB0h	3BA2EB0h
64	3FFFh	FBFC10h	7740AB0h	7740AB0h
128	3FFFh	FBFC10h	EE7C2B0h	EE7C2B0h
256	3FFFh	FBFC10h	FFFFFFh	1DCF32B0h
512	3FFFh	FBFC10h	FFFFFFh	3B9E12B0h
1024	3FFFh	FBFC10h	FFFFFFh	773BD2B0h
1920	3FFFh	FBFC10h	FFFFFFFh	DF8FE2B0h
3840	3FFFh	FBFC10h	FFFFFFh	1BF1F72B0h


7. PHYSICAL DIMENSIONS

Dimension: 100.00mm (L) x 69.85mm (W) x 7mm (H)

